
Waste Management Division PO Box 95, 29 Hazen Drive Concord, NH 03302 Type of Submittal (Check One-Most Applicable)		
Work Scope Reimbursement Request	 Remedial Action Remedial Action Plan Bid Plans and Specifications 	
 UST Facility Report AST Facility Report 	 Remedial Action Implementation Report Treatment System and POE O&M Activity and Use Restriction 	
 Emergency/Initial Response Action Groundwater Quality Assessment 	Temporary Surface Water Discharge Permit	
 ☐ Initial Site Characterization ☐ Site Investigation • Site Investigation Report • Supplemental Site Investigation Report • GMZ Delineation • Source Area Investigation • Data Submittal • Annual Summary Report ☑ Unsolicited Brownfields Submittal □ Closure Documentation 	 Groundwater Management Permit Permit Application Renewal Application Deed Recordation Documentation Abutter Notification Documentation Release of Recordation Data Submittal Annual Summary Report 	

PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

Former Guay's Garage Site 599-601 South Main Street Franklin, NH NHDES Site # 199808031

Prepared For: Lakes Region Planning Commission 103 Main Street – Suite #3 Meredith, NH 03253 Phone: (603) 279-8171 Contact: Mr. Kimon Koulet

Prepared By: CREDERE ASSOCIATES, LLC 776 Main Street Westbrook, Maine 04092 Phone: (207) 828-1272 ext. 20 Contact: Jonathan O'Donnell

May 2, 2012

R	ecommended Risk Category (check on	e)
1. Immediate Human Health Risk (Impacted water supply well, etc.)	4. Surface Water Impact	☐ 7. Alternate Water Available/Low Level Groundwater Contamination (<1,000 X
2. Potential Human Health Risk (Water supply well within 1,000' or Site	5. No Alternate Water Available/No Existing Wells in Area	AGQS) 8. No AGQS Violation/No Source Remaining
within SWPA)	6. Alternate Water Available/High Level Groundwater Contamination (>1,000 X	Closure Recommended
3. Free Product or Source Hazard	AGQS)	

CREDERE ASSOCIATES, LLC

776 Main Street Westbrook, Maine 04092 Phone: 207-828-1272 Fax: 207-887-1051

May 2, 2012

Mr. Kimon Koulet, Executive Director Lakes Region Planning Commission 103 Main Street, Suite #3 Meredith, NH 03253

Subject: Phase II Environmental Site Assessment Former Guay's Garage Site 599-601 South Main Street, Franklin, NH NHDES Site # 199808031

Dear Mr. Koulet:

Attached is the Phase II Environmental Site Assessment for the Former Guay's Garage Site located at 599-601 South Main Street in Franklin, NH. **Sections 11** and **12** of the attached report present our conclusions and recommendations regarding the Site. Copies of this report have been forwarded to the New Hampshire Department of Environmental Services (NHDES) and the Town of Franklin.

Please do not hesitate to contact me at (207) 828-1272 ext. 20 if you have any questions, comments, or require additional information regarding this investigation.

Very truly,

CREDERE ASSOCIATES, LLC

Jonathan O'Donnell Project Engineer

cc: Elizabeth Dragon, City of Franklin Richard Lewis, City of Franklin Ms. Jennifer Marts, NHDES Ms. Jerry Minor-Gordon, U.S. EPA

Phase II Environmental Site Assessment Report

Former Guay's Garage 599-601 South Main Street Franklin, New Hampshire NHDES Site #199808031

Prepared for:

Lakes Region Planning Commission 103 Main Street, Suite #3 Meredith, NH 03253 Attn: Kimon Koulet Executive Director

May 2, 2012

In Reference to: Credere Project No. 10001087

TABLE OF CONTENTS

Section	n Title	Page No.
EXEC	CUTIVE SUMMARY	ES-1
1. II	NTRODUCTION	1-1
2. P	ROJECT BACKGROUND	
2.1	Site Description	2-1
2.2	Summary of Previous Environmental Reports and Documents	
2.2.1		
2.2.2	0 0 1	
2.2.3		
2.2.4		
2.2.5 2.2.6		
2.2.0	0 ,	
2.2.7	• •	
2.2.9		
2.2.1	0 Phase I ESA – May 17, 2011	2-4
2.3	Potential Future Site Use	2-5
3. P	HASE II SCOPE OF WORK	
4. P	HASE II FIELD ACTIVITIES	
4.1	Ground Penetrating Radar Survey	4-1
4.2	Surficial Soil and Fill/Debris Sampling	
4.3	Soil Boring and Monitoring Well Installation	
4.4	Groundwater Sampling	
4.5	Building Material Sampling	
4.5.1		
4.5.2	Potential PCB-Containing Materials	4-5
4.5.3		
4.5.4		
5. S	UMMARY OF REGULATORY STANDARDS	
5.1	Soil and Surficial Fill/Debris	5-1
5.2	Groundwater	5-1
5.3	Lead-Based Paint	
5.4	Potential Asbestos-Containing Materials	
5.5	Potential PCB-Containing Materials	5-1
6. P	HASE II RESULTS	6-1
6.1	Site Geology	6-1
6.1.1		
6.1.2	Bedrock Geology	6-1
6.1.3		
6.2	Ground Penetrating Radar Results	
6.3	Surficial Soil and Fill/Debris Sample Results	6-2

6.4 Subs	Irface Soil Sample Results6-	-2
6.5 Grou	ndwater Sample Results6-	-3
6.6 Sum	Water Sample Results6-	-3
6.7 Build	ing Material Sample Results6-	-3
	tential Asbestos Containing Material6-	
	tential PCB-Containing Material6-	
	ad-Based Paint	
6.8 Mold		-5
7. QUAL	ITY ANALYSIS/QUALITY CONTROL7-	-1
7.1 Preci	sion7-	-1
7.2 Bias		-2
	racy7-	
	-7-	
-	-7-	
	pleteness	
8. CONC	EPTUAL SITE MODEL	-1
8.1 Site	Groundwater and Hydrogeology	-1
	Groundwater and Hydrogeology	
8.2 Surfa		-1
8.2 Surfa 8.3 Geol	ce Water Flow	-1 -1
8.2 Surfa 8.3 Geol 8.3.1 Su	ce Water Flow	-1 -1 - <i>1</i>
8.2 Surfa 8.3 Geol 8.3.1 Su 8.3.2 Be	ce Water Flow 8- ogical Characteristics 8- <i>ficial Geology</i> 8-	-1 -1 -1 -1
8.2 Surfa 8.3 Geol 8.3.1 Su 8.3.2 Be 8.4 Cont	ce Water Flow 8- ogical Characteristics 8- oficial Geology 8- drock Geology 8-	-1 -1 - <i>1</i> -1
8.2 Surfa 8.3 Geol 8.3.1 Su 8.3.2 Be 8.4 Cont 8.5 Sum	ce Water Flow 8- ogical Characteristics 8- <i>ficial Geology</i> 8- <i>drock Geology</i> 8- aminants of Concern 8-	-1 -1 -1 -1 -3
 8.2 Surfa 8.3 Geol 8.3.1 Su 8.3.2 Be 8.4 Cont 8.5 Summ 9. DEVIA 	ce Water Flow 8- ogical Characteristics 8- <i>oficial Geology</i> 8- <i>drock Geology</i> 8- aminants of Concern 8- nary of Exposure Pathways and Human Receptors 8-	-1 -1 -1 -1 -3 -1
 8.2 Surfa 8.3 Geol 8.3.1 Su 8.3.2 Be 8.4 Cont 8.5 Suma 9. DEVIA 10. DATA 	ce Water Flow	-1 -1 -1 -1 -1 -3 -1 -1 -3 -1 -1
 8.2 Surfa 8.3 Geol 8.3.1 Su 8.3.2 Be 8.4 Cont 8.5 Suma 9. DEVIA 10. DATA 11. CONC 	ce Water Flow 8- ogical Characteristics 8- oficial Geology 8- drock Geology 8- aminants of Concern 8- nary of Exposure Pathways and Human Receptors 8- ATIONS 9- GAPS 10- LUSIONS 11-	-1 -1 -1 -1 -1 -3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 8.2 Surfa 8.3 Geol 8.3.1 Su 8.3.2 Be 8.4 Cont 8.5 Suma 9. DEVIA 10. DATA 11. CONC 12. RECO 	ce Water Flow 8- ogical Characteristics 8- oficial Geology 8- drock Geology 8- aminants of Concern 8- nary of Exposure Pathways and Human Receptors 8- ATIONS 9- GAPS 10- LUSIONS 11- MMENDATIONS 12-	-1 -1 -1 -1 -1 -3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 8.2 Surfa 8.3 Geol 8.3.1 Su 8.3.2 Be 8.4 Cont 8.5 Suma 9. DEVIA 10. DATA 11. CONC 12. RECO 	ce Water Flow 8- ogical Characteristics 8- oficial Geology 8- drock Geology 8- aminants of Concern 8- nary of Exposure Pathways and Human Receptors 8- ATIONS 9- GAPS 10- LUSIONS 11-	-1 -1 -1 -1 -1 -3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

CREDERE ASSOCIATES, LLC

LIST OF TABLES

Table 1	
Table 2	Summary of Groundwater Elevation Data
Table 3	
Table 4 Summ	ary of X-Ray Fluorescence Field Screening Results for RCRA 8 Metals
	Summary of Analytical Results for Soil and Fill/Debris Samples
Table 6 Summ	hary of Analytical Results for Building Material and Bulk PCB Samples
Table 7	Summary of Analytical Results for Groundwater Samples
Table 8	Summary of Lead-Based Paint Survey Results
Table 9	

LIST OF FIGURES

Figure 1	Site Location Map
	Detailed Site Plan
Figure 3	Geological Cross-Section
Figure 4	Soil, Fill/Debris, and PCB Building Material Sample Results Plan
Figure 5	Groundwater Sample Results Plan
Figure 6	Building Material Surveys Results Plan – Garage/Barn
Figure 7	Building Material Surveys Results Plan - House
Figure 8	Conceptual Site Model Diagram

LIST OF APPENDICES

Appendix A	Site-Specific Quality Assurance Project Plan Addendum
	Groundwater Sampling Logs
	Laboratory Analytical Reports
11	Asbestos-Containing Materials Survey Report

EXECUTIVE SUMMARY

Credere Associates, LLC (Credere) conducted a Phase II Environmental Site Assessment (ESA) at the Former Guay's Garage Site located at 599-601 South Main Street in Franklin, New Hampshire (the Site) in general conformance with the American Society for Testing Materials (ASTM) Standard Practice E 1903-97 (Reapproved 2002). This Phase II ESA was undertaken using United States Environmental Protection Agency (EPA) funds awarded to Lakes Region Planning Commission's (LRPC) Brownfields Program.

Phase II ESA activities were performed specifically to confirm or dismiss *recognized environmental conditions* (RECs) and other ASTM *non-scope considerations* (NCs) identified during the Phase I ESA that was completed for the Site by Credere in May 2011.

The Phase II ESA work at the Site included: the advancement of three (3) soil borings and installation of two (2) monitoring wells; collection and laboratory analysis of three (3) subsurface soil samples, six (6) surficial soil samples, four (4) waste fill/debris samples, one (1) soil sample from adjacent to a sump, seven (7) building materials samples, and thirty-nine (39) suspected asbestos-containing materials (ACM) samples; a lead-based paint (LBP) survey; and the collection and analysis of groundwater samples from an existing monitoring well, the two newly installed monitoring wells, and from within a sump.

Based on the findings of this work, Credere's conclusions include the following:

- REC-1, which was associated with the historical use of the Site as a gasoline station and for automotive repair work was <u>confirmed</u> because, although there were no exceedances of applicable New Hampshire Department of Environmental Services (NHDES) standards in samples specifically collected to address this REC (CA-3 and MW-4), soil and groundwater samples collected to address other RECs related to the former use of the Site (REC-2 and REC-3) had concentrations that exceeded applicable NHDES standards.
- REC-2, which was associated with the storage of approximately 60 drums within and outside the garage/barn building and associated oil staining, was <u>confirmed</u> because contaminants were identified at concentrations exceeding their applicable NHDES standards in groundwater (location CA-2) and stained concrete (location CC-1) from areas where these drums were formerly located.
- REC-3, which was associated with the presence of a sump that discharges to the ground to the west of the building that may have received or been used for disposal of wastes, was <u>confirmed</u> because a soil sample collected from immediately adjacent to the sump (SS-Sump) contained concentrations of total petroleum hydrocarbons (TPH) and the polycyclic aromatic hydrocarbon (PAH) benzo[b]fluoranthene at concentrations which exceeded their respective NHDES Soil Remediation Standards (SRS).

- REC-4, which was associated with waste dumping at the Site was <u>confirmed</u> because soil/solid samples from the fill/debris piles contained TPH, arsenic, lead, and the PAH benzo[a]pyrene at concentrations which exceeded their respective NHDES SRS.
- NC-1, which was associated with the presence of ACM in the Site buildings, was <u>confirmed</u> because ACM was identified in/on both Site buildings.
- NC-2, which was associated with the presence of lead-based paint (LBP) in/on the Site buildings, was <u>confirmed</u> because LBP was identified in/on both Site buildings, and LBP on the exterior of both Site buildings was noted in poor condition and may have impacted surficial soil at the Site with lead.
- NC-3, which was associated with potential polychlorinated biphenyl (PCB)-containing bulk products within the Site buildings, has been <u>dismissed</u> because no regulated concentrations of PCBs were identified in the sampled building materials other than the oil stained concrete.
- NC-4, which was associated with fluorescent lighting fixtures observed throughout the Site buildings which have the potential to contain PCBs, was not assessed during this Phase II ESA.
- Water damage and mold was observed within the Garage/barn building on the Site. No assessment of mold was undertaken during this Phase II ESA. There are currently no regulations in the United States or the State of New Hampshire for mold exposure. Guidelines for exposure are presented in the "Worldwide Standards for Exposure to Bacteria and Mold" by Robert C. Brandys, PhD, MPH, PE, CIH, CSP, CMR and Gail M. Brandys, MS, CSP, CMR.

Based on these conclusions, Credere recommends the following tasks be completed for the Site:

- Credere recommends that, before the building is reused or demolished, the PCBs detected in oil stained concrete floor be further characterized in accordance with the requirements of 40 CFR 761.61(a). NHDES has indicated that congener and homologue analyses would likely be required for any PCB samples collected in these areas.
- Contaminated surficial soil and fill/debris identified at the Site represents a potential health risk; therefore, Credere recommends that a remedial action plan be developed and implemented to appropriately address these materials. Additional assessment work is warranted to determine if the contaminated fill/debris piles have impacted the native surficial soils around and beneath them.
- Credere recommends the installation of one additional monitoring well downgradient of monitoring well CA-1, and two additional rounds of groundwater sampling and analysis for NHDES Full List VOCs from all Site monitoring wells.
- Groundwater was not able to be sampled from previously installed monitoring wells MW-2 and MW-3, as MW-2 could not be located, and MW-3 was dry. Therefore,

groundwater downgradient of the garage building has not been adequately assessed. Credere recommends the installation of two additional monitoring wells downgradient of the garage. One of these wells should be screened in the shallow perched aquifer, and one should be screened in the deeper regional aquifer. Following the installation of these wells, Credere recommends that two additional rounds of groundwater sampling from all Site monitoring wells be conducted, with samples analyzed for NHDES' Full List VOCs.

- Depending on the future redevelopment scenario for the Site, assessment of surficial soil near areas of the exteriors of the Site buildings with peeling LBP may be warranted, because the peeling LBP may have impacted surficial soil near the Site buildings with lead. We believe that this work may be warranted once the redevelopment scenario is understood because it may still represent a potential health risk to future site occupants even though NHDES does not regulate soil that has been impacted as a result of degrading LBP.
- If the Site buildings are to be renovated or demolished in a manner that disturbs ACM, then Credere recommends removal of any impacted ACM by a licensed asbestos abatement professional in accordance with all applicable state and federal regulations.
- Prior to any residential or child-occupied uses of the Site buildings, all identified LBP components at the Site should be repaired to a good condition or replaced, all lead hazards should be eliminated; and a formal lead inspection should be conducted by a New Hampshire certified lead inspector in accordance with all applicable state and federal regulations.
- If the garage/barn building is to be renovated, Credere recommends that a mold survey should be conducted to identify the presence of any hazardous molds within the building, which, if present, should be properly managed. Conversely, if the building is to be razed, demolition activities should be conducted in such a manner as to protect human health from potential mold hazards.
- If taken permanently out-of-use, fluorescent lighting and other universal waste within the Site building should be removed and disposed in accordance with all applicable state and federal regulations.

1. INTRODUCTION

This report presents the results of a Phase II Environmental Site Assessment (ESA) conducted by Credere Associates, LLC (Credere) at the Former Guay's Garage Site (the Site) located at 599-601 South Main Street in Franklin, New Hampshire, as part of the Lakes Region Planning Commission's (LRPC) Brownfields Program using United States Environmental Protection Agency (EPA) Brownfields grant funds. **Figure 1** shows the general location of the Site in Franklin.

The Phase II ESA was completed in general conformance with the American Society for Testing Materials (ASTM) Standard Practice E 1903-97 (Reapproved 2002). The field program used during this Phase II ESA was completed in accordance with the United States Environmental Protection Agency (U.S. EPA) approved Site-Specific Quality Assurance Project Plan (SSQAPP) Addendum for the Site, which is included in **Appendix A**. The SSQAPP is an addendum to the previously approved New Hampshire Generic QAPP RFA #08166 and #09036, which was prepared for all of Credere's EPA work in New Hampshire. Photographs taken during the completion of this Phase II ESA are included in **Appendix B**.

2. PROJECT BACKGROUND

2.1 SITE DESCRIPTION

The Site is composed of one 2.363-acre parcel of land that contains a residence, hereafter referred to as the house, and a garage building with an attached barn, hereafter referred to as the garage/barn building. Since circa 1932 the Site has been used as a residence, gasoline station, automotive service facility, and as a used car dealership. **Figure 2** is a detailed Site plan depicting relevant Site features and sampling locations.

2.2 SUMMARY OF PREVIOUS ENVIRONMENTAL REPORTS AND DOCUMENTS

2.2.1 Underground Storage Tank Closure Report – September 9, 1998

On September 9, 1998, ARC Environmental Consultants (ARC) completed an underground storage tank (UST) closure report for the Site. It should be noted that at the time of the report, the Site was part of a larger parcel of land that was later subdivided in 2001. The larger parcel included another residential structure. The report documented the removal of five (5) USTs; three located on the current Site, and two on the former adjoining residential property.

On July 30, 1998, ARC oversaw the removal of one (1) 1,000-gallon gasoline UST and one (1) 500-gallon gasoline UST from the Site. The gasoline USTs were located southeast of the garage/barn building in the vicinity of a former gasoline dispenser island. Upon removal of the gasoline USTs, the tanks appeared badly corroded, and pinhole perforations were observed in the 1,000-gallon tank. However, laboratory analytical results from soil samples collected beneath the tanks indicated that soil met New Hampshire Department of Environmental Services (NHDES) regulatory standards.

ARC also oversaw the removal of one (1) 500-gallon fuel oil UST that was located to the east of the garage/barn building on July 30, 1998. Upon removal, the tank appeared badly corroded with perforations visible. Visual and olfactory evidence of a discharge of oil was observed in the excavation. On July 31, 1998, 39 tons of contaminated soil was excavated from beneath the tank to the depth of the water table and was disposed of off-site. Laboratory analytical results from a confirmation sample collected from the excavation bottom indicated that soil met NHDES regulatory standards. Laboratory analytical results from a groundwater sample collected from the base of the excavation indicated concentrations of polycyclic aromatic hydrocarbons (PAHs) and naphthalene were present at concentrations exceeding NHDES regulatory standards.

On July 31, 1998, ARC oversaw the removal of one 500-gallon and one 275-gallon No. 2 fuel oil USTs from the adjoining residential property (previously part of the Site). Upon removal, the tanks appeared intact and no evidence of discharges was noted in the excavations. Laboratory analytical results from soil samples collected beneath the tanks indicated that soil met NHDES regulatory standards.

During UST removal activities, ARC collected a sludge sample from the base of a drywell located to the east of the garage/barn building. The drywell reportedly received water from the floor drain system within the garage building. Laboratory analytical results of the sample indicated that total petroleum hydrocarbons (TPH), lead, and PAHs were present in the sludge at concentrations exceeding NHDES regulatory standards.

Based on their findings, ARC recommended that a Site Investigation be completed to investigate the discharges of oil identified from the 500-gallon fuel oil UST and the drywell located to the east of the garage/barn. ARC also recommended that a remaining 500-gallon waste oil UST located beneath the garage bay floor be properly abandoned.

2.2.2 Underground Storage Tank Closure Report – November 23, 1998

On November 23, 1998, ARC completed a UST closure report for the oversight of the abandonment-in-place of one (1) 500-gallon waste oil UST located beneath the garage bay floor. On November 5, 1998, a hole was cut through the concrete floor of the garage bay to allow for cleaning and assessment of the tank. A total of 500-gallons of waste oil were pumped from the tank for disposal off-site. The tank reportedly appeared structurally sound with no evidence of perforations. One hole was cut into the bottom of the tank and one soil sample was collected from beneath the tank. The tank was subsequently filled-in-place with concrete. Laboratory analytical results of the soil sample for volatile organic compounds (VOCs), TPH, PAHs, and Resource Conservation and Recovery Act (RCRA) 8 metals indicated that soil beneath the tank met the NHDES regulatory standards, and ARC concluded that a release had not occurred from the tank. The tank. The tank use also abandoned.

2.2.3 NHDES Letter – January 7, 1999

On January 7, 1999, the NHDES issued a letter accepting ARC's November 1998 UST Closure Report and stated that the NHDES would not require additional investigation or remediation in relation to the 500-gallon waste oil UST.

2.2.4 Site Investigation Report – April 14, 2000

Following the completion of UST closure activities and initial drywell assessment, ARC completed a Site Investigation Report (SIR) for the Site for the NHDES on behalf of a former owner of the Site. The SIR documented soil and groundwater sampling results in support of the investigation of a former 500-gallon fuel oil UST and the closure of a drywell on the Site. During the SIR, ARC advanced four (4) soil borings and installed four (4) groundwater monitoring wells and collected soil and groundwater samples for laboratory analysis. Laboratory analytical results indicated that no contaminants were detected above NHDES regulatory standards in any of the samples.

On July 13, 1999, ARC oversaw the closure of the drywell located to the east of the garage/barn building. During the removal, standing liquid was pumped from the drywell and six (6) cubic

yards of contaminated soil were removed for proper disposal. ARC collected one (1) composite soil sample from the base of the excavation for laboratory analysis for VOCs, TPH, PAHs, and RCRA 8 metals. Laboratory analytical results indicated that no contaminants were detected above NHDES regulatory standards.

Based on the investigation results and review of existing regulatory files for the Site, ARC concluded that all known potential source areas of contamination had been investigated or removed from the Site. ARC recommended that all of the floor drains within the building be permanently sealed and requested that the NHDES close the site and issue a Certificate of No Further Action.

2.2.5 NHDES Letter – July 11, 2000

On July 11, 2000, the NHDES issued a letter in response to ARC's SIR requesting that one additional round of groundwater sampling be completed at the Site, that the floor drains should be permanently sealed, and that documentation of the floor drain closure should be submitted to the NHDES. No documents have been identified to determine if the additional groundwater sampling work has been completed.

2.2.6 NHDES Letter – August 4, 2000

On August 4, 2000, the NHDES issued a letter regarding the floor drains noted at the Site. The letter noted that floor drain discharge is regulated under state law, and that it was either required to close the drains, reroute the drains to a municipal sewer system, or reroute the floor drains to a NHDES certified holding tank. The NHDES required that verification of the floor drain closure or hookup be submitted within 30 days.

No further information was available regarding the modification of the floor drain system; however, a holding tank is depicted in the location of the former drywell on a plan prepared for the subdivision that included the Site on June 27, 2001. In addition, the NHDES lists the Underground Injection Control (UIC) file for the Site as closed on December 27, 2006, so it is likely that the NHDES requirements were satisfied.

2.2.7 Certificate of No Further Action and Site Closure – June 11, 2002

On June 11, 2002, the NHDES issued a Certificate of No Further Action and Site Closure for the Site stating that "All previous NHDES requirements with regard to the investigation and remediation of the No. 2 heating oil release have been satisfactorily addressed" and that no additional investigation, remedial measures, or groundwater monitoring would be required with respect to this release.

2.2.8 NHDES Waste Management Division Complaint File

The NHDES Waste Management Division maintains a complaint file for the Site. The file contained the following correspondence and NHDES personnel site investigation reports:

- A NHDES record of telephone conversation dated October 28, 2009, documenting a citizen complaint regarding twenty (20) to thirty (30) 55-gallon drums stored at the Site outside of the garage/barn building.
- Site Investigation Summary Reports dated November 13, 2009, December 9, 2009, and February 10, 2010, summarizing NHDES personnel visits to the Site and discussions with the property owners/tenants regarding storage and cleanup of drums stored outside. The reports indicated that the NHDES observed soil staining around drums and used car parts outside the garage/barn building.
- A NHDES letter to the property owner dated February 16, 2010, documenting the complaint and subsequent inspections and requesting that remedial actions take place at the Site. Requested actions included sampling of the drums to determine if they would be considered hazardous waste, formally notifying the NHDES of the intent to burn waste oil at the Site, to properly label and store all drums on the Site, and to properly excavate and dispose of contaminated soil around the drums and car parts stored outside.
- Follow-up Site Investigation Summary Reports dated April 14, 2010, and June 2, 2010, documenting that some drums had been moved into the garage/barn building following the February letter.
- A Site Investigation Summary Report dated August 20, 2010, documenting that the City of Franklin had taken over the Site and that the NHDES observed fifty-one (51) 55-gallon drums outside the garage/barn building.

2.2.9 U.S. EPA Emergency Drum Removal Memorandum – February 18, 2011

This memorandum documents the emergency removal of sixty (60) 55-gallon drums of material as well as numerous other smaller containers. Prior to the removal, waste materials were characterized for proper disposal. Characterization samples identified materials with concentrations of barium, cadmium, chromium, lead, silver, polychlorinated biphenyls (PCBs) (one drum only), halogens, and VOCs (based on flashpoint testing).

2.2.10 Phase I ESA – May 17, 2011

A Phase I ESA was completed by Credere for the Site in May 2011, in accordance with ASTM Standard Practice E 1527-05. The Phase I ESA identified the following *recognized environmental conditions* (RECs) at the Site:

- REC-1 The historical use of the Site as a gasoline station, for automotive work, and dumping may have impacted soil or groundwater at the Site. In addition, there is the potential for undocumented USTs to be present on the Site.
- REC-2 The storage of approximately 60 drums within and outside the garage/barn building with stained soil and concrete indicates releases to the environment.
- REC-3 The presence of a sump that discharges to the ground to the west of the building that may have received or been used for disposal of wastes, which would have been released to the environment.
- REC-4 The materials dumped to the west of the private road have the potential to contain petroleum and/or hazardous materials, which may have affected soil or groundwater in the area.

Credere identified one (1) *de minimis environmental condition* (DMEC) at the subject property during this Phase I ESA:

• DMEC-1 – Small stains that are typical of automotive service facilities were observed throughout the garage building and stained floors were observed around drums storage areas. Due to the age of the garage building and the fact that PCBs have commonly been found in automotive fluids and waste oil, PCBs may be present in these stained areas.

The following four (4) ASTM *non-scope considerations* (NCs) were also noted during the Phase I ESA:

- NC-1 Based on the ages of the Site buildings asbestos-containing materials (ACMs) may be present on the interior and exterior of the buildings.
- NC-2 Based on the ages of the Site buildings, lead-based paint may be present on the interior or exterior of the buildings.
- NC-3 Based on the ages of the Site buildings, PCB-containing bulk products (caulking, paint, etc.) may be present on the interior and exterior of the buildings.
- NC-4 Based on the ages of the Site buildings, fluorescent lighting fixtures observed throughout the buildings have the potential to contain PCBs.

2.3 POTENTIAL FUTURE SITE USE

The current owner of the Site, the City of Franklin, has partnered with LRPC to assess the Site so that the City of Franklin can divest the property for redevelopment as residential, commercial, or light industrial uses. No redevelopment plans have been established to date.

3. PHASE II SCOPE OF WORK

Credere performed this Phase II ESA to assess the identified RECs and NCs identified in Credere's Phase I ESA for the Site. An SSQAPP Addendum was developed that outlined the work to be completed, methodologies to be used, and data quality objectives for the project (see **Appendix A**). The SSQAPP Addendum was approved by EPA and NHDES on June 7, 2011. The Phase II ESA tasks completed included the following:

- 1. A ground penetrating radar (GPR) survey of selected areas of the Site was conducted to identify any anomalies that may be USTs related to REC-1.
- 2. Eleven (11) samples of surficial soil and fill/debris were collected from the Site and submitted for off-site laboratory analysis to assess REC-2, REC-3, and REC-4.
- 3. Three (3) soil borings were advanced at the Site and three (3) subsurface soil samples were collected from the borings and submitted for off-site laboratory analysis to assess REC-1 and REC-2. Two (2) of the soil borings were completed as monitoring wells.
- 4. Groundwater samples were collected from the two (2) new monitoring wells and existing monitoring well MW-4 to assess REC-1 and REC-2 and submitted for off-site laboratory analysis. Previously installed monitoring wells MW-1, MW-2, and MW-3 could either not be located, were destroyed, or contained no groundwater at the time of sampling.
- 5. A water sample was collected from within a sump in the garage/barn building and submitted for off-site laboratory analysis to assess REC-3.
- 6. Five (5) concrete samples from the garage floor in areas of oil staining or drum storage were collected (as a screening level assessment) and submitted for off-site laboratory analysis to determine if a release of PCBs has impacted the concrete floor of the garage (DMEC-1).
- 7. A survey of potential ACM within and on the Site buildings was conducted to assess NC-1.
- 8. A survey of potential lead-based paint (LBP) within and on the Site buildings was conducted to assess NC-2.
- 9. Potential PCB-containing building materials were surveyed and inventoried. Based on the results of this effort, two (2) samples of building materials were collected and submitted for off-site laboratory analysis to give an initial indication on the potential for building materials at the Site to contain PCBs (NC-3).
- 10. The Site buildings were inspected for the presence of fluorescent lighting fixtures that may contain PCBs, as well as other universal wastes that may remain in the building and would require proper disposal during Site redevelopment.

Deviations from the scope of work described in the SSQAPP Addendum are summarized in **Section 9** of this report.

4. PHASE II FIELD ACTIVITIES

This sampling program was developed to investigate soil, fill/debris, groundwater, and building materials at the Site to confirm or dismiss the RECs and NCs identified during the Phase I ESA. All tasks were conducted in accordance with the SSQAPP Addendum (**Appendix A**). Any deviations from the SSQAPP Addendum are described in **Section 9**. All laboratory analytical samples collected by Credere were submitted to Absolute Resource Associates (ARA) of Portsmouth, New Hampshire for analysis. Requirements relative to Chain of Custody, Data Management and Documentation, Data Validation, and Data Usability Assessments contained in the SSQAPP were followed. **Figure 2** shows the approximate locations of the Site buildings, pertinent Site features, and sample locations.

4.1 GROUND PENETRATING RADAR SURVEY

On June 15, 2011, Credere oversaw a ground penetrating radar (GPR) survey of the Site by DigSmart of Maine (DigSmart) to identify subsurface features at the Site potentially associated with RECs at the Site. DigSmart scanned the subsurface with a GPR by walking in continuous and consecutive north-south transects over the areas of the Site associated with RECs (see **Appendix A**). Subsurface anomalies detected with the GPR were marked on the ground surface with paint. **Figure 2** shows the extent of the GPR survey.

4.2 SURFICIAL SOIL AND FILL/DEBRIS SAMPLING

On June 15, 2011, Credere collected six (6) surficial soil samples (SS-1 to SS-6), one soil sample from immediately adjacent to the sump (SS-Sump), and four (4) fill/debris samples (Fill-1, Fill-2, Fill-3, and Ash-1) from the Site to assess conditions associated with the identified RECs. Surficial soil samples were collected from 0 to 1 foot below ground surface (bgs) using hand tools. Any visible organic debris and/or degraded asphalt were removed from samples prior to placement in laboratory glassware.

Each collected sample was logged and visual and/or olfactory evidence of contamination was noted. Samples were then field screened for VOCs with a PID calibrated to a 100 parts per million by volume (ppm_v) isobutylene standard with the instrument response factor set to 1.0 and for Resource Conservation Recovery Act (RCRA) 8 metals with an Innov-X X-ray fluorescence (XRF) meter. Exploration locations and methodologies used are summarized in **Table 1**, PID field screening results are included in **Table 3**, and XRF field screening results are included in **Table 4**.

The rationale for each surficial sample is described below:

• Surficial soil sample SS-1 was collected in the small stained area to the south of the garage/barn building and was submitted for laboratory analysis of NHDES Petroleum and Hazardous Waste Full List of Analytes for Volatile Organics (NHDES Full List VOCs), total petroleum hydrocarbons (TPH), RCRA 8 metals, PAHs, and PCBs.

- Surficial soil samples SS-2 and SS-3 were collected in the heavily stained area around the drums formerly located to the northwest of the garage/barn building and were submitted for laboratory analysis of NHDES Full List VOCs, TPH, RCRA 8 metals, PAHs, and PCBs.
- Surficial soil sample SS-4 was collected from the area to the north of the garage/barn building where a large quantity of drums and car parts were observed and was submitted for laboratory analysis of NHDES Full List VOCs, TPH, RCRA 8 metals, PAHs, and PCBs.
- Surficial soil sample SS-5 was collected from the stained area at the sump discharge location and soil sample SS-Sump was collected from the soil immediately adjacent to the sump. These samples were submitted for laboratory analysis of NHDES Full List VOCs, TPH, RCRA 8 metals, PAHs, and PCBs.
- Surficial soil sample SS-6 was collected adjacent to a 30-gallon drum that is located west of the garage/barn building and was submitted for laboratory analysis of NHDES Full List VOCs, TPH, RCRA 8 metals, PAHs, and PCBs.
- Samples Fill-1, Fill-2, and Fill-3 were collected from piles of soil fill located west of the garage/barn building and were submitted for laboratory analysis of NHDES Full List VOCs, TPH, RCRA 8 metals, PAHs, and PCBs.
- Sample Ash-1 collected from a pile of ash/burned debris located west of the garage/barn building, and was submitted for laboratory analysis of NHDES Full List VOCs, TPH, RCRA 8 metals, PAHs, and PCBs.

4.3 SOIL BORING AND MONITORING WELL INSTALLATION

Three (3) soil borings (CA-1 through CA-3) were advanced at the Site on June 30, 2011. Soil boring locations are depicted on **Figure 2**. T&K Well Drilling, a licensed NH well driller from Troy, NH, was retained by Credere and performed the drilling activities. Credere was onsite during the work to provide oversight of the drilling and well installation, and to collect soil samples for field screening and laboratory analysis.

Soil borings were advanced using a truck-mounted drill with hollow stem auger. Soil samples were continuously collected using split-spoon soil sampling. Each collected soil sample was field logged and then field screened for VOCs using the PID as described in **Section 4.2**.

Monitoring wells were completed in soil boring locations CA-1 and CA-2. Each monitoring well was installed using 2-inch diameter PVC pipe and 0.010-inch wide slotted PVC screen. The annulus was packed with size No. 2 washed sand to approximately 1-foot above the screen depth and a bentonite seal was placed on top of the annulus and at the ground surface to prevent surface water infiltration. Following installation, each monitoring well was developed and allowed to equilibrate for two weeks. **Table 1** is a summary of the exploration methods used at

each location including the media that was sampled. Field screening results are included in **Table 3** and **Table 4**. Copies of soil boring logs are included as **Appendix C**.

The rationale for the location of each soil boring and the soil sample submitted for laboratory analyses is provided below:

<u>CA-1</u>

Soil boring CA-1 was advanced to a depth of 24 feet bgs near the heavily stained area around the drums formerly located to the northwest of the garage/barn building. The boring indicated that a perched aquifer was contained within a fine silt layer that extended from approximately 4 to 22 feet bgs. The 6 to 8-foot bgs soil sample was submitted for laboratory analysis of NHDES Full List VOCs, PAHs, RCRA 8 metals, TPH, and PCBs because of a slight petroleum odor was noted in this interval.

The bottom of the boring was plugged with bentonite clay from 20 to 24 feet bgs, and boring CA-1 was completed as a monitoring well and screened from 10 to 20 feet bgs. The perceived water table within the perched aquifer was observed at approximately 16 feet bgs.

<u>CA-2</u>

Soil boring CA-2 was advanced to a depth of 18 feet bgs to the north of the garage/barn building where a large quantity of drums and car parts were observed during Phase I ESA activities. The boring indicated that the perched aquifer was contained within a fine silt layer that extended from approximately 6 to at least 18 feet bgs. The 14 to 16-foot bgs soil sample was submitted for laboratory analysis of NHDES Full List VOCs, PAHs, RCRA 8 metals, TPH, and PCBs because of relatively elevated VOCs detected in this interval during PID field screening. This interval was also selected because a lack of visible oxidation in the sample indicated that this was the transition to permanently saturated soil, and was a seasonal low water table elevation.

Soil boring CA-2 was completed as a monitoring well, and was screened from 8 to 18 feet bgs to intersect the water table within the perched aquifer where contaminants from the drums formerly located in this area are likely to be detected.

<u>CA-3</u>

Soil boring CA-3 was advanced to a depth of 48 feet bgs in the location of a former gasoline pump island. Neither the fine silt layer nor the perched aquifer that were present in CA-1 or CA-2 was present in boring CA-3. However, fine sand with silt was present from approximately 6 to 40 feet bgs. The 8 to 10-foot bgs soil sample was submitted for laboratory analysis of NHDES Full List VOCs, PAHs, RCRA 8 metals, TPH, and PCBs because of relatively elevated VOCs detected in this interval during PID field screening.

Soil boring CA-3 was not completed as a monitoring well because groundwater was not encountered until 47 feet bgs, and there was no evidence during field screening that any former gasoline releases have impacted media at this depth.

4.4 GROUNDWATER SAMPLING

Credere returned to the Site on July 14, 2011, to sample the newly installed monitoring wells and previously installed monitoring wells (MW-1, -2, -3, and MW-4) at the Site. Credere attempted to locate existing monitoring wells MW-1 through MW-4 (see **Figure 2**). Well MW-1 and MW-2 both could not be located. Well MW-2 may have been destroyed as the area of the Site thought to contain this well appeared heavily disturbed. Well MW-3 contained no groundwater on July 14, 2011 so it was not sampled.

Well MW-4 contained groundwater and was sampled along with the newly installed monitoring wells CA-1 and CA-2. A new concrete-encased manhole was installed on MW-4 to replace the existing damaged road box.

It should be noted that the groundwater level in CA-1 would not stabilize during low-flow sampling; therefore a sample was collected without stabilization or the collection of water quality parameters.

Each of the new monitoring wells was surveyed for location and depth to groundwater was measured for the new monitoring wells and existing monitoring well MW-4.

All collected groundwater samples were submitted to ARA for laboratory analysis of NHDES Full List VOCs, PAHs, and dissolved RCRA 8 metals.

Groundwater sampling logs are included in **Appendix D**. Copies of generated laboratory reports are included as **Appendix E**.

A sample of water within the sump in the garage/barn building (SUMP) was collected using clean glassware and then decanted into the appropriate laboratory glassware. Results of analysis of the water from the sump are presented with the results for groundwater samples.

4.5 BUILDING MATERIAL SAMPLING

4.5.1 Potential Asbestos Containing Materials

On June 15, 2011, NH certified Asbestos Inspectors Jonathan O'Donnell (Certification # AI 000382) and Judd Newcomb (Certification # AI 000383) of Credere inventoried suspect ACM within and on the Site buildings. Credere identified thirty-nine (39) potential ACMs and collected three (3) samples of each material for laboratory analysis for asbestos in accordance with NHDES Env-A 1800. Samples were submitted to EMSL of Woburn, MA, for analysis.

CREDERE ASSOCIATES, LLC

4.5.2 Potential PCB-Containing Materials

On June 15, 2011, Credere inventoried suspect PCB-containing bulk product building materials at the Site. Examples of suspect products typically include, but are not limited to, paint, caulking, sealants, grout, mastic, glazing, insulation, cable insulation, thermal insulation, adhesives and tapes, plastics, floor finishes, gaskets, ceiling tile coatings, flooring sealants, roofing materials, and siding materials.

Consistent with this inventory and the results of previous investigations at similar sites, Credere identified two (2) potentially PCB-containing bulk products and collected one (1) sample of each material for laboratory analysis of PCBs. These materials were caulk around the garage bay doors on the south side of the garage (BM-01), and caulk around the doorway adjacent to these bay doors (BM-02).

Additionally, Credere collected five (5) concrete samples (CC-1 to CC-5) from oil-stained concrete within the garage (see **Figure 2**) to assess areas that may have been impacted by a potential release of PCBs, and may thereby meet the definition of PCB Remediation Waste as defined in 40 CFR 761.61. Credere personnel collected the bulk material samples using an impact hammer drill, dedicated 0.5-inch masonry drill bits, and dedicated scoopulas to collect a minimum of 10 grams of material from the sampling surface to 0.5-inches below grade.

The building material and concrete samples were submitted to ARA for analysis of PCBs by EPA Method 8082.

4.5.3 Lead-Based Paint Survey

All accessible painted surfaces in and on the Site buildings were screened for lead concentrations using the XRF on June 15 and July 14, 2011. Paint with a lead concentration greater than 1.00 mg/cm^2 was considered LBP. Additionally, in accordance with the XRF manufacturer specifications, paint with a lead concentration greater than 0.60 mg/cm^2 was also conservatively considered LBP.

Building sides were described as A to D. Side B, C, and D were identified clockwise from Side A as one faces the building from the roadway; thus Wall B is to the left, Wall C is across from Side A, and Side D is to the right of Side A. Condition of identified LBP was noted as good, fair, or poor according to the following:

- Good condition is one in which the paint is entirely intact.
- Fair condition is one in which paint is intact, but worn; minor chips are evident as a result of normal wear and tear; no adhesion or substrate problems, e.g., no broken wallboard is present. Individual interior components with large surface areas (walls, ceilings, floors, doors) that evidence less than or equal to 2 square feet of normal wear and tear or direct damage are considered to be in fair condition. Individual interior components with small

surface areas (window sills, baseboard) that evidence less than or equal to 10 percent normal wear and tear or direct damage on the total surface area of the component are considered to be in fair condition. Exterior components with large surface areas that evidence less than or equal to 10 square feet of normal wear and tear or direct damage are considered to be in fair condition. Individual exterior components with small surface areas (soffits, trim) that evidence less than or equal to 10 percent normal wear and tear or direct damage on the total surface area of the component are considered to be in fair condition.

• Poor condition is one in which paint is severely worn, weathered or no longer adhering, i.e., peeling, cracking, flaking, chalking; or the substrate is broken, exposed or otherwise deteriorated. Individual interior components with large surface areas (walls, ceilings, floors, doors) that evidence greater than 2 square feet of normal wear and tear or direct damage are considered to be in poor condition. Individual interior components with small surface areas (window sills, baseboard) that evidence greater than 10 percent normal wear and tear or direct damage on the total surface area of the component are considered to be in poor condition. Exterior components with large surface areas that evidence greater than 10 square feet of normal wear and tear or direct damage are considered to be in poor condition. Individual exterior components with small surface areas (soffits, trim) that evidence greater than 10 percent normal wear and tear or direct damage on the total surface areas (soffits, trim) that evidence greater than 10 percent normal wear and tear or direct damage on the total surface areas (soffits, trim) that evidence greater than 10 percent normal wear and tear or direct damage on the total surface areas (soffits, trim) that evidence greater than 10 percent normal wear and tear or direct damage on the total surface areas (soffits, trim) that evidence greater than 10 percent normal wear and tear or direct damage on the total surface area of the component are considered to be in poor condition.

This work was <u>not</u> intended to determine the suitability of the buildings for residential or childoccupied uses, or to assess the risk associated with LBP on the Site for occupants or residents. If the Site buildings are to be used in the future as residences or child-occupied facilities, a formal lead survey of the Site should be conducted in accordance with New Hampshire HE-P 1600.

4.5.4 Mold

No sampling for mold was conducted during this Phase II ESA; however, Credere did note water damage and mold present in the garage area of the garage/barn building during the building material surveys.

CREDERE ASSOCIATES, LLC

5. SUMMARY OF REGULATORY STANDARDS

As a part of this Phase II ESA, Credere collected samples of soil, fill/debris, groundwater, standing water in a sump, and building materials to confirm or dismiss the presence of contaminants associated with the RECs and NCs identified at the Site. Sample results were compared to the applicable state and federal standards described below.

5.1 SOIL AND SURFICIAL FILL/DEBRIS

Concentrations in surficial and subsurface soil samples and fill/debris samples were compared to New Hampshire's Soil Remediation Standards (SRS) detailed in NHDES Env-Or 600 Contaminated Site Management.

5.2 GROUNDWATER

Concentrations in groundwater samples were compared to New Hampshire's Ambient Groundwater Quality Standards (AGQS) detailed in NHDES Env-Or 600 Contaminated Site Management.

5.3 LEAD-BASED PAINT

Concentrations of lead in paint as determined through the use of the XRF analyzer were compared to the limit of 1.0 mg/cm^2 or 0.5% by weight. Additionally, in accordance with the XRF manufacturer specifications, paint with a lead concentration greater than 0.60 mg/cm^2 was also conservatively considered LBP. All construction work involving exposure or potential exposure to lead is covered by the OSHA Lead in Construction Standard 29 CFR 1926.62.

5.4 POTENTIAL ASBESTOS-CONTAINING MATERIALS

Concentrations of asbestos in building material bulk samples were compared to the limit of 1% by weight detailed in NHDES Env-A 1800 Asbestos Management and Control.

5.5 POTENTIAL PCB-CONTAINING MATERIALS

Bulk products that contain concentrations of total PCBs equal to or in excess of 50 mg/kg are defined as PCB bulk product wastes in accordance with 40 CFR 761.3. These materials are regulated for disposal under 40 CFR 761.62. Bulk products that have been analyzed to contain total PCBs at a concentration of equal to or greater than 1 mg/kg but less than 50 mg/kg (and not as a result of dilution) are not regulated for disposal as long as they remain in use. However, if these materials are removed from use, they must be disposed of at a facility that is licensed to accept these materials in accordance with the applicable state regulations. Bulk products which have been analyzed to contain total PCBs at a concentration of less than 1 mg/kg are unrestricted for future use and/or disposal.

Bulk building materials which have been analyzed to contain total PCB concentrations equal to or in excess of 1 mg/kg as a result of contact with a PCB bulk product waste or a release of PCBs are defined as a PCB remediation waste in accordance with 40 CFR 761.3. Building materials and other bulk materials (i.e., concrete flooring) which have been analyzed to contain total PCBs at concentrations of less than 1 mg/kg are unrestricted for future use and/or disposal.

6. PHASE II RESULTS

The following subsections present the results of the data collected during the field work portion of this Phase II ESA.

6.1 SITE GEOLOGY

6.1.1 Surficial Geology

During the advancement of soil borings for the current and previous Phase II ESA work, the native surficial geology of the Site was observed to consist of layers of poorly graded silt and sand. A silt layer extends across the northeast portion of the site, generally increasing in thickness from south to north. A cross-section of the surficial geology of the site is presented as **Figure 3**.

6.1.2 Bedrock Geology

No bedrock was encountered at the Site during soil boring activities which extended to a maximum depth of 48 feet bgs. According to the *Bedrock Geologic Map of New Hampshire* compiled by the USGS, the subject property is underlain by the upper part of the Rangeley Formation. The Rangeley Formation is Lower Silurian in age and described as a pelitic schist, metasandstone, and locally coarse-grained metasandstone with rusty weathering.

6.1.3 Site Hydrogeology

A perched aquifer was present in the silt layer in monitoring wells CA-2 and MW-4 at 7 to 8 feet bgs, but was 17.72 feet bgs in well CA-1. This is likely because the bottom of the aquitard silt layer at location CA-1 was penetrated by the drill during boring. The bottom of the boring was plugged with bentonite; however this plug may not be fully effective and groundwater may have drained into the unsaturated sand layer below. Due to this, accurate groundwater elevations were only measured at two wells (CA-2 and MW-4) and groundwater flow direction at the Site on the date of groundwater sampling could not be adequately modeled. Groundwater and well elevations are presented in **Table 2.** Well elevations are based on elevations of MW-1 to MW-4 as previously presented in ARC Environmental Consultant's Site Investigation Report for the Site, dated April 14, 2000, and a survey of newly installed wells by Credere relative to these wells.

Previous investigation at the Site completed by ARC (discussed in **Section 2.2**) determined that groundwater flows east to southeast in the area of the Site. ARC's data indicated that groundwater at Site has been observed at depths ranging from approximately 8.5 to 11 feet below ground surface (bgs) within the silt layer.

6.2 GROUND PENETRATING RADAR RESULTS

DigSmart identified no subsurface anomalies at the Site.

6.3 SURFICIAL SOIL AND FILL/DEBRIS SAMPLE RESULTS

Oil staining was observed in surficial soil samples SS-1, SS-2, SS-3, SS-4, SS-5, and SS-6; and in fill/debris sample Ash-1; and the soil sample from adjacent to the sump (SS-Sump). PID readings ranged from non-detect to 59.6 ppm_v (Ash-1) for surficial soil and fill/debris samples. XRF field screening indicated that concentrations exceeding the applicable NHDES SRS were detected for lead (samples Fill-1, Fill-2, and Fill-3), arsenic (sample Fill-2), and chromium (sample SS-4). Surficial soil sample field screening results are summarized in **Table 3** and **Table 4**.

Concentrations of TPH were identified in laboratory analyzed samples SS-Sump (30,000 mg/kg), and Ash-1 (23,000 mg/kg) exceeding the applicable NHDES SRS of 10,000 mg/kg.

The PAH benzo[b]fluoranthene was identified in sample SS-Sump at a concentration (4.6 mg/kg) which exceeded the applicable NHDES SRS of 1 mg/kg. The PAH benzo[a]pyrene was identified in sample Fill-1 at a concentration (0.9 mg/kg) which exceeded the applicable NHDES SRS of 0.7 mg/kg. Additionally, the laboratory practical quantitation limit (PQL) was greater than the applicable NHDES SRS for several PAHs in samples SS-4, SS-Sump, and Ash-1.

Concentrations of arsenic (As) exceeding the applicable NHDES SRS of 11 mg/kg were identified in laboratory analyzed samples in sample Fill-2 (29 mg/kg). Lead (Pb) was identified at concentrations exceeding the applicable NHDES SRS of 400 mg/kg in samples Fill-1 (650 mg/kg), Fill-2 (560 mg/kg), and Fill-3 (500 mg/kg).

No other analytes were detected at concentrations exceeding applicable NHDES SRS in these samples.

Surficial soil and fill/debris sample laboratory analytical results are summarized in **Table 5** and sample locations where exceedances of NHDES SRS occurred are depicted on **Figure 4**. Copies of laboratory results are included as **Appendix E**.

6.4 SUBSURFACE SOIL SAMPLE RESULTS

No staining was observed in any soil samples from soil borings CA-1, CA-2, or CA-3. PID readings ranged from 0.4 to 13.1 ppm_v for subsurface soil samples. XRF field screening indicated that no RCRA 8 metals were present in subsurface soil samples at concentrations exceeding their applicable NHDES SRS. Subsurface soil sample field screening results are summarized in **Table 3** and **Table 4**.

Subsurface soil sample laboratory analytical results are summarized in **Table 5** and sample locations are depicted on **Figure 2**.

6.5 GROUNDWATER SAMPLE RESULTS

No VOCs, TPH, dissolved RCRA 8 metals, or PCBs were detected in any of the collected three groundwater samples from CA-1, CA-2, or MW-4 at concentrations which exceeded the applicable NHDES AGQS, except the following:

• The VOC methyl tertiary-butyl ether (MTBE) was quantified in the groundwater sample collected from monitoring well CA-1 at a concentration (16 μ g/L) which exceeded its applicable NHDES AGQS of 13 μ g/L. MTBE was also identified at concentrations below the applicable NHDES AGQS in groundwater collected from CA-2 and MW-4.

It should be noted that the recorded water table level in well CA-2 was at the elevation of the top of the screen, and the screen may not have fully intersected the groundwater table. Groundwater sample laboratory analytical results are summarized in **Table 7** and sample locations where exceedances of NHDES AGQS occurred are depicted on **Figure 5**.

6.6 SUMP WATER SAMPLE RESULTS

No VOCs, TPH, or RCRA 8 metals were detected at concentrations exceeding applicable NHDES AGQS in the collected water sample from the sump within the garage/barn building. Sump water sample laboratory analytical results are summarized in **Table 7**.

6.7 BUILDING MATERIAL SAMPLE RESULTS

6.7.1 Potential Asbestos Containing Material

The following materials were identified as ACM in/on the Site buildings:

- Garage/barn building, roof area "2", entire roof field, black asphalt shingles, and asphalt base layer, approximately 760 square feet
- House, roof area "2", entire roof field, asphalt paper old roofing beneath new roof and foam board, approximately 500 square feet
- Garage/barn building, exterior window glazing on wood windows on barn portion
- Garage/barn building, room "6", red floor tile, approximately 160 square feet

Credere's Asbestos Inspection Report is included as **Appendix F**. Locations where ACM were identified are depicted on **Figures 6 and 7**. The laboratory analytical report is included as **Appendix E**.

6.7.2 Potential PCB-Containing Material

Building materials samples BM-01 and BM-02 contained no PCBs at concentrations exceeding the laboratory PQLs.

Stained concrete sample CC-1 contained PCBs at a concentration (2.1 mg/kg) which, as the source of PCBs is unknown, defines associated materials as PCB remediation waste as defined in 40 CFR 761.3. The Aroclor congener in this sample did not resemble one of the standard Aroclors, and the result was reported as PCB-Not-Otherwise-Specified (N.O.S.). Laboratory analytical results are summarized in **Table 6**. Copies of laboratory reports are included as **Appendix E**.

6.7.3 Lead-Based Paint

The following surfaces within or on the Site buildings were identified as LBP, and the condition of the materials was assessed. The LBP survey data are included as **Table 8**.

- Garage/barn building, white plaster wall, room "Garage 5", side "C", fair condition.
- Garage/barn building, white wooden windows on the barn, interior and exterior (all components), fair to poor condition. Flaking or peeling exterior LBP may have impacted exterior Site soils with lead.
- Garage/barn building, white exterior paint on the barn, fair to poor condition. Flaking or peeling exterior LBP may have impacted exterior Site soils with lead.
- Garage/barn building, green garage door, side "D", fair condition.
- House, white sheetrock wall, room "Kitchen 1", side "B", good condition.
- House, white wooden windows, interior and exterior (all components), fair to poor condition. Flaking or peeling exterior LBP may have impacted exterior Site soils with lead.
- House, wallpaper and painted wallpaper, room "Hallway 1", side "C", good condition.
- Garage/barn building, white exterior barn door, side "C", poor condition. Flaking or peeling exterior LBP may have impacted exterior Site soils with lead.

6.8 MOLD

Although no sampling for mold occurred during this Phase II ESA, Credere noted water damage and mold present in the garage area of the garage/barn building.

7. QUALITY ANALYSIS/QUALITY CONTROL

The contracted laboratory, Absolute Resource Associates of Portsmouth, New Hampshire, provided Level II analytical data according to EPA protocols, EPA laboratory data validation guidance, and the SSQAPP. The laboratories provided the following information in analytical reports:

- Data results sheets
- Method blank results
- Surrogate recoveries and acceptance limits
- Duplicate results/acceptance limits
- Spike/duplicate results/acceptance limits
- Laboratory control sample results
- Description of analytical methods and results
- Other pertinent results/limits as deemed appropriate

As outlined in the SSQAPP, at the completion of the field tasks and upon receipt of the analytical results, a data usability analysis was conducted to document the precision, bias, accuracy, representativeness, comparability, and completeness of the results. The following sections present this analysis.

7.1 PRECISION

Precision measures the reproducibility of measurements. The precision measurement is established using the relative percent difference (RPD) between the sample and duplicate results. Relative percent differences were calculated for soil samples where both sample and duplicate values were greater than five times (5X) the PQL of the analyte. The RPD is calculated as follows:

 $RPD = (Sample Result - Duplicate Result) \times 100$ Mean of the Two Results

The following five (5) duplicate samples were collected during this Phase II ESA:

- SS-DUP (duplicate soil sample collected at surficial soil sample location SS-1 from 0 to 1 feet bgs)
- CA-DUP-SB (duplicate soil sample collected at soil boring CA-2 from 14 to 16 feet bgs)
- DUP-GW-1 (duplicate groundwater sample collected at monitoring well CA-2)
- CC-DUP (duplicate concrete bulk sample collected at sample location CC-1)
- BM-DUP (duplicate bulk product sample collected at bulk product sample location BM-01)

Table 9 summarizes the duplicate sample results and RPDs.

Sample SS-DUP was submitted for laboratory analysis of NHDES Full List VOCs, PAHs, RCRA 8 metals, TPH, and PCBs. No VOCs or PCBs were detected in the sample or duplicate sample, and all concentrations of PAHs were less than five times the laboratory PQL; therefore, RPDs were not calculated for these samples. The RPDs for TPH and RCRA 8 metals that were detected at concentrations greater than five times the laboratory PQL were less than 35% and were within acceptable limits.

Sample CA-DUP-SB was submitted for laboratory analysis of NHDES Full List VOCs, PAHs, RCRA 8 metals, TPH, and PCBs. No VOCs, PAHs, TPH, or PCBs were detected in the sample or duplicate sample; therefore, RPDs were not calculated for these samples. The RPDs for RCRA 8 metals that were detected at concentrations greater than five times the laboratory PQL were 84.5% and 104.6%, both greater than 35% and not acceptable. This lack of precision may be due to sample heterogeneity. All concentrations of metals in this sample and duplicate were below the applicable NHDES SRS, therefore this lack of precision is not perceived by Credere to impact the conclusions of this Phase II ESA.

Sample DUP-GW-1 was submitted for laboratory analysis of NHDES Full List VOCs, PAHs, and RCRA 8 metals. All analytes for the sample and/or duplicate sample were not detected or had concentrations less than five times the laboratory PQL; therefore, RPDs were not calculated for these samples.

Sample BM-DUP was submitted for laboratory analysis of PCBs. All PCBs were non-detect; therefore, RPDs were not calculated for this sample.

Sample CC-DUP was submitted for laboratory analysis of PCBs. Concentration of PCBs in the sample and duplicate were both 2.1 mg/kg; therefore the RPD was 0% and was acceptable.

7.2 BIAS

Bias is the systematic or persistent distortion of a measurement process that causes errors in one direction. Bias assessments are made using personnel, equipment, and spiking materials or reference materials as independent as possible from those used in the calibration of the measurement system. Bias assessments were based on the analysis of spiked samples so that the effect of the matrix on recovery is incorporated into the assessment. A documented spiking protocol and consistency in following that protocol are important in obtaining meaningful data quality estimates.

Matrix spike and matrix spike duplicate samples (MS/MSD) were used to assess bias as prescribed in the specified methods. Control samples for assessing bias were analyzed at a rate as specified in the analytical SOPs and specified analytical methods.

The laboratory provides quality control non-conformance reports that indicate if Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD) and/or MS/MSD had low, failing, or high recoveries, and if the sample result was affected. Likewise, the laboratory reports any compounds that had failing RPDs in the LCS/LCSD pair or the MS/MSD pair. This indicates the percent difference between the laboratory sample and its duplicate or the spike and it's duplicate. According to the laboratory, unless noted in the non-conformance summary, all of the quality control criteria for these analyses were within acceptable limits. Specific comments from the laboratory included:

<u>VOC</u>

The LCSD1101207 did not meet the acceptance criteria for bromomethane. The LCS/D1101207 did not meet the acceptance criteria for 1,4-dioxane. These compounds showed high recovery. There is no impact to the data as these analytes were not detected in the associated samples.

The MLCS/D4261 did not meet the acceptance criteria for dichlorodifluoromethane, chloromethane, vinyl chloride, bromomethane, chloroethane, trichlorofluoromethane, 1,1-dichloroethene and carbon disulfide. These failures were determined to be the result of a degraded standard. The newly prepared standard produced acceptable results. No impact to the data suspected.

The LCS/D1101505 did not meet the acceptance criteria for bromomethane. This compound showed high recovery. There is no impact to the data as this analyte was not detected in the associated samples.

<u>TPH</u>

The relative percent difference for the duplicate analysis, performed on the following sample as internal QC, 21796-002 was outside the acceptance criteria. The higher value has been reported. Sample heterogeneity suspected.

7.3 ACCURACY

Accuracy is a statistical measurement of correctness and includes components of random error (variability due to imprecision) and systemic error. It, therefore, reflects the total error associated with a measurement. A measurement is accurate when the value reported does not differ from the true value or known concentration of the spike or standard. For VOCs and PAHs, surrogate compound recoveries are also used to assess accuracy and method performance for each sample analyzed. Analysis of performance evaluation samples are also used to provide additional information for assessing the accuracy of the analytical data being produced. Both accuracy and precision are calculated for each analytical batch, and the associated sample results are interpreted by considering these specific measurements.

The lab provides a non-conformance summary that reports if all of the quality control criteria including initial calibration, calibration verification, surrogate recovery, holding time and method accuracy/precision for analysis were within acceptable limits. According to the

CREDERE ASSOCIATES, LLC

laboratory, unless noted in the non-conformance summary, all of the quality control criteria for these analyses were within acceptable limits. Specific comments from the laboratory included:

<u>VOCs</u>

Sample 21796-008 did not meet acceptance criteria for the surrogate a,a,a-trifluorotoluene. The sample was re-analyzed and the results were similar. Matrix interference is suspected.

PAHs

The percent recovery for the extraction surrogates in samples 21796-002, -005, and -009 were above the acceptance criteria. Since no targets were detected above the quantitation limit, there is no impact to the data.

<u>TPH</u>

The surrogates were unable to be evaluated for 21796-008 and -009 due to the dilution that was necessary for the analysis. The surrogates were diluted out of the range of the analysis as noted on the report pages.

<u>PCBs</u>

Sample 21796-001, -002, -006, -008, -009, -014, -015, -017, -018, and -020 did not meet acceptance criteria for the surrogate decachlorobiphenyl. The sample was re-extracted and the results were similar. Matrix interference is suspected.

7.4 REPRESENTATIVENESS

Objectives for representativeness are defined for each sampling and analysis task and are a function of the investigative objectives. Representativeness was accomplished during this project through use of standard field, sampling, and analytical procedures.

All objectives for sampling and analytical representativeness for samples that were analyzed, as specified in the SSQAPP Addendum, were met.

7.5 COMPARABILITY

Comparability is the confidence with which one data set can be compared to another data set. The objective for this QA/QC program is to produce data with the greatest possible degree of comparability. Comparability was achieved by using standard methods for sampling and analysis, reporting data in standard units, normalizing results to standard conditions and using standard and comprehensive reporting formats. Complete field documentation was used, including standardized data collection forms to support the assessment of comparability. Historical comparability shall be achieved through consistent use of methods and documentation procedures throughout the project.

7.6 COMPLETENESS

Completeness is calculated by comparing the number of samples successfully analyzed to the number of samples collected. The goal for completeness is 95 percent. The completeness for this project was 100 percent, as there were no samples that could not be analyzed due to holding time violations, samples spilled or broken, or any other reason.

CREDERE ASSOCIATES, LLC

8. CONCEPTUAL SITE MODEL

This Phase II ESA was designed to provide further understanding of the contaminants at the Site and to aid in changing the Site use from industrial to residential and/or commercial. The following section is a description of the Conceptual Site Model (CSM), which incorporates information from this investigation.

8.1 SITE GROUNDWATER AND HYDROGEOLOGY

A silt layer aquitard containing a perched aquifer is present on the northeast portion of the Site near the ground surface (approximately 4 to 15 feet bgs) based on observations and previous studies. This layer is present in locations CA-1, CA-2, MW-2, MW-3, and MW-4. The regional groundwater table is approximately 47 feet bgs as measured in soil boring CA-3. Previous investigations at the Site completed by ARC (discussed in Section 2.2) determined that groundwater flows east to southeast at the subject property (Figure 2) towards the Pemigwasset River.

8.2 SURFACE WATER FLOW

Topography at the Site generally slopes to the east with a 25 foot elevation differential across the Site from the west to the east. Storm water from the Site flows generally east to the Pemigwasset River.

8.3 GEOLOGICAL CHARACTERISTICS

8.3.1 Surficial Geology

During the advancement of soil borings for the current and previous Phase II ESA work, the native surficial geology of the Site was observed to consist of layers of poorly graded silt and sand.

8.3.2 Bedrock Geology

Bedrock is described as the Lower Silurian Rangeley Formation which consists of a pelitic schist, metasandstone, and locally coarse-grained metasandstone with rusty weathering.

8.4 CONTAMINANTS OF CONCERN

The contaminants of concern discussed in this CSM are those compounds that (1) are associated with historic use of the Site, and/or (2) were detected above applicable regulatory standards. Based on this, the contaminants of concern at the Site include the following:

• TPH and the PAH compounds benzo(b)fluoranthene and benzo(a)pyrene detected in fill/debris piles on the western portion of the Site and in soil adjacent to the sump

- PCBs detected in stained concrete within the garage
- Arsenic and lead detected in surficial fill/debris piles on the western portion of the Site
- MTBE detected in groundwater
- Asbestos containing building materials and lead-based paint identified in and on the Site buildings

To aid in a thorough understanding of the environmental concerns present at the Site, a graphical presentation of the identified contaminants of concern and the migration pathways to potential receptors is included as **Figure 8**. Exposure Pathways and Potential Receptors depicted on the CSM are defined below.

Exposure Pathways describe how a human or environmental receptor comes into contact with contaminants which may be present at the Site. Exposure pathways presented in the CSM include the following:

Inhalation:	This pathway is primarily associated with groundwater contamination within 30 feet of an occupied structure when groundwater elevation is less than 15 feet below surface grade, or when depth to groundwater is unknown. This pathway is applicable when receptors may inhale impacted media in the form of vapor.
Dermal Absorption:	Exposure via dermal absorption occurs when receptors are exposed to chemical concentrations present in soil, groundwater, or surface water through direct contact with the skin.
Active Ingestion:	The Active Ingestion pathway represents exposure which may occur through the active ingestion of contaminant concentrations via a drinking water supply well or through agricultural products.
Incidental Uptake:	This pathway is applicable when receptors may incidentally ingest impacted media in the form of dust or airborne particulates.

Potential Receptors are categorized by duration of exposure and intensity of use at the Site. The receptor categories described in the CSM include the following:

Resident: The residential receptor is defined by high durational exposure and high intensity usage which may occur through gardening, digging, and recreational sports. This group includes the occupants of a residential property or a residential neighborhood.

Commercial: Commercial receptors are those which are present at the Site for

CREDERE ASSOCIATES, LLC

long durations but with low intensity exposure such as indoor office workers.

- Site Worker: Site workers are present at the Site for short durations though intensity of use is high, such as during non-routine activities including construction or utility work. Examples include outdoor commercial workers and construction workers.
- Visitor: Visitors are characterized by low duration, i.e. less than two hours per day, and low intensity usage such as that which would occur during activities such as walking, shopping, and bird watching.
- Terrestrial and
Aquatic Biota:These receptors include flora and fauna which may be exposed to
contaminants in their respective land-based or aquatic
environments.

8.5 SUMMARY OF EXPOSURE PATHWAYS AND HUMAN RECEPTORS

Based on the physical and chemical properties of PCBs, PAHs, and metals; these COCs in surficial soil, fill/debris piles, and stained concrete at the Site are unlikely to leach significantly to subsurface soil or groundwater. The primary migration pathway for these COCs would be disturbance of the impacted materials causing a secondary impact to adjacent surface materials or air at the Site. Potential exposure pathways for these COCs to human receptors are dermal absorption and incidental uptake. Potential human receptors for these COCs at the Site are residents, commercial workers, Site workers, and visitors.

The VOC MTBE was detected in groundwater at the Site, which was presumably released to surficial soil at the Site, and has leached (primary migration pathway) to subsurface soil and groundwater. Secondary migration pathway for this MTBE would be possible impact to off-site downgradient groundwater. Potential exposure pathways for MTBE would be incidental uptake or dermal absorption. The Site is serviced by public water, therefore active ingestion of contaminated groundwater is not perceived to be a potential exposure pathway for contaminated groundwater at the Site. Potential human receptors for MTBE at the Site are residents, commercial workers, Site workers, and visitors. Based on the NHDES *Residential Groundwater to Indoor Air Screening Level* for MTBE of 10,000 μ g/L and the observed concentrations of MTBE in groundwater at the Site, the risk of MTBE impacting indoor air is low.

TPH at the Site was only identified in surficial materials at the Site. The primary migration pathways for these COCs would be disturbance of the impacted materials causing a secondary impact to adjacent surface materials or air at the Site, or of leaching to subsurface soil and/or groundwater at the Site. Potential exposure pathways for TPH would be incidental uptake or dermal absorption. Potential human receptors for TPH at the Site are residents, commercial workers, Site workers, and visitors.

Lead in LBP and potentially in soil adjacent to LBP at the Site can be released from disturbed paint or soil, impacting adjacent surfaces and air. Potential exposure pathways for lead from

CREDERE ASSOCIATES, LLC

LBP would be from active ingestion by children, and also dermal contact and incidental uptake. Potential human receptors for LBP at the Site are residents, commercial workers, Site workers, and visitors.

Asbestos in ACM at the Site can be released from disturbed building materials, impacting air. Potential exposure pathways for ACM would be incidental uptake. Potential human receptors for ACM at the Site are residents, commercial workers, Site workers, and visitors.

PCBs detected in stained concrete flooring can be released from disturbed concrete flooring, releasing dust to indoor air and surfaces. Potential exposure pathways for PCBs would be incidental uptake. Potential human receptors for PCBs at the Site are residents, commercial workers, Site workers, and visitors.

9. DEVIATIONS

The following deviations were made from the SSQAPP Addendum (see **Appendix A**) during the course of the investigation:

1. The locations of soil boring and monitoring wells CA-1 and CA-2 were moved slightly from their proposed locations because of obstructions for the drill rig. The final locations remained in the area potentially impacted by former drums located at the Site, and Credere does not believe that this deviation significantly impacts the conclusions of this Phase II ESA.

10. DATA GAPS

Groundwater was not able to be sampled from previously installed monitoring wells MW-2 and MW-3; therefore, groundwater downgradient of the garage building has not been adequately assessed. This significantly impacts our ability to assess the impacts to groundwater from the RECs at the Site.

No other data gaps remain at the Site, although additional assessment or remedial actions may be warranted.

11. CONCLUSIONS

We have performed a Phase II Environmental Site Assessment at the property at 599-601 South Main Street in Franklin, New Hampshire in conformance with the scope and limitations of ASTM Practice E 1903-97 (Reapproved 2002) and for the following objectives: to confirm or dismiss RECs and NCs identified during the Phase I ESA that was completed for the Site by Credere in May 2011. A summary of our conclusions in relation to the identified RECs, other environmental concerns, and the investigation results are presented below:

- REC-1, which was associated with the historical use of the Site as a gasoline station and for automotive repair work was <u>confirmed</u> because, although there were no exceedances of applicable New Hampshire Department of Environmental Services (NHDES) standards in samples specifically collected to address this REC (CA-3 and MW-4), soil and groundwater samples collected to address other RECs related to the former use of the Site (REC-2 and REC-3) had concentrations that exceeded applicable NHDES standards.
- REC-2, which was associated with the storage of approximately 60 drums within and outside the garage/barn building and associated oil staining, was <u>confirmed</u> because contaminants were identified at concentrations exceeding their applicable NHDES standards in groundwater (location CA-2) and stained concrete (location CC-1) from areas where these drums were formerly located.
- REC-3, which was associated with the presence of a sump that discharges to the ground to the west of the building that may have received or been used for disposal of wastes, was <u>confirmed</u> because a soil sample collected from immediately adjacent to the sump (SS-Sump) contained concentrations of total petroleum hydrocarbons (TPH) and the polycyclic aromatic hydrocarbon (PAH) benzo[b]fluoranthene at concentrations which exceeded their respective NHDES Soil Remediation Standards (SRS).
- REC-4, which was associated with waste dumping at the Site was <u>confirmed</u> because soil/solid samples from the fill/debris piles contained TPH, arsenic, lead, and the PAH benzo[a]pyrene at concentrations which exceeded their respective NHDES SRS.
- NC-1, which was associated with the presence of ACM in the Site buildings, was <u>confirmed</u> because ACM was identified in/on both Site buildings.
- NC-2, which was associated with the presence of lead-based paint (LBP) in/on the Site buildings, was <u>confirmed</u> because LBP was identified in/on both Site buildings, and LBP on the exterior of both Site buildings was noted in poor condition and may have impacted surficial soil at the Site with lead.
- NC-3, which was associated with potential polychlorinated biphenyl (PCB)-containing bulk products within the Site buildings, has been <u>dismissed</u> because no regulated concentrations of PCBs were identified in the sampled building materials other than the oil stained concrete.

- NC-4, which was associated with fluorescent lighting fixtures observed throughout the Site buildings which have the potential to contain PCBs, was not assessed during this Phase II ESA.
- Water damage and mold was observed within the Garage/barn building on the Site. No assessment of mold was undertaken during this Phase II ESA. There are currently no regulations in the United States or the State of New Hampshire for mold exposure. Guidelines for exposure are presented in the "Worldwide Standards for Exposure to Bacteria and Mold" by Robert C. Brandys, PhD, MPH, PE, CIH, CSP, CMR and Gail M. Brandys, MS, CSP, CMR.

12. RECOMMENDATIONS

Based on these conclusions, Credere recommends the following tasks be completed for the Site:

- Credere recommends that, before the building is reused or demolished, the PCBs detected in oil stained concrete floor be further characterized in accordance with the requirements of 40 CFR 761.61(a). NHDES has indicated that congener and homologue analyses would likely be required for any PCB samples collected in these areas.
- Contaminated surficial soil and fill/debris identified at the Site represents a potential health risk; therefore, Credere recommends that a remedial action plan be developed and implemented to appropriately address these materials. Additional assessment work is warranted to determine if the contaminated fill/debris piles have impacted the native surficial soils around and beneath them.
- Credere recommends the installation of one additional monitoring well downgradient of monitoring well CA-1, and two additional rounds of groundwater sampling and analysis for NHDES Full List VOCs from well CA-1 and this newly installed monitoring well.
- Groundwater was not able to be sampled from previously installed monitoring wells MW-2 and MW-3, as MW-2 could not be located, and MW-3 was dry. Therefore, groundwater downgradient of the garage building has not been adequately assessed. Credere recommends the installation of two additional monitoring wells downgradient of the garage. One of these wells should be screened in the shallow perched aquifer, and one should be screened in the deeper regional aquifer. Following the installation of these wells, Credere recommends that two additional rounds of groundwater sampling from all Site monitoring wells be conducted, with analysis of groundwater samples for NHDES' Full List VOCs.
- Depending on the future redevelopment scenario for the Site, assessment of surficial soil near areas of the Site building exteriors with peeling LBP may be warranted because the peeling lead paint may have impacted surficial soil near the Site buildings with lead. We believe that this work may be warranted once the redevelopment scenario is understood because it may still represent a potential health risk to future site occupants even though NHDES does not regulate soil that has been impacted as a result of degrading LBP.
- If the Site buildings are to be renovated or demolished in a manner that disturbs ACM, then Credere recommends removal of any impacted ACM by a licensed asbestos abatement professional in accordance with all applicable state and federal regulations.
- Prior to any residential or child-occupied uses of the Site buildings, all identified LBP components at the Site should be repaired to a good condition or replaced, all lead hazards should be eliminated, and a formal lead inspection should be conducted by a New Hampshire certified lead inspector in accordance with all applicable state and federal regulations.

- If the garage/barn building is to be renovated, Credere recommends that a mold survey should be conducted to identify the presence of any hazardous molds within the building, which, if present, should be properly managed. Conversely, if the building is to be razed, demolition activities should be conducted in such a manner as to protect human health from potential mold hazards.
- If taken permanently out-of-use, fluorescent lighting and other universal waste within the building should be removed and disposed in accordance with all applicable state and federal regulations.

13. SIGNATURES OF ENVIRONMENTAL PROFESSIONALS

The following Credere personnel performed this supplemental Phase II general conformance with the ASTM Standard Practice E 1903-97 (Reapproved 2002). It is our opinion that the these individual(s) possess sufficient education, professional training, and relevant experience to conduct or be in responsible charge of environmental investigations and other activities in accordance with this practice, and to interpret the resulting data to develop opinions and conclusions regarding the presence of target analytes in environmental media in connection with the property in question.

Project Engineer Jonathan O'Donnell

Jedd Steinglass Senior Project Manager

Richard S. Vandenberg, CG, PG Senior Project Manager

14. LIMITATIONS

This report has been prepared as part of a contract agreement between Credere Associates, LLC and LRPC for their Brownfields program. This agreement was established in order to provide LRPC with information upon which it can rely concerning the existence or likely existence of various environmental contaminants on or adjacent to the Site.

This report does not reflect:

- 1. Conditions in untested areas.
- 2. Variations in chemical concentrations that can occur between sample locations.
- 3. The total understanding of potential influences of off-site areas or historical uses that may have contributed or currently contribute to Site contamination, particularly relating to groundwater and subsurface soil conditions. The limited evaluation of off-site contamination sources was based on available data and records.
- 4. The potential presence of compound sources was based on available data and records.
- 5. The potential presence of analytes that were not analyzed for or that may be present below minimum Practical Quantification Limits for the methods tested.
- 6. The conditions of groundwater and/or surface water beyond available data.
- 7. Variation in the Site conditions that occurred at a time other than when the Site inspection was completed.

In the event that any conditions different from those described herein are encountered at a later time, Credere Associates, LLC requests an opportunity to review such differences and modify the assessment and conclusions of this report. This report was prepared expressly for the purpose described. The information in this report may not be suitable for any other use without adaptation for the specific purpose intended. Any such reuse of this report, without adaptation, shall be at the sole risk and liability of the party undertaking the reuse.

TABLES

		NHDES SITE N	S GARAGE SITE FRANKLIN, NEW HAMPSHIRE	DS		
Location Name	Media Sampled	Type of Exploration	Location	Sampling Method		
SS-1			Stained soil near south corner of garage/barn building.			
SS-2						
SS-3	Curfinial Call		Stained soil in drum storage area on northwestern side of garage/barn building.			
SS-4	Surficial Soil					
SS-5			Exterior discharge location of garage sump.			
SS-6		Surficial Soil Sample	Adjacent to drum on western portion of Site.	Pre-cleaned Trowel		
SS-Sump			Soil around edge of sump in garage.			
ASH-1			Burn pile on western portion of Site.			
FILL-1	Fill/Debris					
FILL-2			Fill pile on western portion of Site.			
FILL-3						
CA-1			Stained soil in drum storage area on northwestern side of garage/barn building.			
CA-2	Subsurface Soil	Soil Boring	Stained soil in drum storage area on northern side of garage/barn building.	Pre-cleaned Split-Spoon		
CA-3			Area of former gasoline dispenser island.			
CA-1			Stained soil in drum storage area on northwestern side of garage/barn building.			
CA-2	Groundwater	Monitoring Well	Stained soil in drum storage area on northern side of garage/barn building.	Low-Flow Sampling		
MW-4			Existing well on eastern edge of Site.			
CC-1						
CC-2						
CC-3	Concrete	Pourous Media Sampling	Areas of stained concrete within garage/barn building.	Dedicated Drill Bit		
CC-4						
CC-5						
BM-01	Caulk	Building Material Sampling	Caulk around the garage bay doors on the south side of the garage/barn building.	Dedicated Sample Teels		
BM-02	Gauik	Soliding material Sampling	Caulk around the doorway adjacent to bay doors on the south side of the garage/barn building.	Dedicated Sample Tools s		
SUMP	Water	Grab Sample	Water within sump in garage/barn building.	Grab with sample bottle		

TABLE 2 FORMER GUAY'S GARAGE SITE 599-601 SOUTH MAIN STREET, FRANKLIN, NEW HAMPSHIRE NHDES SITE NO. 199808031 SUMMARY OF GROUNDWATER ELEVATION DATA

	MONITORING WELL ID	MW-4	CA-1	CA-2	
	WELL LOCATION	East of northeast garage building corner.	Northwest of garage building in area of former drum storage and soil staining.	North of garage building in area of former drum storage and soil staining.	
ell etails	WELL DEPTH (FEET)	18	20	18	
Pertinent Well Construction Details	LENGTH OF SCREEN 10		10	10	
Pe Const	SCREENED INTERVAL (FEET BELOW GROUND SURFACE)	8-18		8-18	
	WELL ELEVATION (FEET)	98.44	96.82	97.44	
	GROUNDWATER DEPTH ⁽¹⁾ (FEET) July 14, 2011	7.53	17.72	7.95	
G	GROUNDWATER ELEVATION ⁽²⁾ (FEET) July 14, 2011	90.91	79.10	89.49	

Notes:

Elevations based on elevation of existing monitoring well MW-4 from ARC Site Invertigation Report, April 14, 2000 and survey of wells by Credere. (1) Groundwater levels gauged from top of PVC riser.

(2) Groundwater elevations have been calculated by subtracting the depth to groundwater from the well elevations.

TABLE 3 FORMER GUAY'S GARAGE SITE 599-601 SOUTH MAIN STREET, FRANKLIN, NEW HAMPSHIRE NHDES SITE NO. 199808031 SUMMARY OF PID FIELD SCREENING RESULTS

SUMMARY OF PID FIELD SCREENING RESULTS											
Location	Sample Depth (feet bgs)	Sample Date	PID Results (ppm _v)	Visual Evidence of Petroleum Impact or Petroleum Saturated Soils							
Surficial Soil and Fill/DebrisSamples											
SS-1	0-1	6/15/2011	29.9	Staining present.							
SS-2	0-1	6/15/2011	16.6	Staining present.							
SS-3	0-1	6/15/2011	2.5	Staining present.							
SS-4	0-1	6/15/2011	3.2	Staining present.							
SS-5	0-1	6/15/2011	7.5	Staining present.							
SS-6	0-1	6/15/2011	ND	Staining present.							
SS-Sump	0	6/15/2011	4.1	Staining present.							
ASH-1	0-1	6/15/2011 6/15/2011	59.6	Staining present.							
FILL-1 FILL-2	<u>0-1</u> 0-1	6/15/2011	3.2 ND	No evidence observed. No evidence observed.							
FILL-2	0-1	6/15/2011	ND	No evidence observed.							
Subsurface Soil Samples	0-1	0/13/2011		No evidence observed.							
	0-2		0.8								
	2-4		1.2								
	4-6		3.2								
	6-8		0.6								
	8-10		0.8								
CA-1	10-12	6/30/2011	1.2	No evidence observed.							
	12-14		0.6								
	14-16		0.8								
	16-18		0.8								
	18-20		1.2								
	<u>20-22</u> 22-24		0.8 0.8								
	0-2		1.4								
	2-4		2.1								
	4-6		6.3								
	6-8		6.9								
CA-2	8-10	6/30/2011	4.0	No evidence observed.							
	10-12		6.3								
	<u>12-14</u> 14-16		6.9 10.2								
	16-18		7.2								
	0-2		1.6								
	2-4		3.8								
	4-6		2.8								
	6-8		1.6								
	8-10 10-12		13.1 1.8								
	12-14		1.4								
	14-16		0.4								
	16-18		1.6								
	18-20		1.8								
	20-22		1.6								
CA-3	22-24	6/30/2011	1.4 1.2	No evidence observed.							
	<u>24-26</u> 26-28		0.8								
	28-30		0.6								
	30-32		1.2								
	32-34		1.2								
	34-36		1.2								
	<u>36-38</u> 38-40		0.8 1.2								
	40-42		0.8								
	42-44		0.8								
	44-46		0.8								
	46-48		0.4								

Notes:

Samples were field screened using a Thermo OVM 580B PID; the PID was calibrated using 100 ppm isobutylene and a response factor of 1.0.

ND - VOCs not detected with PID

PID - Photo-Ionization Detector

 $\ensuremath{\mathsf{ppm}}_v\xspace$ - parts per million by volume

bgs - below ground surface

TABLE 4 FORMER GUAY'S GARAGE SITE 599-601 SOUTH MAIN STREET, FRANKLIN, NEW HAMPSHIRE NHDES SITE NO. 199808031 SUMMARY OF XRF FIELD SCREENING RESULTS FOR RCRA 8 METALS

Comment	Y OF XRF F					Standard	-	-	ntration (mg/kg)
Location	Sample Depth (feet bgs)	Sample Date	Cr	As	Se	Ag	Cd	Ва	Hg	Pb
			130	11	180	89	33	1000	6	400
Surficial Soil and Fill/DebrisSamples										
SS-1	0-1	6/15/2011	<lod< td=""><td><lod< td=""><td>4</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>92</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>4</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>92</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	4	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>92</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>92</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>92</td></lod<></td></lod<>	<lod< td=""><td>92</td></lod<>	92
SS-2	0-1	6/15/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>388</td><td><lod< td=""><td>37</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>388</td><td><lod< td=""><td>37</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>388</td><td><lod< td=""><td>37</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>388</td><td><lod< td=""><td>37</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>388</td><td><lod< td=""><td>37</td></lod<></td></lod<>	388	<lod< td=""><td>37</td></lod<>	37
SS-3	0-1	6/15/2011	<lod< td=""><td><lod< td=""><td>4</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>43</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>4</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>43</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	4	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>43</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>43</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>43</td></lod<></td></lod<>	<lod< td=""><td>43</td></lod<>	43
SS-4	0-1	6/15/2011	165	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>113</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>113</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>113</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>113</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>113</td></lod<></td></lod<>	<lod< td=""><td>113</td></lod<>	113
SS-5	0-1	6/15/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>61</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>61</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>61</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>61</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>61</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>61</td></lod<></td></lod<>	<lod< td=""><td>61</td></lod<>	61
SS-6	0-1	6/15/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>95</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>95</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>95</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>95</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>95</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>95</td></lod<></td></lod<>	<lod< td=""><td>95</td></lod<>	95
SS-Sump	0	6/15/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>103</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>103</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>103</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>103</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>103</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>103</td></lod<></td></lod<>	<lod< td=""><td>103</td></lod<>	103
ASH-1	0-1	6/15/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>289</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>289</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>289</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>289</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>289</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>289</td></lod<></td></lod<>	<lod< td=""><td>289</td></lod<>	289
FILL-1	0-1	6/15/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>425</td><td><lod< td=""><td>529</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>425</td><td><lod< td=""><td>529</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>425</td><td><lod< td=""><td>529</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>425</td><td><lod< td=""><td>529</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>425</td><td><lod< td=""><td>529</td></lod<></td></lod<>	425	<lod< td=""><td>529</td></lod<>	529
FILL-2	0-1	6/15/2011	<lod< td=""><td>16</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>511</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	16	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>511</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>511</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>511</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>511</td></lod<></td></lod<>	<lod< td=""><td>511</td></lod<>	511
FILL-3	0-1	6/15/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>467</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>467</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>467</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>467</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>467</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>467</td></lod<></td></lod<>	<lod< td=""><td>467</td></lod<>	467
			1202							
Subsurface Soil Samples										
• • •	0-2		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>76</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>76</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>76</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>76</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>76</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>76</td></lod<></td></lod<>	<lod< td=""><td>76</td></lod<>	76
	2-4		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>418</td><td><lod< td=""><td>38</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>418</td><td><lod< td=""><td>38</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>418</td><td><lod< td=""><td>38</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>418</td><td><lod< td=""><td>38</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>418</td><td><lod< td=""><td>38</td></lod<></td></lod<>	418	<lod< td=""><td>38</td></lod<>	38
	4-6		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>41</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>41</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>41</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>41</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>41</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>41</td></lod<></td></lod<>	<lod< td=""><td>41</td></lod<>	41
	6-8		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>31</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>31</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>31</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>31</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>31</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>31</td></lod<></td></lod<>	<lod< td=""><td>31</td></lod<>	31
	8-10		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<>	<lod< td=""><td>22</td></lod<>	22
CA-1	10-12	6/30/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<>	<lod< td=""><td>25</td></lod<>	25
04-1	12-14	0/30/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<>	<lod< td=""><td>19</td></lod<>	19
			<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<>	<lod< td=""><td>21</td></lod<>	21
	14-16			<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>13</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>13</td></lod<></td></lod<>	<lod< td=""><td>13</td></lod<>	13
	16-18		<lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td></td><td></td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td></td><td></td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></lod 	<lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td></td><td></td></lod<></td></lod<></lod </td></lod<></td></lod<>	<lod< td=""><td><lod <lod< td=""><td><lod< td=""><td></td><td></td></lod<></td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod< td=""><td></td><td></td></lod<></td></lod<></lod 	<lod< td=""><td></td><td></td></lod<>		
	18-20		<lod< td=""><td></td><td></td><td></td><td></td><td></td><td><lod< td=""><td>32</td></lod<></td></lod<>						<lod< td=""><td>32</td></lod<>	32
	20-22		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<>	<lod< td=""><td>19</td></lod<>	19
	0-2		<lod< td=""><td>10</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	10	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>24</td></lod<></td></lod<>	<lod< td=""><td>24</td></lod<>	24
	2-4		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>340</td><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>340</td><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>340</td><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>340</td><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>340</td><td><lod< td=""><td>17</td></lod<></td></lod<>	340	<lod< td=""><td>17</td></lod<>	17
	4-6		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>565</td><td><lod< td=""><td>24</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>565</td><td><lod< td=""><td>24</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>565</td><td><lod< td=""><td>24</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>565</td><td><lod< td=""><td>24</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>565</td><td><lod< td=""><td>24</td></lod<></td></lod<>	565	<lod< td=""><td>24</td></lod<>	24
	6-8		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<>	<lod< td=""><td>26</td></lod<>	26
CA-2	8-10	6/30/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<>	<lod< td=""><td>22</td></lod<>	22
	10-12		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>372</td><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>372</td><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>372</td><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>372</td><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>372</td><td><lod< td=""><td>19</td></lod<></td></lod<>	372	<lod< td=""><td>19</td></lod<>	19
	12-14		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>13</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>13</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>13</td></lod<></td></lod<>	<lod< td=""><td>13</td></lod<>	13
	14-16		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<>	<lod< td=""><td>21</td></lod<>	21
	16-18		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>397</td><td><lod< td=""><td>23</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>397</td><td><lod< td=""><td>23</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>397</td><td><lod< td=""><td>23</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>397</td><td><lod< td=""><td>23</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>397</td><td><lod< td=""><td>23</td></lod<></td></lod<>	397	<lod< td=""><td>23</td></lod<>	23
	0-2		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>220</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>220</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>220</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>220</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>220</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>220</td></lod<></td></lod<>	<lod< td=""><td>220</td></lod<>	220
	2-4		<lod< td=""><td><lod< td=""><td>6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>115</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>115</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	6	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>115</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>115</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>115</td></lod<></td></lod<>	<lod< td=""><td>115</td></lod<>	115
	4-6		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<>	<lod< td=""><td>26</td></lod<>	26
	6-8		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<>	<lod< td=""><td>22</td></lod<>	22
	8-10		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>35</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>35</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>35</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>35</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>35</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>35</td></lod<></td></lod<>	<lod< td=""><td>35</td></lod<>	35
	10-12		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<>	<lod< td=""><td>22</td></lod<>	22
	12-14		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>361</td><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>361</td><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>361</td><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>361</td><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>361</td><td><lod< td=""><td>22</td></lod<></td></lod<>	361	<lod< td=""><td>22</td></lod<>	22
	14-16		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>15</td></lod<></td></lod<>	<lod< td=""><td>15</td></lod<>	15
	16-18		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<>	<lod< td=""><td>17</td></lod<>	17
	18-20		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>14</td></lod<></td></lod<>	<lod< td=""><td>14</td></lod<>	14
	20-22		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<>	<lod< td=""><td>16</td></lod<>	16
	22-24		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<>	<lod< td=""><td>16</td></lod<>	16
CA-3	24-26	6/30/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>358</td><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>358</td><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>358</td><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>358</td><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>358</td><td><lod< td=""><td>18</td></lod<></td></lod<>	358	<lod< td=""><td>18</td></lod<>	18
			<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>24</td></lod<></td></lod<>	<lod< td=""><td>24</td></lod<>	24
	26-28		<lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24 21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></lod 	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24 21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24 21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24 21</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>24 21</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>24 21</td></lod<></td></lod<>	<lod< td=""><td>24 21</td></lod<>	24 21
	28-30			<lod <lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></lod 	<lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<>	<lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod< td=""><td><lod< td=""><td></td></lod<></td></lod<></td></lod<></lod 	<lod< td=""><td><lod< td=""><td></td></lod<></td></lod<>	<lod< td=""><td></td></lod<>	
	30-32		<lod< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>25</td></lod<>							25
	32-34		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>18</td></lod<></td></lod<>	<lod< td=""><td>18</td></lod<>	18
	34-36		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>14</td></lod<></td></lod<>	<lod< td=""><td>14</td></lod<>	14
	36-38		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>425</td><td><lod< td=""><td>13</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>425</td><td><lod< td=""><td>13</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>425</td><td><lod< td=""><td>13</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>425</td><td><lod< td=""><td>13</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>425</td><td><lod< td=""><td>13</td></lod<></td></lod<>	425	<lod< td=""><td>13</td></lod<>	13
	38-40		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<>	<lod< td=""><td>22</td></lod<>	22
	40-42		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<>	<lod< td=""><td>26</td></lod<>	26
	42-44		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>48</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>48</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>48</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>48</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>48</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>48</td></lod<></td></lod<>	<lod< td=""><td>48</td></lod<>	48
	44-46		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>45</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>45</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>45</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>45</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>45</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>45</td></lod<></td></lod<>	<lod< td=""><td>45</td></lod<>	45

<LOD - Concentration less than instrument level of detection

XRF - X-Ray Fluorescence Device

Highlighted cells have concentrations that exceed NHDES Soil Remediation Standards

bgs - below ground surface

TABLE 5 FORMER GUAY'S GARAGE SITE 599-601 SOUTH MAIN STREET, FRANKLIN, NEW HAMPSHIRE NHDES SITE NO. 199808031

SUMMARY OF ANALYTICAL RESULTS FOR SOIL AND FILL/DEBRIS SAMPLES

	Regulatory Standard				Surfi	Surficial Sample Location, Date, and Depth (feet)								e Soil Sample, and Depth	
Parameter	Soil	SS-1	SS-2	SS-3	SS-4	SS-5	SS-6	SS-Sump	Ash-1	Fill-1	Fill-2	Fill-3	CA-1	CA-2	CA-3
	Remediation ⁽²⁾	6/15/2011	6/15/2011	6/15/2011	6/15/2011	6/15/2011	6/15/2011	6/15/2011	6/15/2011	6/15/2011	6/15/2011	6/15/2011	6/30/2011	6/30/2011	6/30/2011
	(mg/kg)	0-1	0-1	0-1	0-1	0-1	0-1	0-0.1	0-1	0-1	0-1	0-1	6-8	14-16	8-10
⁽¹⁾ Volatile Organic Compounds (mg/kg) EPA Method	d 8260B													
Tetrachloroethylene (PCE)	2	0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2
Total Petroleum Hydrocarbons (r	ng/kg) EPA Method	8015B													
TPH	10,000	10,000	1,300	ND < 240	890	ND < 250	ND < 250	30,000	23,000	ND < 220	ND < 210	ND < 230	ND < 240	ND < 250	ND < 240
Metals SW3051A (mg/kg)	-						1		ī			_	Ŧ		
Arsenic	11	2.7	3.9	3.3	7.1	5.7	4.6	10	5.6	11	29	4.6	2.8	5.1	3
Barium	1,000	18	44	31	37	92	56	140	610	100	95	180	54	150	49
Cadmium	33	ND < 0.2	ND < 0.3	ND < 0.2	0.3	ND < 0.3	0.4	4.6	2.3	0.6	0.7	1.2	ND < 0.2	ND < 0.2	ND < 0.2
Chromium	130*	7	12	10	11	23	9	90	38	14	15	20	15	31	14
Lead	400	26	44	31	84	30	110	150	330	650	560	500	12	17	10
Mercury	6	ND < 0.12	ND < 0.10	ND < 0.12	ND < 0.11	ND < 0.09	0.22	ND < 0.09	ND < 0.17	0.15	ND < 0.13	0.21	ND < 0.08	ND < 0.10	ND < 0.07
Selenium	180	ND < 3	ND < 3	ND < 3	ND < 3	ND < 3	ND < 3	ND < 4	ND < 4	ND < 3	ND < 3	ND < 3	ND < 2	ND < 3	ND < 3
Silver	89	ND < 0.4	ND < 0.5	ND < 0.4	ND < 0.4	ND < 0.5	ND < 0.5	ND < 0.5	2	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.3	ND < 0.4	ND < 0.4
Polycyclic Aromatic Hydrocarbo	ns (mg/kg) EPA Me	thod 8270C													
naphthalene	5	ND < 0.5	ND < 0.6	ND < 0.6	ND < 2.6	ND < 0.6	ND < 0.6	ND < 3.4	ND < 0.8	ND < 0.6	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6
2-methylnaphthalene	96	ND < 0.5	ND < 0.6	ND < 0.6	ND < 2.6	ND < 0.6	ND < 0.6	ND < 3.4	ND < 0.8	ND < 0.6	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6
Acenaphthylene	490	ND < 0.5	ND < 0.6	ND < 0.6	ND < 2.6	ND < 0.6	ND < 0.6	ND < 3.4	ND < 0.8	ND < 0.6	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6
Acenaphthene	340	ND < 0.5	ND < 0.6	ND < 0.6	ND < 2.6	ND < 0.6	ND < 0.6	ND < 3.4	ND < 0.8	ND < 0.6	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6
Dibenzofuran	NE	ND < 0.5	ND < 0.6	ND < 0.6	ND < 2.6	ND < 0.6	ND < 0.6	ND < 3.4	ND < 0.8	ND < 0.6	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6
Fluorene	77	ND < 0.5	ND < 0.6	ND < 0.6	ND < 2.6	ND < 0.6	ND < 0.6	ND < 3.4	ND < 0.8	ND < 0.6	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6
Phenanthrene	960	ND < 0.5	ND < 0.6	ND < 0.6	ND < 2.6	ND < 0.6	ND < 0.6	ND < 3.4	ND < 0.8	ND < 0.6	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6
Anthracene	1,000	ND < 0.5	ND < 0.6	ND < 0.6	ND < 2.6	ND < 0.6	ND < 0.6	ND < 3.4	ND < 0.8	ND < 0.6	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6
Fluoranthene	960	ND < 0.5	ND < 0.6	ND < 0.6	ND < 2.6	ND < 0.6	ND < 0.6	8.4	ND < 0.8	1.1	ND < 0.5	0.8	ND < 0.6	ND < 0.6	ND < 0.6
Pyrene	720	1.2	ND < 0.6	ND < 0.6	ND < 2.6	ND < 0.6	ND < 0.6	14	ND < 0.8	1.2	ND < 0.5	0.9	ND < 0.6	ND < 0.6	ND < 0.6
Benzo[a]anthracene	1	ND < 0.5	ND < 0.6	ND < 0.6	ND < 2.6	ND < 0.6	ND < 0.6	ND < 3.4	ND < 0.8	ND < 0.6	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6
Chrysene	120	ND < 0.5	ND < 0.6	ND < 0.6	ND < 2.6	ND < 0.6	ND < 0.6	4.2	ND < 0.8	0.7	ND < 0.5	0.6	ND < 0.6	ND < 0.6	ND < 0.6
Benzo[b]fluoranthene	1	ND < 0.5	ND < 0.6	ND < 0.6	ND < 2.6	ND < 0.6	ND < 0.6	4.6	ND < 0.8	0.8	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6
Benzo[k]fluoranthene	4	ND < 0.5	ND < 0.6	ND < 0.6	ND < 2.6	ND < 0.6	ND < 0.6	ND < 3.4	ND < 0.8	0.9	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6
Benzo[a]pyrene	0.7	ND < 0.5	ND < 0.6	ND < 0.6	ND < 2.6	ND < 0.6	ND < 0.6	ND < 3.4	ND < 0.8	0.9	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6
ndeno(1,2,3-cd)pyrene	1	ND < 0.5	ND < 0.6	ND < 0.6	ND < 2.6	ND < 0.6	ND < 0.6	ND < 3.4	ND < 0.8	0.6	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6
Dibenzo(a,h)anthracene	0.7	ND < 0.5	ND < 0.6	ND < 0.6	ND < 2.6	ND < 0.6	ND < 0.6	ND < 3.4	ND < 0.8	ND < 0.6	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6
Benzo(g,h,i)perylene	960	ND < 0.5	ND < 0.6	ND < 0.6	ND < 2.6	ND < 0.6	ND < 0.6	ND < 3.4	ND < 0.8	0.6	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	ND < 0.6
Polychlorinated Biphenyls (mg/k	a) EPA Method 808	2											I	I	
Total PCBs	g) El X incluioù 666	 ND < 0.1	ND < 0.1	ND < 0.1	ND < 0.1	ND < 0.1	ND < 0.1	ND < 0.1	ND < 0.1	ND < 0.1	ND < 0.1	ND < 0.1	ND < 0.4	ND < 0.4	ND < 0.4
				110 - 0.1									110 1 0.4		110 < 0.4

NOTES:

 $^{\mbox{(1)}}$ Only analytes identified above detection limit are summarized .

⁽²⁾ New Hampshire Soil Remediation Standards from the Risk Characterization Management Policy Env-Or 606.19, Soil Remediation Criteria.

* = The regulatory threshold for chromium VI was used because it is the most stringent standard for chromium.

ND < 0.1 = Not detected above quantitation limit (i.e. 0.1 mg/kg)

Laboratory Practical Quantitation Limit exceeds NHDES Soil Remediation Standard.

Bold Exceeds laboratory quantitation limit

Exceeds NH DES Soil Remediation Standards.

TABLE 6 FORMER GUAY'S GARAGE SITE 599-601 SOUTH MAIN STREET, FRANKLIN, NEW HAMPSHIRE NHDES SITE NO. 199808031

SUMMARY OF ANALYTICAL RESULTS FOR BUILDING MATERIAL AND BULK PCB SAMPLES

		Sample Location, Date, Matrix, and Depth (feet)									
Demonster	Regulatory	CC-1	CC-2	CC-3	CC-4	CC-5	BM-01	BM-02			
Parameter	Standard ⁽¹⁾	6/15/2011	6/15/2011	6/15/2011	6/15/2011	6/15/2011	6/15/2011	6/15/2011			
		Concrete	Concrete	Concrete	Concrete	Concrete	Caulk	Caulk			
		0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	0	0			
Polychlorinated Biphenyls (mg/kg)	EPA Method 808	2									
Total PCBs	1	2.1*	ND < 0.1	ND < 0.1	ND < 0.1	ND < 0.1	ND < 0.2	ND < 0.2			

NOTES:

(1) New Hampshire Soil Remediation Standards (SRS) from the Risk Characterization Management Policy Env-Or 606.19, Soil Remediation Criteria, and definition of PCB remediation waste in accordance with 40 CFR 761.3.

* = The aroclor pattern did not resemble one of the analyzed aroclors. The result was reported as PCB-N.O.S at 2.1 ug/g. ND<0.1 = Not detected above quantitation limit (i.e. 0.2 mg/kg)

Bold Exceeds laboratory quantitation limit

Exceeds Standard of 1 mg/kg

F 599-601 SOUTH SUMMARY OF ANAL	NHDES SIT	ET, FRANK E NO. 1998	LIN, NEW H 08031			
	Regulatory Standard		Sample Loca	tion and Date		
Parameter	NH AGQS ⁽²⁾	CA-1	CA-2	MW-4	SUMP	
	(µg/L)	7/14/2011	7/14/2011	7/14/2011	7/14/2011	
⁽¹⁾ Volatile Organic Compounds (ug/L)	EPA Method 8260)B				
Methyl tertiary-butyl ether (MTBE)	13	16	5	2	ND < 2	
Tetrachloroethylene (PCE)	5	ND < 2	4	ND < 2	ND < 2	
Metals SW3051A (ug/L)		I				
Arsenic	10	ND < 8	ND < 8	ND < 8	ND < 8	
Barium	2,000	70	60	ND < 50	ND < 50	
Cadmium	5	ND < 4	ND < 4	ND < 4	ND < 4	
Chromium	100	ND < 50	ND < 50	ND < 50	ND < 50	
Lead	15	10	ND < 8	ND < 8	10	
Mercury	2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	
Selenium	50	ND < 50	ND < 50	ND < 50	ND < 50	
Silver	100	ND < 7	ND < 7	ND < 7	ND < 7	
^D Polycyclic Aromatic Hydrocarbons (No PAHs detected above laboratory p						

NOTES: (1) Only analytes above detection level are summarized.

⁽²⁾ New Hampshire Code of Administrative Rules Ambient Groundwater Quality Standards (AGQS), effective July 23, 2008. ND < 0.2 = Not detected above quantitation limit (i.e. 0.2 ug/L). Bold Exceeds laboratory quantitation limit. Exceeds NHDES AGQS

TABLE 8 FORMER GUAY'S GARAGE SITE 599-601 SOUTH MAIN STREET, FRANKLIN, NEW HAMPSHIRE NHDES SITE NO. 199808031 SUMMARY OF LEAD-BASED PAINT SURVEY RESULTS

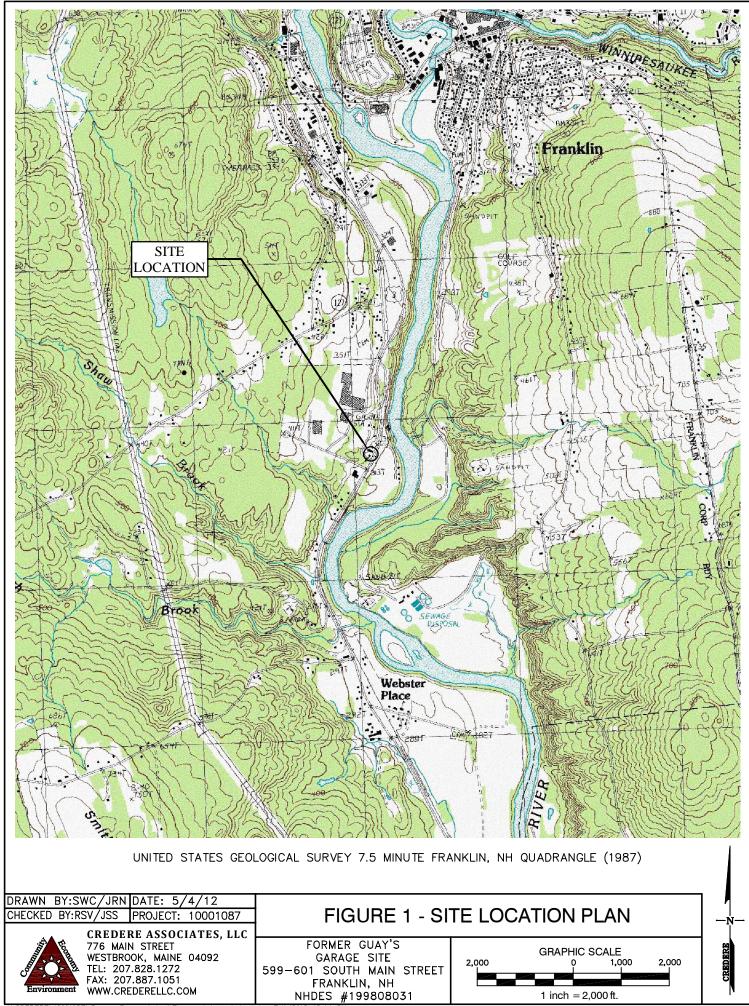
Building	Area/Room	Side*	Color	Component	Substrate	Lead Concentration (mg/cm ²)	Condition
Garage/Barn	Garage Room 1	A, B, C, D	White	Wall	Sheetrock	ND, ND, ND, ND	NA
Garage/Barn	Garage Room 1	A, B, C, D	Black	Window	Wood	ND, ND, ND, ND	NA
Garage/Barn	Garage Room 1	В	White	Door Frame	Wood	ND	NA
Garage/Barn	Garage Room 1	D	White	Door Frame	Wood	ND	NA
Garage/Barn	Garage Room 2	A, B, C, D	White	Wall	Sheetrock	ND, ND, ND, ND	NA
Garage/Barn	Garage Room 2	A	White	Garage Door	Metal	ND	NA
Garage/Barn	Garage Room 2 Garage Room 3	B A, B, C, D	White White	Shelves Wall	Wood Sheetrock	ND ND, ND, ND, ND	NA NA
Garage/Barn Garage/Barn	Garage Room 3	A, B, C, D A		Door Frame	Wood	ND, ND, ND, ND	NA
Garage/Barn	Garage Room 3	A	Gray Gray	Shelf	Wood	ND	NA
Garage/Barn	Garage Room 4	A, B, C, D	Tan	Wall	Wood	ND, ND, ND, ND	NA
Garage/Barn	Garage Room 4	A, D, O, D	Tan	Door Frame	Wood	ND, ND, ND, ND	NA
Garage/Barn	Garage Room 4	c	Tan	Door Frame	Wood	ND, ND	NA
Garage/Barn	Garage Room 5	A, B, D	White	Wall	Brick	ND, ND, 0.49	NA
Garage/Barn	Garage Room 5	В	White	Wall	Wood	ND, ND, 0.40	NA
Garage/Barn	Garage Room 5	C, C	White	Wall	Plaster	> 1.00, > 1.00	Fair, Fair
Garage/Barn	Garage Room 5	D	White	Wall	Wood	ND	NA
Garage/Barn	Garage Room 5	D	White	Door Frame	Wood	0.09	NA
Garage/Barn	Garage Room 6	A, B	Tan	Wall	Plaster	ND, ND	NA
Garage/Barn	Garage Room 6	C, D	Tan	Wall	Wood	ND, ND	NA
Garage/Barn	Garage Room 6	A, B, C, D	White	Wall	Wood	0.01, 0.02, 0.01, 0.01	NA
Garage/Barn	Barn Interior	B, B	White	Window Frame	Wood	1.94, > 5.00	Fair, Fair
Garage/Barn	Exterior	A, A	White	Window Frame	Wood	0.68, 0.85	Poor, Poor
Garage/Barn	Exterior	A	Green	Trim	Vinyl	ND	NA
Garage/Barn	Exterior	A, A	Green	Door	Wood	0.02, ND	NA
Garage/Barn	Exterior	A, A	Blue	Wall	Brick	ND, 0.02	NA
Garage/Barn	Exterior	A	Green	Door Frame	Wood	ND	NA
Garage/Barn	Exterior	А	Green	Garage Door	Metal	0.08	NA
Garage/Barn	Exterior	В	Gray	Door	Wood	ND	NA
Garage/Barn	Exterior	В	Green	Door	Wood	ND	NA
Garage/Barn	Exterior	В	White	Garage Door	Wood	ND	NA
Garage/Barn	Exterior	В	White	Garage Door Frame	Wood	ND	NA
Garage/Barn	Exterior	B, D	White	Siding	Vinyl	ND, ND	NA
Garage/Barn	Exterior	B, C, C	White	Siding	Wood	> 5.00, 1.10, > 5.00	Poor, Poor, Poor
Garage/Barn	Exterior	C, C	White	Barn Door	Wood	0.15, > 5.00	NA, Poor
Garage/Barn	Exterior	D	Green	Garage Door	Wood	> 5.00	Fair
House	Kitchen 1	A, B, B, C, D	White	Wall	Sheetrock	ND, > 1.00, >1.00, ND, ND	NA, Good, Good, NA, NA
House	Kitchen 1	A, B, C, D	White	Trim	Wood	0.01, 0.05, ND, ND	NA
House	Kitchen 1	A, D	White	Window Sill	Wood	ND, 0.01	NA
House	Kitchen 1	A, D	White	Window Frame	Wood	ND, 0.01	NA
House	Kitchen 1	A, D	White	Window Sash	Wood	ND, ND	NA
House	House Room 1	A, B, C, D	White	Wall	Sheetrock	ND, ND, ND, ND	NA
House	House Room 1	A, B, C, D	White	Trim	Wood	0.03, 0.02, ND, ND	NA
House	House Room 1	-	White	Ceiling	Plaster	ND	NA
House	House Room 2	A, B, C, D	Blue	Wall	Plaster	ND, ND, ND, ND	NA
House	House Room 2	A	White	Trim	Wood	0.02	NA
House	House Room 2	A, B	White	Window Sill	Wood	0.01, 0.02	NA
House	House Room 2	A, B	White	Window Jam	Wood	0.49, > 5.00	NA, Fair
House	House Room 2	A	White	Window Sash	Wood	> 5.00 ND, ND, > 5.00, 4.54.	Fair NA, NA, Good,
House	Hall 1	A, B, C, C, D	White	Wall	Wallpaper	ND	Good, NA
House	Bath 1 Bath 1	A, B, C, D	White	Wall	Sheetrock	ND, ND, ND, ND ND, ND	NA NA
House House	Hall 2	A, C	White White	Trim Wall	Wood Sheetrock	ND, ND ND, ND, ND, ND	NA
House	Hall 2 Hall 2	A, B, C, D	White	Trim	Wood		NA
		A, B, C, D				ND, ND, ND, 0.02	
House	Bath 2	A, B, C, D	White	Wall	Sheetrock	ND, ND, ND, ND	NA
House	Bath 2 Kitchon 2	A, C	White	Cabinet	Wood	ND, ND	NA
House	Kitchen 2 Kitchen 2	A, B, C, D C	Blue White	Wall	Sheetrock	ND, ND, ND, ND ND	NA
House			vyille	Cabinet	Wood	ND	NA
House House	House Room 4	A, B, C, D	White	Wall	Sheetrock	ND, ND, 0.10, ND	NA

		SOUTH MA	VER GUA IN STREE DES SITE	BLE 8 Y'S GARAGE T, FRANKLIN NO. 1998080 ED PAINT SU	, NEW HAI 31		
Building	Area/Room	Side*	Color	Component	Substrate	Lead Concentration (mg/cm ²)	Condition
House	House Room 5	A, B, C, D	White	Wall	Sheetrock	ND, ND, ND, ND	NA
House	House Room 5	A, B, C, D	White	Trim	Wood	ND, ND, ND, ND	NA
House	House Room Bath 3	A, B, C, D	White	Wall	Sheetrock	ND, ND, 0.02, 0.02	NA
House	House Room Bath 3	A, B, C, D	White	Trim	Wood	ND, ND, ND, ND	NA
House	House Room 2-0	A, B, C, D	White	Wall	Sheetrock	ND, ND, ND, ND	NA
House	House Room 2-0	A, B, C, D	White	Trim	Wood	ND, ND, ND, ND	NA
House	House Room 2-1	A, B, C, D	White	Wall	Sheetrock	ND, ND, ND, ND	NA
House	House Room 2-1	A, B, C, D	White	Trim	Wood	ND, 0.08, ND, ND	NA
House	House Room 2-2	A, B, C, D	White	Wall	Sheetrock	ND, ND, ND, ND	NA
House	House Room 2-2	A, B, C, D	White	Trim	Wood	ND, ND, 0.03, ND	NA
House	House Room 2-3	A, B, C, D	White	Wall	Sheetrock	ND, ND, ND, ND	NA
House	House Room 2-3	A, B, C, D	White	Trim	Wood	ND, ND, ND, ND	NA
House	House Room 2-4	A, B, C, D	White	Wall	Sheetrock	ND, 0.12, ND, ND	NA
House	House Room 2-4	A, B, C, D	White	Trim	Wood	ND, ND, ND, ND	NA
House	Kitchen 3	A, B, C, D	White	Wall	Sheetrock	ND, ND, ND, ND	NA
House	Kitchen 3	A, B, C, D	White	Trim	Wood	ND, ND, ND, ND	NA
House	Kitchen 3	B, C	White	Cabinet	Wood	ND, ND, ND, ND	NA

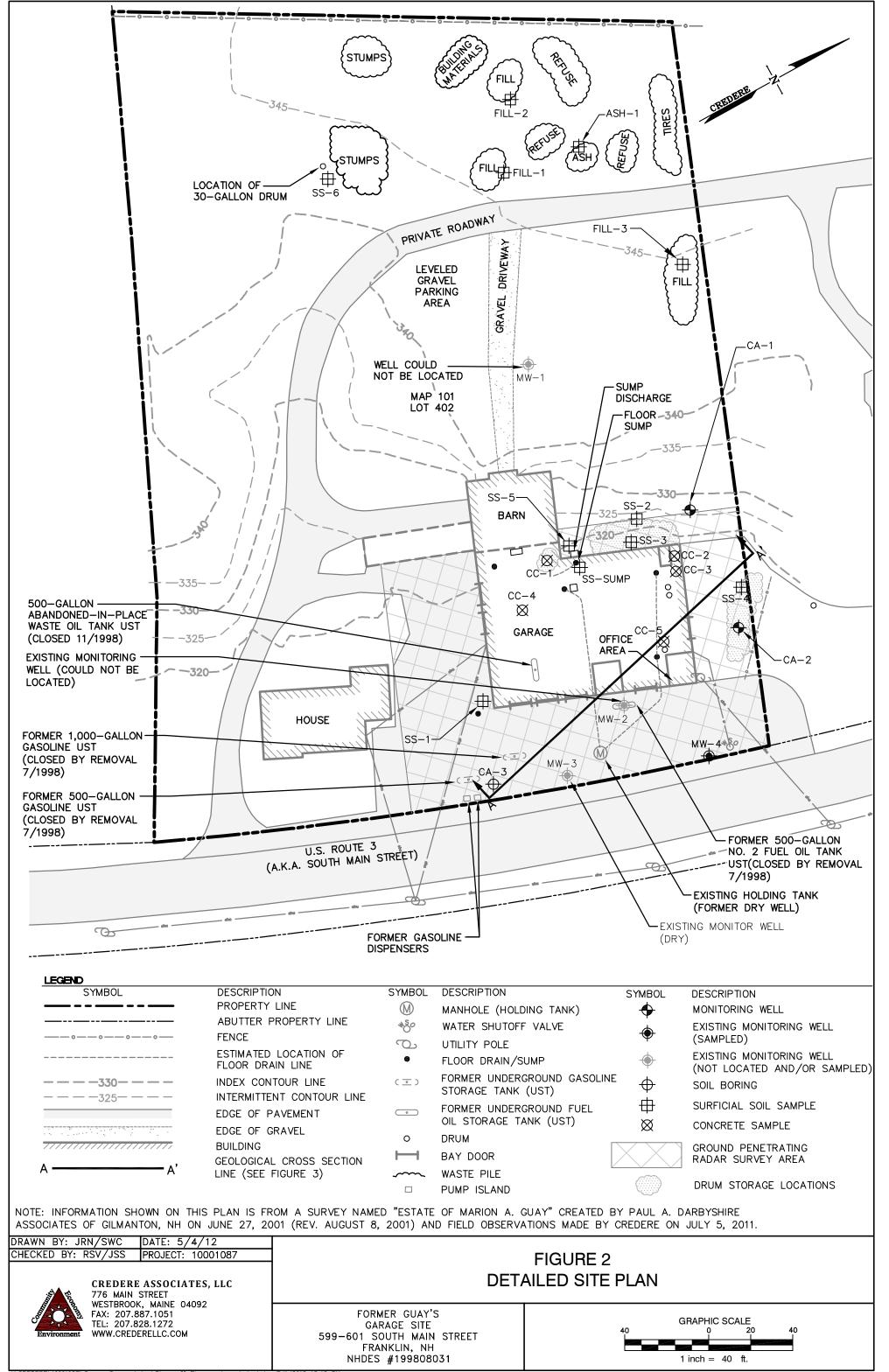
Highlighted exceeds limit of 1 mg/cm2 as defined in NH He-P 1600 Lead Poisoning Prevention and Control Rules, and/or 0.60 mg/cm2 in accordance with the XRF manufacturers guidelines

* - Side of building clockwise, starting with Side A facing roadway.

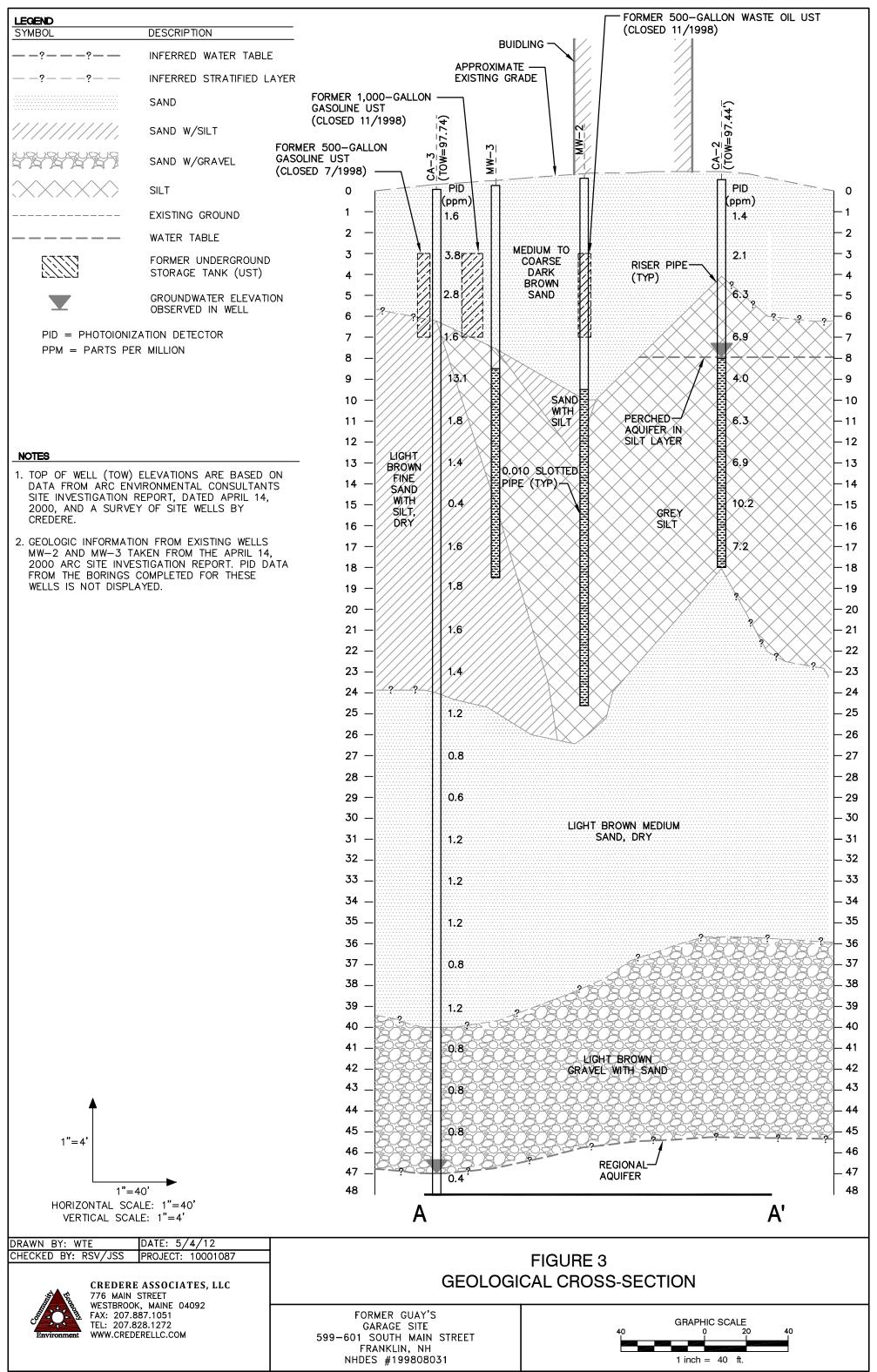
599-601 S	OUTH MAIN	STREET, I	E 9 GARAGE SIT FRANKLIN, NE D. 199808031	_	SHIRE	
SU			E SAMPLE A	NALYSES		
Parameter	NHDES Threshold (mg/kg or ug/L) ⁽¹⁾	Quantitation Limit (mg/kg or ug/L)	5x Quantitation Limit (mg/kg or ug/L)	Sample (mg/kg or ug/L) ⁽²⁾	Duplicate (mg/kg or ug/L)	Relative Percent Difference
VOCs						
SS-DUP, duplicate of SS-1						
		All parameters				
CA-DUP-SB, duplicate of soil samp	le CA-2 from 14	All parameters				
DUP-GW-1, duplicate of groundwat	er sample CA-2	•	non-delect.			
	•		X quantitation limit.			
PAHs	· · ·					
SS-DUP, duplicate of SS-1						
			X quantitation limit.			
CA-DUP-SB, duplicate of soil samp	le CA-2 from 14					
DUP-GW-1, duplicate of groundwat	or comple CA	All parameters	non-detect.			
DOP-GW-1, duplicate of groundwat	er sample CA-2	All parameters	non-detect			
Metals		<u> </u>				
SS-DUP, duplicate of SS-1						
Barium	1,000	3.0	15.0	18	19	5.4%
Lead	400	0.6	3.0	26	34	26.7%
CA-DUP-SB, duplicate of soil samp	7			450		
Barium	1,000 400	3.0 0.6	15.0 3.0	150 17	47 6.9	<u>104.6%</u> 84.5%
Lead DUP-GW-1, duplicate of groundwat			3.0	17	0.9	04.3%
			X quantitation limit.			
ТРН						
SS-DUP, duplicate of SS-1						
	10,000	220	1,100	10,000	10,000	0.0%
CA-DUP-SB, duplicate of soil samp	le CA-2 from 14	4 to 16 feet bgs				
		All parameters	non-detect.			
PCBs						
SS-DUP, duplicate of SS-1						
		All parameters				
CA-DUP-SB, duplicate of soil samp	le CA-2 from 1	4 to 16 feet bgs All parameters				
CC-DUP, duplicate of CC-1		All parameters	non-deleci.			
	1	0.1	0.5	2.1	2.1	0.0%
BM-DUP, duplicate of BM-01		• •		-		
		All parameters	non-detect.			
II						

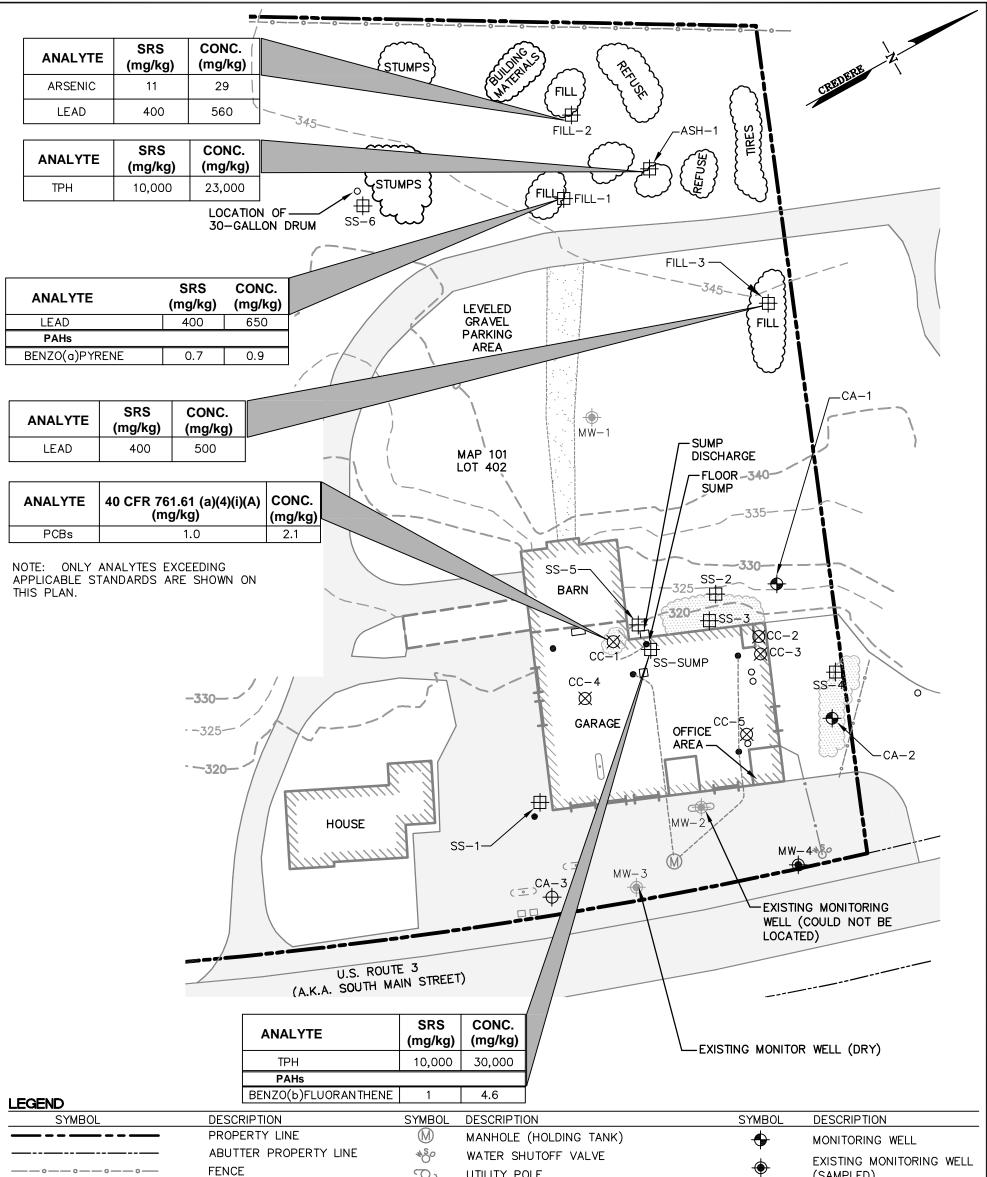

NOTES:

⁽¹⁾ New Hampshire Soil Remediation Standards from the Risk Characterization Management Policy Env-Or 606.19, Soil Remediation Criteria and Env-Or 603.3 Ambient Groundwater Quality Standards.


⁽²⁾ Only analytes above detection level and five times the quantitation limit are summarized herein. Exceeds Relative Percent Difference quality control limit of 35% for solid samples as specified in the Project QAPP

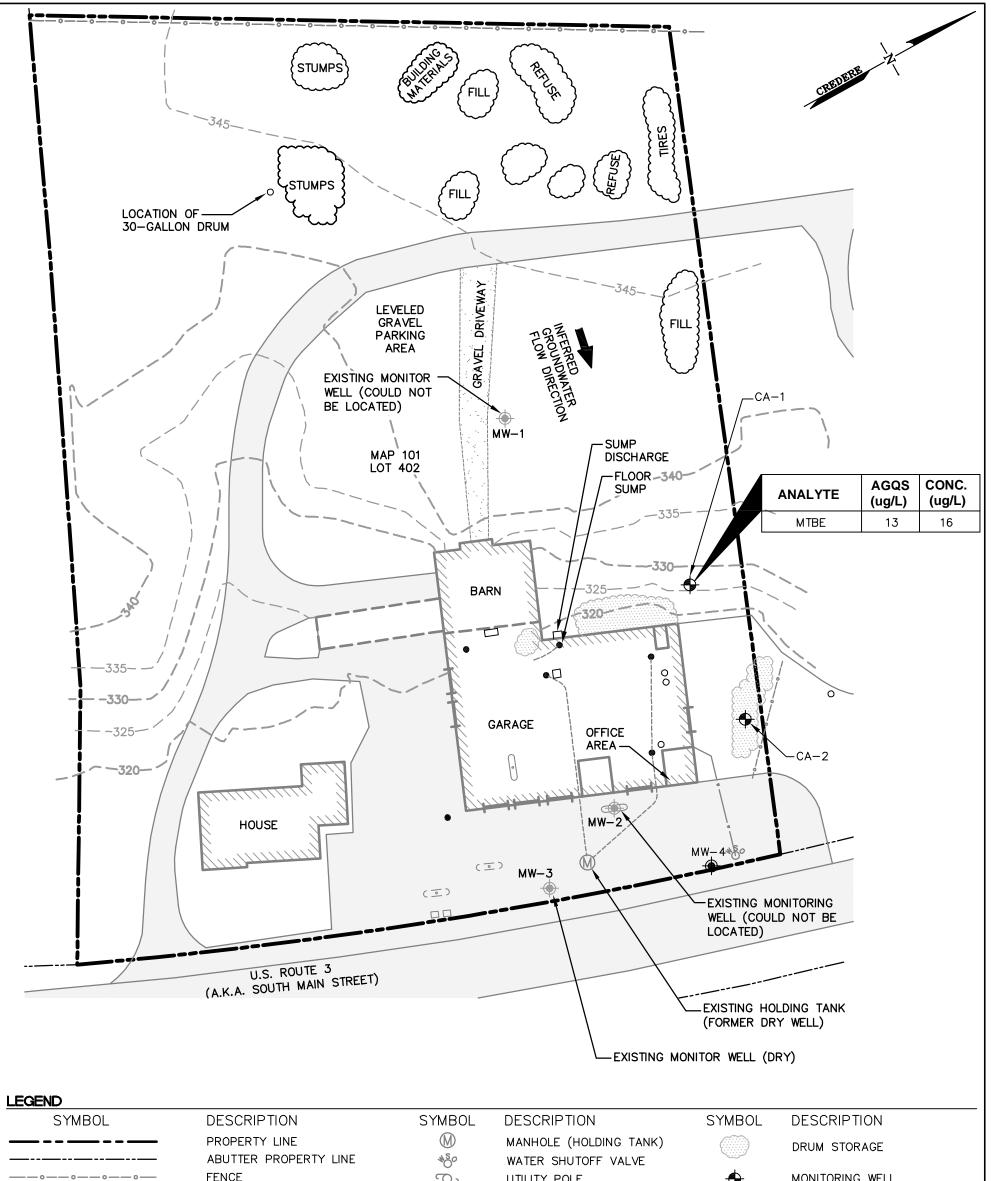
FIGURES



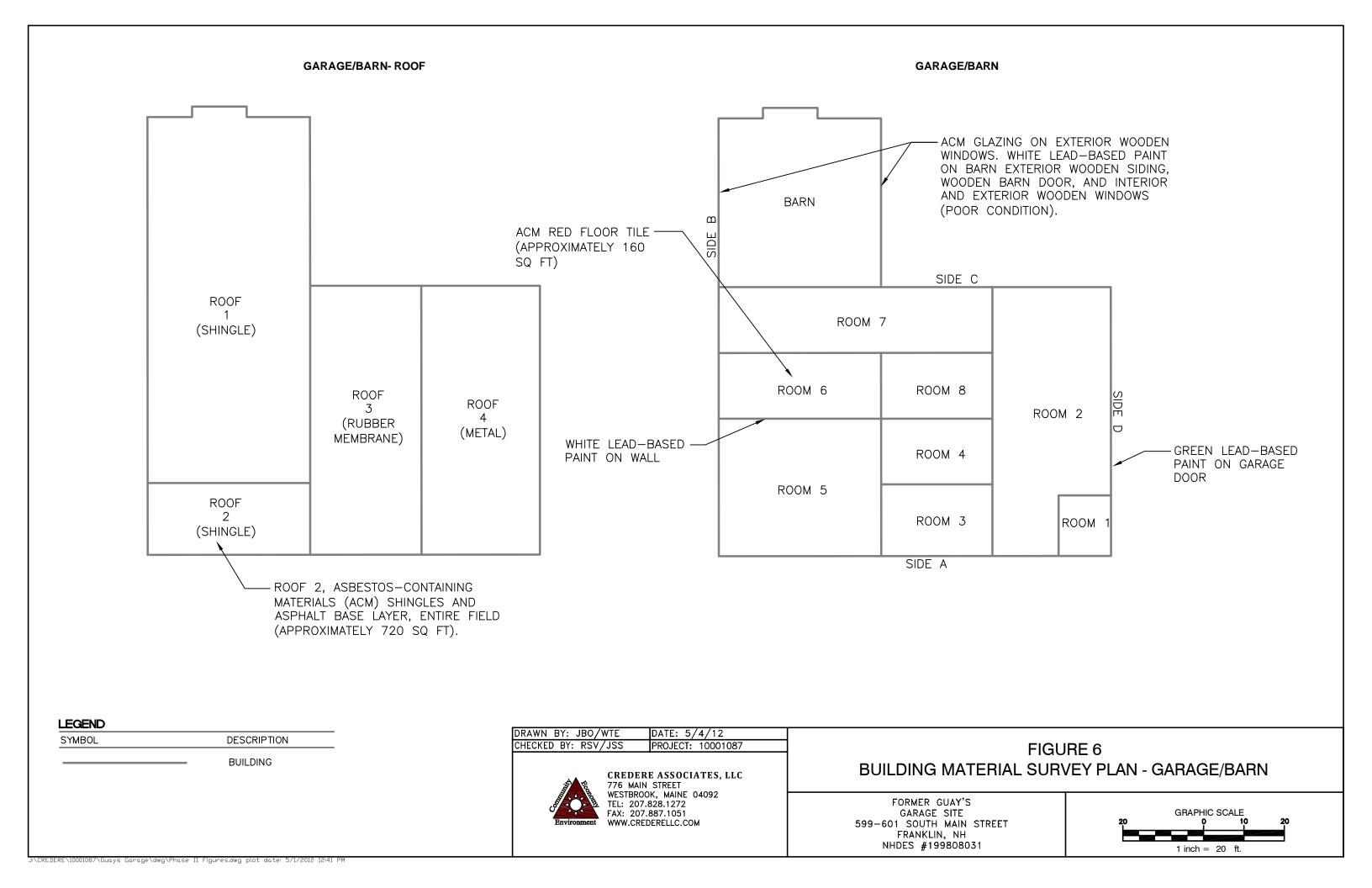

J:\CREDERE\10001087\Guays Garage\dwg\Figure_1.dwg plot date: 5/1/2012 12:44 PM

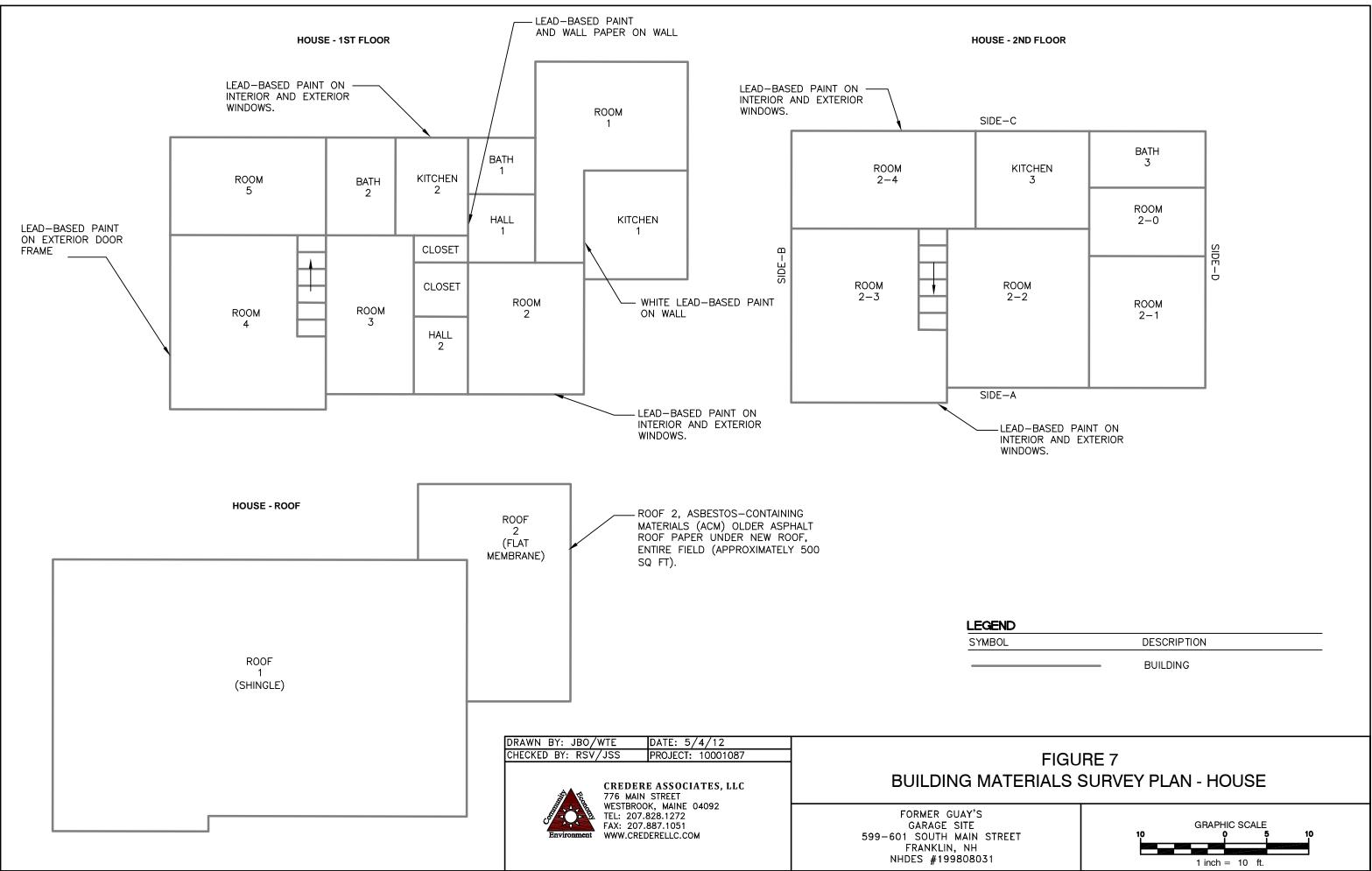
J:\CREDERE\10001087\Guays Garage\dwg\Phase II Figures.dwg plot date: 5/1/2012 12:43 PM

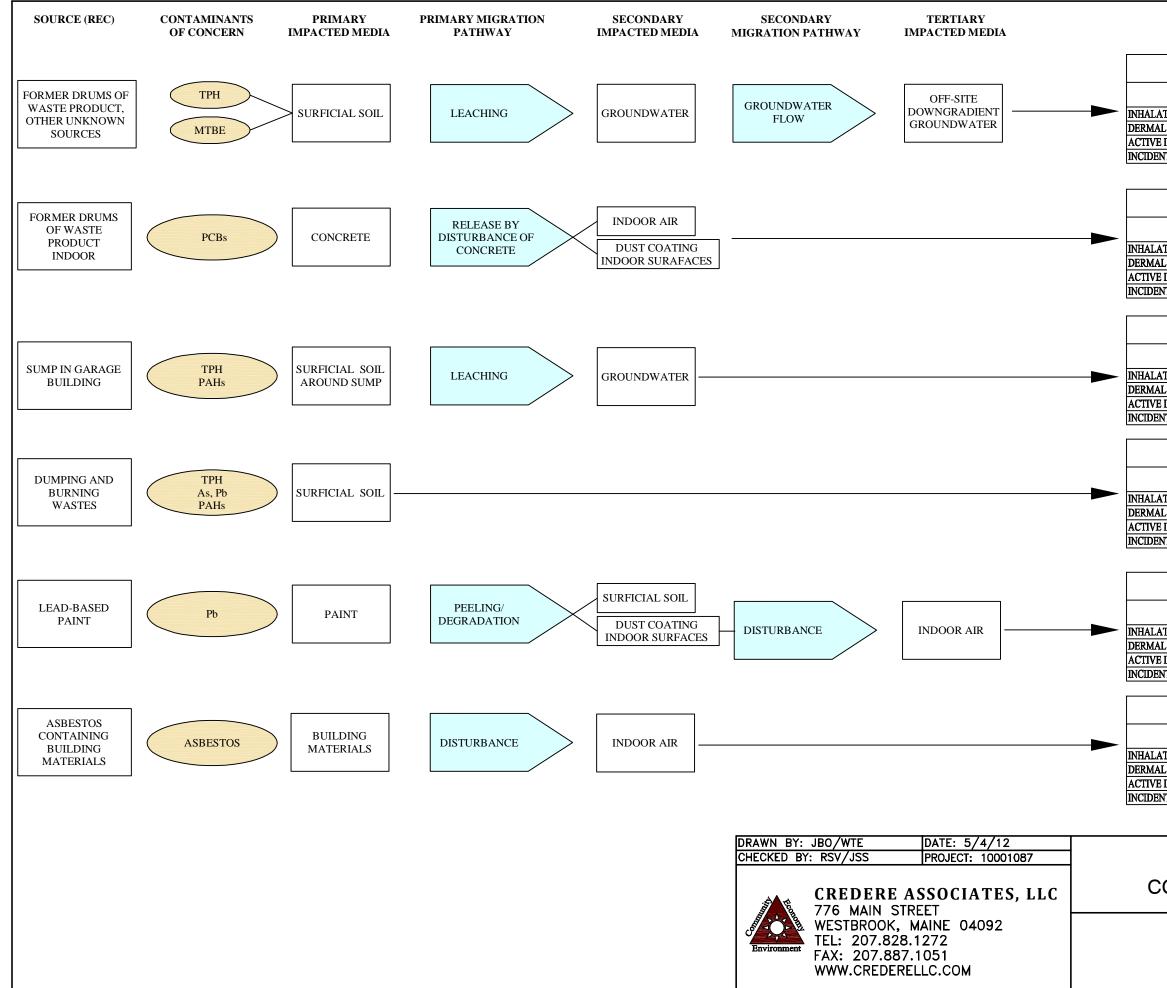
J:\CREDERE\10001087\Guays Garage\dwg\Phase II Figures.dwg plot date: 5/1/2012 12:42 PM


GILMANTON, NH ON JUNE 3. SRS – SOIL REMEDIATION DRAWN BY: JRN/SWC DATE					
GILMANTON, NH ON JUNE	27, 2001 (REV. AUGUST 0, 2001) A				
			E OF MARION A. GUAY" CREATED BY PAU OBSERVATIONS BY CREDERE.	L A. DARBYSHI	RE ASSOCIATES OF
ANALYZED FOR PCBs. ONL	Y ANALYTES EXCEEDING THEIR APPL	ICABLE ST			
IOTES			PUMP ISLAND	~	
7//////////////////////////////////////	BUILDING	~~~	WASTE PILE		DRUM STORAGE
	EDGE OF GRAVEL	° H	DRUM BAY DOOR	X	CONCRETE SAMPLE
	EDGE OF PAVEMENT		OIL STORAGE TANK (UST)	⊕	SURFICIAL SOIL SAMPLE
— — — — — 330— — — — — — — — — — — — — — — — — — —	INDEX CONTOUR LINE	\bigcirc	FORMER UNDERGROUND FUEL	Φ	SOIL BORING
	ESTIMATED LOCATION OF FLOOR DRAIN LINE) (<u> </u>	FLOOR DRAIN/SUMP FORMER GASOLINE UNDERGROUND STORAGE TANK (UST)	•	EXISTING MONITORING WELL (NOT LOCATED OR SAMPLE
	FENCE	J J	UTILITY POLE	•	(SAMPLED)

SOIL, FILL/DEBRIS, AND PCB BUILDING MATERIAL


40


CREDERE ASSOCIATES, LLC 776 MAIN STREET WESTBROOK, MAINE 04092 FAX: 207.887.1051 TEL: 207.828.1272 WWW.CREDERELLC.COM FORMER GUAY'S GARAGE SITE 599-601 SOUTH MAIN STREET FRANKLIN, NH NHDES #199808031 SAMPLE RESULTS PLAN GRAPHIC SCALE 0 20 1 inch = 40 ft.


J:\CREDERE\10001087\Guays Garage\dwg\Phase II Figures.dwg plot date: 5/1/2012 12:42 PM

oooo	FENCE	G	UTILITY POLE	⊕	MONITORING WELL
	ESTIMATED LOCATION OF	•	FLOOR DRAIN/SUMP		EXISTING MONITORING WELL
	FLOOR DRAIN LINE	()	FORMER GASOLINE UNDERGROUND	•	(SAMPLED)
	INDEX CONTOUR LINE		STORAGE TANK (UST)	-	EXISTING MONITORING WELL
	INTERMITTENT CONTOUR LINE	•	FORMER UNDERGROUND FUEL OIL STORAGE TANK (UST)	т	(NOT LOCATED OR SAMPLED)
	EDGE OF PAVEMENT	0	DRUM	\oplus	SOIL BORING
	EDGE OF GRAVEL	—	BAY DOOR	·	
	BUILDING		WASTE PILE		
NOTES			PUMP ISLAND		
AMBIENT GROUNDWATER QUA	LITY STANDARDS (AGQS) ARE DEF		CRA 8 METALS, AND PAHs. ONLY AN FIGURE.	ALYTES A	T OR EXCEEDING NHDES
	5/4/12 T: 10001087		FIGURE 5		
CREDERE ASSOC 776 MAIN STREET WESTBROOK, MAINE		GRU	UNDWATER SAMPLE RE	SULT	5 PLAN
FAX: 207.887.1051 TEL: 207.828.1272	04092	FORMER GUAY'S		0	
Environment WWW.CREDERELLC.CO	599-00	GARAGE SITE 01 SOUTH MAIN FRANKLIN, NH HDES #19980803			RAPHIC SCALE 0 20 40 1000

POTENTIAL EXPOSURE PATHWAYS						
	RESIDENTIAL	COMMERCIAL	SITE WORKER	VISITOR	TERRESTRIAL BIOTA	AQUATIC BIOTA
TION						
L ABSORPTION	Х	Х	Х	Х		
INGESTION					Х	
NTAL UPTAKE	X	Х	Х	Х		

POTENTIAL EXPOSURE PATHWAYS

RESIDENTIAL	COMMERCIAL	SITE WORKER	VISITOR	TERRESTRIAL BIOTA	AQUATIC BIOTA
Х	Х	Х	Х		
Х	Х	Х	Х		
	X X	RESIDENTIAL COMMERCIAL	RESIDENTIAL COMMERCIAL SITE WORKER X X X X X X X X X		

POTENTIAL EXPOSURE PATHWAYS						
	RESIDENTIAL	COMMERCIAL	SITE WORKER	VISITOR	TERRESTRIAL BIOTA	AQUATIC BIOTA
TION						
L ABSORPTION	Х	Х	Х	Х		
INGESTION					Х	
NTAL UPTAKE	Х	Х	Х	Х		

POTENTIAL EXPOSURE PATHWAYS

	RESIDENTIAL	COMMERCIAL	SITE WORKER	VISITOR	TERRESTRIAL BIOTA	AQUATIC BIOTA
ATION						
L ABSORPTION	Х	Х	Х	Х		
INGESTION					Х	
NTAL UPTAKE	Х	Х	Х	Х		

POTENTIAL EXPOSURE PATHWAYS						
	RESIDENTIAL	COMMERCIAL	SITE WORKER	VISITOR	TERRESTRIAL BIOTA	AQUATIC BIOTA
TION						
L ABSORPTION	X	Х	Х	Х		
INGESTION	X				Х	
NTAL UPTAKE	X	Х	Х	Х		

POTENTIAL EXPOSURE PATHWAYS

	RESIDENTIAL	COMMERCIAL	SITE WORKER	VISITOR	TERRESTRIAL BIOTA	AQUATIC BIOTA
TION						
L ABSORPTION						
INGESTION						
NTAL UPTAKE	X	Х	Х	Х		

FIGURE 8 CONCEPTUAL SITE MODEL DIAGRAM

FORMER GUAY'S GARAGE PROPERTY 599–601 SOUTH MAIN STREET FRANKLIN, NH NHDES #199808031

APPENDICES

APPENDIX A

SITE-SPECIFIC QUALITY ASSURANCE PROJECT PLAN ADDENDUM

Waste Management Division PO Box 95, 29 Hazen Drive Concord, NH 03302							
Type of Submittal (Check One-Most Applicable)	1						
 Work Scope Reimbursement Request 	 Remedial Action Remedial Action Plan Bid Plans and Specifications 						
 □ UST Facility Report □ AST Facility Report 	 Remedial Action Implementation Report Treatment System and POE O&M Activity and Use Restriction 						
 Emergency/Initial Response Action Groundwater Quality Assessment 	Temporary Surface Water Discharge Permit						
 ☐ Initial Site Characterization ☐ Site Investigation • Site Investigation Report • Supplemental Site Investigation Report • GMZ Delineation • Source Area Investigation • Data Submittal • Annual Summary Report ☑ Unsolicited Site-Specific Quality Assurance Project Plan Addendum ☐ Closure Documentation 	 Groundwater Management Permit Permit Application Renewal Application Deed Recordation Documentation Abutter Notification Documentation Release of Recordation Data Submittal Annual Summary Report 						

SITE SPECIFIC QUALITY ASSURANCE PROJECT PLAN ADDENDUM Former Guay's Garage Property

599-601 South Main Street

Franklin, New Hampshire

NHDES#199808031

Brownfields Grant #BF-96111801

Prepared For: Lakes Region Planning Commission 103 Main Street, Suite #3 Meredith, NH 03253 Phone: (603) 279-8171 Contact: Mr. Kimon Koulet

Prepared By: **CREDERE ASSOCIATES, LLC** 776 Main Street Westbrook, ME 04902 Phone: (207) 828-1272 ext. 16 Contact: Judd R. Newcomb, CG, PG

June 1, 2011

Recommended Risk Category (check one)						
1. Immediate Human Health Risk (Impacted water supply well, etc.)	4. Surface Water Impact	7. Alternate Water Available/Low Level Groundwater Contamination (<1,000 X				
 2. Potential Human Health Risk (Water supply well within 1,000' or Site within SWPA) 	 5. No Alternate Water Available/No Existing Wells in Area 6. Alternate Water Available/High Level Groundwater Contamination (>1,000 X 	AGQS) 8. No AGQS Violation/No Source Remaining Closure Recommended				
3. Free Product or Source Hazard	AGQS)					

1. TITLE AND APPROVAL PAGE

SITE-SPECIFIC QUALITY ASSURANCE PROJECT PLAN (SSQAPP) ADDENDUM TO GENERIC QAPP RFA #08166 AND #09036

Revision 2

Site Information: Former Guay's Garage Property 599-601 South Main Street, Franklin, New Hampshire New Hampshire Department of Environmental Services (NHDES) Site No. 199808031

Funding Source:

Lakes Region Planning Commission's (LRPC) Brownfields Assessment Program United States Environmental Protection Agency (EPA) USEPA Brownfields Grant # BF96111801

> Prepared By: Judd Newcomb, CG Credere Associates, LLC 776 Main Street, Westbrook, Maine 04092 (207) 828-1272

> > Date Prepared: June 1, 2011

Below is a listing of the names, signatures, and signature dates of officials approving this SSQAPP:

y Minor Gordon Jen

A Brownfields Project Officer

Quality ssurance Officer

6/3/11

Date

6/31 Date

Jennifer Marts New Hampshire DES Project Manager

Grant PMinevast

Vincent R. Perelli T.IA New Hampshire DES QA Manager

Richard S. Vandenberg, CG, PG Credere Associates, LLC Project QA Manager

G

Date

Robert I Patten, PE, LEED-AP, LSP Credere Associates, LLC Project Manager

PA10001087 LRPC Pet Brownfields/WORKING FILES/Guay's Garage Franklin/SSQAPP_SSQAPP_Guays_6-1-11.doc

TABLE OF CONTENTS

TIT	LE AND APPROVAL PAGE	1
1.	INTRODUCTION	4
2.	FINDINGS OF THE PHASE I ESA	5
2.1 2.2 2.3	2 Findings and Opinions	5
3.	POTENTIAL REDEVELOPMENT SCENARIO10	D
4.	CONCEPTUAL SITE MODEL1	1
4.1 4.2 4.3	Geology, Stormwater Flow, and Groundwater Flow	2
5.	SAMPLING DESIGN1	5
6.	FIELD ACTIVITY METHODOLOGY18	8
6.1 6.2 6.3 6.4 6.5 6.6 6.7	 Soil Borings, Soil Sampling, and Field Screening. Monitoring Well Installation and Survey. Concrete Sampling. Groundwater Sampling. ACM and Lead-Based Paint Surveys. 	8 9 0 0
7.	REGULATORY STANDARDS	2
7.1 7.2 7.3 7.4 7.5	Groundwater	2 2 2
8.	ANTICIPATED PROJECT SCHEDULE	4

FIGURES

- Figure 1Site Location Map
- Figure 2 Detailed Site Plan
- Figure 3Proposed Sample Location Plan
- Figure 4 Credere Organization and Responsibility Chart
- Figure 5Conceptual Site Model

TABLES

- **Table 1**Soil Sample Reference Table
- **Table 2**Groundwater Sample Reference Table
- **Table 3**Building Materials Sample Reference Table

1. INTRODUCTION

The Lakes Region Planning Commission (LRPC) has received a United States Environmental Protection Agency (USEPA) Brownfields Hazardous Substance Assessment Grant to conduct environmental investigations at sites within the 30 member communities of the Lake Winnipesaukee Region. The investigations provide the basis for reuse planning specific to each site's community needs. The assessment of each site will include the completion of Phase I and Phase II Environmental Site Assessment (ESA) reports and may also potentially include the development of cleanup and reuse options for selected sites.

On behalf of LPRC's Brownfields Assessment Program this document is a Site-Specific Quality Assurance Project Plan (SSQAPP) Addendum for the Former Guay's Garage Property located at 599-601 South Main Street in Franklin, New Hampshire (the Site). **Figure 1** shows the general location of the Site in Franklin, and **Figure 2** is a plan showing the locations of proposed sampling work.

This SSQAPP presents the following information:

- 1. A summary of the pertinent findings of the Phase I ESA
- 2. The potential redevelopment scenario for the Site
- 3. A conceptual site model
- 4. The proposed sampling design including recommended sample locations and analytical methods
- 5. Regulatory standards applicable to the Site
- 6. A proposed project schedule

This SSQAPP was prepared to be used in concert with Credere Associates, LLC (Credere) Generic Quality Assurance Project Plan (QAPP) Rev. 2 (USEPA RFA #08166 and #09036) which was prepared for all of Credere's USEPA work in New Hampshire. The quality assurance and quality control (QA/QC) procedures outlined in Credere's Generic QAPP will be followed for this investigation program including sample collection, handling and analysis, chain of custody, data management and documentation, data validation, and data usability assessments. **Figure 3** shows the project organization chart for the project team.

2. FINDINGS OF THE PHASE I ESA

A Phase I ESA was completed by Credere for the Site in February 2011. During the course of the Phase I ESA, Credere performed reconnaissance of the Site, reviewed available local, state, and federal documents, and reviewed other available historical documents (e.g. Sanborn Fire Insurance maps) to identify evidence of *recognized environmental conditions* (RECs) in connection with the Site.

2.1 SITE DESCRIPTION AND HISTORY

The Site is composed of a single 2.363-acre parcel of land with three buildings: a two-story residence, a one-story concrete garage building, and a three-story post and beam barn that is contiguous with the garage. A private road enters the Site near the southern property boundary and trends northwest through the Site. The topography of the Site slopes east, such that the private road increases in elevation to the north and provides walk-out access to the third floor of the barn. Other portions of the Site consist of small landscaped areas around the residence; paved and gravel parking and driveway areas around the commercial building and barn; and, a brushy, partially wooded area to the west of the private road. **Figure 1** locates the Site on the Franklin, New Hampshire 7.5 minute quadrangle prepared by the United States Geological Survey (USGS). Pertinent features of the Site are depicted on **Figure 2**.

The residence is divided into three apartments that were occupied by the former owner and two tenants. The garage building was most recently occupied by an automobile repair/customization business that included general automotive maintenance, accessory installation, and painting. The ground floor of the barn was used as part of the automotive repair/customization businesses. The first floor of the barn was reportedly used by the former owner for the storage of building construction materials. The second floor of the barn was divided into several storage units that were leased to tenants. It has been confirmed through historical records that the Site has been used for automotive services since at least 1932.

2.2 FINDINGS AND OPINIONS

The following summarizes the pertinent findings of the Phase I ESA and Credere's opinions relative to the findings:

• The Site has historically been used as a residence, a gasoline station, for various automotive services, and for used car sales. In addition, dumping of various wastes including building debris, tires, vehicle gasoline tanks, computer monitors, scrap metal, and fill materials was observed in the western portion of the Site. Based on the variety of petroleum and hazardous chemicals used at the Site and the dumping of various wastes, it is possible that environmental media (i.e. soil and/or groundwater) at the Site has been impacted by these historic uses and practices.

- Four (4) underground storage tanks (USTs) were previously removed from the Site. Each of the USTs was properly closed and documented in accordance with New Hampshire Department of Environmental Services (NHDES) guidelines. Soil contamination was identified around a 500-gallon fuel oil UST during removal and approximately 39 tons of soil was disposed of off-site. Subsequent investigation indicated that contamination had affected groundwater in the vicinity of the tank; however, concentrations were below NHDES standards. Contaminated soil associated with the release of fuel oil represents a historic REC; however, because the soil was remediated this is not considered a REC today.
- A metal pipe was observed protruding from the ground adjacent to the southeast corner of the garage building. The use of the pipe was unclear, but it may be associated with the abandoned-in-place waste oil UST located beneath the garage floor. Due to the historical use of the Site for petroleum storage and automotive service there is also the potential that this may be a fill pipe for an undocumented UST. Staining was observed on the ground in the vicinity of this pipe that may be associated with dumping of automotive fluids into the pipe, or the storage of drums in this area.
- Floor drains were observed throughout the Site buildings. These drains historically discharged to a drywell located to the east of the building. This drywell was previously investigated by ARC Environmental Consultants (ARC) and was determined to have impacted soil in the vicinity of the drywell. In 1999, ARC dismantled the drywell and removed 6 cubic yards of contaminated soil. A confirmatory sample indicated that all contamination had been removed from the vicinity of the drywell. A holding tank was installed in the former location of the drywell prior to 2001 and the NHDES Underground Injection Control (UIC) file lists the Site as closed as of 2006. Because the drywell has been investigated and remediated and the floor drains discharge to a holding tank, floor drains no longer represent a REC.
- A sump was observed in the floor of the western portion of the garage building. A pipe/hose line had been embedded in the floor and trended towards the southwestern garage bay. Because there is a floor drain in this location, some of the floors drains within the building may have been directed to this sump. In addition, due to the open nature of the sump, wastes could also have been disposed in the sump. The sump discharges to the ground surface outside the garage building and staining was observed on the ground in this location; therefore, soil and/or groundwater may have been impacted by oil and/or hazardous substances that discharged from the sump.
- Oil staining of various degrees was observed on the concrete floor throughout the garage building and specifically around drum areas. Because these oils were spilled directly to a concrete floor and the floor appeared intact, there is likely no migration pathway to the environment in these locations. However, polychlorinated biphenyl's (PCBs) were present in some automotive fluids and waste oils. Given this observation and the long history of the operation of this facility for automotive repair during a time when products were manufactured to contain PCBs, the potential presence PCBs in the oil stained floors cannot be ignored.

- Approximately 60 drums of waste fluids (presumed to be waste grease, oil, and coolant generated from vehicles) were observed on the Site that were presumably generated during previous operations conducted at the Site. Stained soil and concrete were noted around some of the drums and numerous drums were visibly leaking and/or were blossomed. The EPA began a drum removal action in cooperation with the NHDES on January 31, 2010; however, it is possible that previous releases from these drums have impacted environmental conditions at the Site. A draft table of EPA drum contents sampling results provided to Credere by the NHDES indicated the presence of total halogens, PCBs, and metals including barium, cadmium, chromium, lead, and silver within the drums.
- The area to the west of the private road has been used to dump gravelly fill material, partially burned trash with metal, scrap wood/building materials, tires, and household refuse. An unlabeled, 30-gallon drum was also observed in this area. Based on the unknown origin of these materials, and the potential for these materials to contain petroleum or hazardous materials, soil and/or groundwater may have been affected in this area. In addition, the dumped building materials have the potential to be coated in lead-based paint, have asbestos-containing materials (ACMs), or PCB bulk products.
- The Webster Valve Co. foundry property is located northwest of the Site and some of this property is located upgradient of the Site. Soil and groundwater contamination has historically been documented at this property and various cleanup efforts have occurred. Groundwater issues related to volatile organic compounds (VOCs) have reportedly been addressed to NHDES's satisfaction. Contaminated soil is present on the property; however, an activity use restriction (AUR) is in place on the property and soil contamination has not been documented on adjacent properties. Therefore, it is unlikely that this property has affected the Site.
- Based on the ages of the Site buildings, there is the potential for ACMs and lead-based paint to be present on or within the Site buildings.
- Based on the age of the garage building and Credere's previous experience with similar buildings, various building materials may be defined as PCB bulk product wastes and would therefore be regulated for disposal. Materials of initial concern for PCBs include painted surfaces and caulking and sealing materials throughout the garage building.
- Fluorescent lighting fixtures were observed throughout the Site buildings. Based on the ages of the buildings, some of these fixtures may contain PCBs.

2.3 IDENTIFIED RECOGNIZED ENVIRONMENTAL CONDITIONS

Based on the information obtained as a part of the previous Phase I ESA, the following RECs, *de minimis environmental conditions* (DMECs), and ASTM *Non-Scope considerations* (NCs) were identified at the Site:

• REC-1 – The historical use of the Site as a gasoline station and for various automotive services represents a REC because releases to the environment from these types of facilities

was commonplace and the obvious poor housekeeping at the Site may have impacted soil or groundwater at the Site. In addition, there is the potential for undocumented USTs to the present on the Site from these uses.

- REC-2 The former storage of approximately 60 drums within and outside the garage building represents a REC because numerous soil and concrete stains observed during the Site reconnaissance indicate that this activity has likely impacted environmental media at the Site. Areas of concern include:
 - AOC-1 The area outside the southeast corner of the garage building where oil staining was noted and the NHDES had historically observed at least 4 drums with soil staining. Note that these drums were reportedly moved inside the building.
 - AOC-2 The area outside the northwest corner of the garage building where a large quantity of drums were stored and soil was stained throughout the area.
 - AOC-3 The area to the north of the garage building along a wooden stockade fence where various drums were observed that appeared to have been overfilled, leaking, or were blossomed.
- REC-3 The presence of a sump that discharges to the ground to the west of the garage building which may have received or been used for the disposal of wastes represents a REC because staining observed beneath the discharge hose may indicate that releases to the environment have occurred.
- REC-4 The use of the area to the west of the private road for dumping represents a REC because observed materials have the potential to contain petroleum and/or hazardous materials, which may have affected soil or groundwater in the area.

The following *de minimis environmental condition* (DMEC) was identified during the Phase I ESA:

• DMEC-1 – Small stains that are typical of automotive service facilities were observed throughout the garage building and stained floors were observed around drums storage areas. Because the concrete floors within the building appeared intact, it is unlikely that these stains represent released to the environment. However, due to the age of the garage building and the fact that PCBs have been found in some automotive fluids and waste oil, PCBs may be present in these stained areas.

The following ASTM non-scope considerations (NCs) were also noted during the Phase I ESA:

- NC-1 Based on the ages of the Site buildings ACMs may be present on the interior and exterior of the buildings or the dumped buildings materials.
- NC-2 Based on the ages of the Site buildings, lead-based paint may be present on the interior or exterior of the buildings or the dumped building materials.

- NC-3 Based on the ages of the Site buildings, PCB-containing bulk products (caulking, paint, etc.) may be present on the interior and exterior of the buildings or the dumped building materials.
- NC-4 Based on the ages of the Site buildings, fluorescent lighting fixtures observed throughout the buildings have the potential to contain PCBs.

3. POTENTIAL REDEVELOPMENT SCENARIO

The current owner of the Site, the City of Franklin, has partnered with LRPC to assess the Site so that the City of Franklin can divest the property for redevelopment as residential, commercial, or light industrial uses. No redevelopment plans have been established to date; therefore, it is unknown whether the buildings are planned for renovation or demolition.

4. CONCEPTUAL SITE MODEL

The Conceptual Site Model (CSM) includes a description of source areas and/or RECs, the nature and extent of the identified or suspected releases, potential contaminants of concern (COCs), impacted media, transport mechanisms, and potential human and environmental receptors.

4.1 CONTAMINANTS OF CONCERN

Based on the findings and the RECs, DMECs, and NCs identified in the Phase I ESA, the following COCs were identified for the Site:

	Identified Contaminants of Concern					
REC	COCs	Potential Source				
REC-1 Historical Use	VOCs Polycyclic aromatic hydrocarbons (PAHs) Metals	- petroleum spills and/or releases during automotive repair and painting work				
REC-2 Former Drum Storage	VOCs PAHs Metals Total Petroleum Hydrocarbons (TPH) PCBs	- unknown wastes formerly stored in drums onsite				
REC-3 Presence of Sump	VOCs PAHs Metals TPH PCBs	- unknown wastes that may have been disposed or released through the sump				
REC-4 Dumping	VOCs PAHs Metals TPH PCBs Asbestos	- fill material, refuse, ash from burning of debris, and dumped building materials				
DMEC-1 Floor Staining	PCBs	- spills of automotive fluids and/or waste oil				
NC-1, 2, 3, 4 Potential Hazardous Building Materials	Asbestos Lead-Based Paint PCB Bulk Products	 building materials painted surfaces paint, caulking, mastic, etc. fluorescent lighting ballasts 				

4.2 GEOLOGY, STORMWATER FLOW, AND GROUNDWATER FLOW

The Site lies within the north-south trending Merrimack River Valley (**Figure 1**). The regions to the east and west of the valley are hilly and slope/drain toward the Merrimack River, which is situated approximately 750-feet east of the Site. The surficial geology at the Site is mapped as fine grained stratified drift, which consists of sorted sediments ranging from clay to sand deposited by meltwater streams related to a glacial-lake setting. Soil boring data contained in previous reports for the Site confirmed that materials beneath the Site are fine-grained stratified drift similar to those indicated above.

According to the *Bedrock Geologic Map of New Hampshire* compiled by the USGS, the Site is underlain by the upper part of the Rangeley Formation. The Rangeley Formation is Lower Silurian in age and described as a pelitic schist, metasandstone, and locally coarse-grained metasandstone with rusty weathering. No bedrock outcrops were observed on the Site during the previous Phase I ESA.

Previous investigation at the Site determined that groundwater flows east to southeast (**Figure 2**) toward the Merrimack River and groundwater has been observed at depths ranging from approximately 8.5 to 11 feet below ground surface (bgs).

4.3 DEFINITIONS OF EXPOSURE PATHWAYS AND POTENTIAL RECEPTORS

To aid in a thorough understanding of the environmental concerns present at the Site, a graphical presentation of the identified contaminants of concern and potential migration pathways to receptors is included as **Figure 5**. Exposure Pathways and Potential Receptors depicted on the CSM are defined below.

Exposure Pathways describe how a human or environmental receptor comes into contact with contaminants which may be present at the Site. Exposure pathways presented in the CSM include the following:

- Inhalation: This pathway is primarily associated with groundwater where petroleum contaminated groundwater is within 30 feet (horizontally or vertically), or non-petroleum contaminated groundwater is within 100 feet (horizontally or vertically) of an occupied structure, or when depth to groundwater is unknown. In addition, this pathway is applicable when receptors may incidentally inhale impacted media in the form of dust, vapor, or airborne particulates.
- Dermal Exposure via dermal absorption occurs when receptors are exposed to chemical concentrations present in soil, groundwater, or surface water through direct contact with the skin.

- Active Ingestion: The active ingestion pathway represents exposure which may occur through the active ingestion of contaminant concentrations via a drinking water supply well or through agricultural products.
- Incidental This pathway is applicable when receptors may incidentally ingestion ingest impacted media in the form of dust or airborne particulates.

Potential Receptors are categorized by duration of exposure and intensity of use at the Site. The receptor categories described in the CSM include the following:

- Resident: The residential receptor is defined by high durational exposure and high intensity usage which may occur through gardening, digging, and recreational sports. This group includes the occupants of a residential property or a residential neighborhood.
- Commercial: Commercial receptors are those which are present at the Site for long durations but with low intensity exposure such as indoor office workers.
- Site Worker: Site workers are present at the Site for short durations though intensity of use is high, such as during non-routine activities including construction or utility work. Examples include outdoor commercial workers and construction workers.
- Visitor: Visitors are characterized by low duration, i.e. less than two hours per day, and low intensity usage such as that which would occur during activities such as walking, shopping, and bird watching.
- Terrestrial and Aquatic Biota: These receptors include flora and fauna which may be exposed to contaminants in their respective land-based or aquatic environments.

Based on known history of the Site, the identified COCs may have been released to the environment through surficial and subsurface releases associated with previous automotive service usage and drum storage, the degradation of potentially hazardous building materials, spills of potential PCB-containing automotive fluids and waste oil, and previous bulk petroleum storage. Primary impacted media at the Site include surficial and subsurface soil, concrete within the garage building, and groundwater.

Contaminants present in surficial soil may migrate through aeolian dispersion and impact off-site receptors, or they may affect subsurface conditions through infiltration and leaching. Similarly, releases which have impacted subsurface soil conditions have the potential to infiltrate and leach

to the overburden groundwater aquifer. Following the redevelopment of the Site, impacted groundwater presents a potential risk to indoor air conditions through contaminant migration via vaporization and diffusion.

Human receptors identified for the Site include potential future residents, current and future commercial workers, site workers (i.e. construction workers, etc.), and visitors. Exposure pathways to visitors and residential users include dermal absorption and incidental ingestion during routine activities. An inhalation exposure pathway also may exist for future residential users through vapor intrusion. Site workers may be exposed to the suspected contaminants of concern through dermal absorption, inhalation, and incidental ingestion during excavation and construction activities associated with the anticipated redevelopment of the Site. In addition, following the redevelopment of the Site, residential users may come into contact with impacted media through typical activities such as gardening, digging, and recreational sports. Current and future potential environmental receptors include terrestrial biota. Terrestrial biota may be exposed through active ingestion of impacted soil or groundwater. The active ingestion pathway does not currently, nor is expected, to pose a potential future pathway for human receptors as the Site is serviced by a public water supply system. However, some area properties rely on private water supplies; therefore, off-site human receptors may be exposed to contaminants through active ingestion of drinking water.

5. SAMPLING DESIGN

The following section describes the rationale, the COCs, and nature of the proposed samples to be collected during the Phase II ESA sampling program. This program was developed to confirm or dismiss the RECs and NCs identified during the Phase I ESA. Proposed sample locations are depicted on **Figure 3** and sampling methodologies are described in **Section 6**.

REC-1: This REC will be assessed by performing a ground penetrating radar (GPR) survey of selected areas around the garage building to determine if any undocumented USTs remain in place on the Site, and by evaluating other data collected as part of this Phase II ESA. If USTs are identified, Credere will prepare an SSQAPP Amendment to remove and assess soil and groundwater in the vicinity of any identified USTs.

In addition, to assess potential impacts to groundwater at the Site and confirm historical groundwater sampling data from previous investigations, Credere will attempt to locate existing monitoring wells MW-1 through MW-4 (see **Figures 2** and **3**) on the Site and assess whether the monitoring wells are viable. If the monitoring wells can be located and are viable, Credere will sample each monitoring well for the NHDES full list of VOCs, PAHs, and dissolved RCRA 8 metals. If these wells are not viable, Credere will replace at least one well in a location downgradient of the garage. To assess the former pump island area, soil boring CA-3 will be advanced to determine if historical releases of petroleum have occurred in the area. Soil samples collected from CA-3 will be continuously screened with PID and one (1) soil sample will be collected from this boring based on the highest PID field screening result. Because the drums are unknown, each soil sample from this area will be submitted for laboratory analysis of VOCs, PAHs, RCRA 8 metals, TPH.

- REC-2: This REC will be assessed by collecting soil samples from each area of concern to determine the nature and extent of contaminated soil in the vicinity of the identified drum storage areas.
 - Area 1 Surficial soil sample SS-1 will be collected in the small stained area to the southeast of the garage building to determine if contaminants in the area are a concern and require further evaluation. Because the contents of the drums stored in this location are unknown, SS-1 will be submitted for laboratory analysis of VOCs, PAHs, RCRA 8 metals, TPH, and PCBs.
 - Area 2 Surficial soil samples SS-2 and SS-3 will be collected in the heavily stained area around the drums formerly located to the northwest of the garage building. In addition, soil boring CA-1 will be completed in this area. One (1) surficial and one (1) subsurface sample will be collected from this boring. Because the contents of the drums are unknown, each soil sample from this area will be submitted for laboratory analysis of VOCs, PAHs, RCRA 8 metals, TPH, and PCBs.

Soil boring CA-1 will be completed as monitoring well CA-1 and groundwater will be collected for laboratory analysis of VOCs, PAHs, dissolved RCRA 8 metals.

• Area 3 – Surficial soil sample SS-4 will be collected from the area to the north of the garage building where a large quantity of drums and car parts were observed. In addition, soil boring CA-2 will be completed in this area and one (1) surficial and one (1) subsurface sample will be collected from this boring. Each soil sample collected from this area will be submitted for laboratory analysis of VOCs, PAHs, RCRA 8 metals, TPH, and PCBs.

Soil boring CA-2 will be completed as monitoring well CA-2 and groundwater will be collected for laboratory analysis of VOCs, SVOCs, and dissolved RCRA 8 metals.

- REC-3: This REC will be assessed by collecting one (1) surficial soil sample (SS-5) from the stained area at the sump discharge location and 1 soil sample (SS-Sump) from the soil around the sump. Because the contents of wastewater or wastes disposed through this sump are unknown, the sample will be submitted for laboratory analysis of VOCs, PAHs, TPH, RCRA 8 metals, and PCBs. One (1) water sample (Sump) will also be collected from the sump for laboratory analysis of VOCs, SVOCs, and dissolved RCRA 8 metals.
- REC-4: Credere anticipates that three (3) samples will be collected from piles of soil fill material (Fill-1 through Fill-3), one (1) sample will be collected from the observed pile of ash/burned refuse (Ash-1), and one (1) soil sample (SS-6) will be collected adjacent to a 30-gallon drum that was noted in this area. Because the source and potential contents of the fill materials and drum are unknown, each of these samples will be submitted for laboratory analysis of VOCs, PAHs, TPH, RCRA 8 metals, and PCBs.

In addition, the piles of dumped refuse and building materials will be assessed for ACMs, PCB bulk products, lead-based paint, and universal wastes during the surveys planned to address NC-1 through NC-3 discussed below.

- DMEC-1: DMEC-1 will be assessed by collecting five (5) concrete samples (CC-1 through CC-5) from the garage floor in areas of oil staining or drum storage as a screening level assessment to determine if a release of PCBs has impacted the concrete floor of the garage building. Each sample will be submitted for laboratory analysis of PCBs. If PCBs are identified in the samples, additional assessment and characterization will be necessary to determine the horizontal and/or vertical extent of PCB contamination and Credere will prepare a SSQAPP Amendment for any additional necessary sampling.
- NC-1: This NC will be addressed by performing a survey to determine if ACMs are present within the Site buildings.

- NC-2: This NC will be addressed by performing a lead-based paint determination to evaluate the presence and define the extent of lead-based paint within and on the Site buildings.
- NC-3: This NC will be addressed by performing a screening level inspection of the Site buildings for bulk products that may contain PCBs. Based on the size of the Site buildings and Credere's experience at similar sites, Credere anticipates that collecting up to ten (10) suspect building material samples (BM-1 through BM-10) may be necessary. Each building material sample collected will be submitted for off-site laboratory analysis of PCBs.
- NC-4: This NC will be addressed by performing a universal waste survey of the building to inventory fluorescent lighting fixtures that may contain PCBs, as well as other universal wastes that may remain in the building and would require proper disposal during Site redevelopment.

Table 1 through **Table 3** includes the number and type of samples that are proposed be collected, cross-referenced with the appropriate standard operating procedure (SOP) that will be used from Credere's Generic QAPP. Samples collected as part of this Phase II ESA will be submitted to Absolute Resource Associates of Portsmouth, NH (formerly Resource Laboratories). The data collected from these activities will serve as the basis for evaluating the Site conditions and will determine if any additional subsurface investigation and/or remedial actions are necessary. **Figure 3** shows the proposed locations where media will be collected. Requirements relative to Chain of Custody, Data Management and Documentation, Data Validation, and Data Usability Assessments contained in the Generic QAPP will be followed.

6. FIELD ACTIVITY METHODOLOGY

Field activity methodologies for assessing the RECs, DMEC, and NCs are summarized in the following subsections. Field activities will be conducted in accordance with the SOPs included in Credere's Generic QAPP Rev. 2 (USEPA RFA #08166 and #09036) and the rationale discussed in **Section 5**. Where field observations and/or field screening results indicate the presence of additional source areas or potentially impacted media, additional exploration locations or samples may be added to determine the horizontal and/or vertical extent of contamination. The number and locations of these additional soil samples or exploration locations will be dependent on field data, site constraints, and professional judgment. All decisions regarding delineation will be recorded in the field logbook, and all locations will be documented. All soil samples obtained for the purposes of contamination delineation will be collected and field-analyzed in accordance with Credere's standard SOPs outlined on **Table 1**. If Credere determines these additional sample locations should be tested for analytes not described in **Table 1**, the USEPA QA Manager will be contacted, and pending the outcome of the communication, an email update will be provided to the USEPA describing the additional sample analysis, methods, and SOPs.

6.1 GPR SURVEY OF SELECTED AREAS

GPR will be used to locate USTs that may remain in place on the Site. The proposed GPR survey area is depicted on **Figure 3**. DigSmart of Maine, Inc. (DigSmart) will conduct the survey by performing GPR transects across the proposed area in no more than 5 foot transects. DigSmart will also use an electronic location device and GPR to trace the route of the subsurface utilities at the Site to provide safety assurances during soil borings.

6.2 SOIL BORINGS, SOIL SAMPLING, AND FIELD SCREENING

Soil borings will be completed using hollow stem auger methodologies in accordance with NHDES SOP HWRB-11 for soil sampling. During soil boring advancement, soil samples will be continuously collected in two-foot split spoon samplers, individually logged, and evidence of contamination will be noted. If changes in strata occur (e.g. a transition from sand to clay), the split spoon sample may be appropriately divided and individually logged.

Each collected soil sample will then be field screened for total VOCs using a photoionization detector (PID) in accordance with NHDES SOP HWRB-12. The PID will be calibrated with a 100 part per million by volume (ppm_v) isobutylene gas and a response factor of 1.0. Soil samples collected for laboratory analysis of VOCs will be collected and preserved in accordance with NHDES SOP VOCs/Soil-2000.

Each soil sample will also be field screened for RCRA-8 metals with an Innov-X[®] Alpha 4000 portable X-ray fluorescence meter (XRF) in accordance with Maine DEP SOP DR#025. Because this is a screening level event to determine which, if any, metals are present in Site soil,

samples will be screened directly in the collected polybags. Prior to XRF screening, sample bags will be kneaded to homogenize soil.

Surficial soil samples from soil borings will be collected from the 0 to 2 foot bgs interval. Surficial soil samples collected from hand dug locations will be collected from the 0 to 1 foot bgs interval. In each case, asphalt and base materials, landscaping materials, and other organic detritus will be removed prior to sampling. Soil samples will be collected in accordance with NHDES SOP HWRB-11.

In general, subsurface soil samples will be selected based on the highest PID field screening result for VOCs, where visual or olfactory observations of contamination are observed, or from the depth of the water table interface if no other indicators of contamination are noted. Based on XRF field screening results, if elevated metals concentrations are detected at depths that differ from other indicators of contamination, additional soil samples may be selected for laboratory analysis to assess concentrations of individual metals.

6.3 MONITORING WELL INSTALLATION AND SURVEY

Certain soil borings will be completed as groundwater monitoring wells per the rationale discussed in **Section 5**.

6.3.1 Monitoring Well Installation and Development

Selected soil borings will be completed as groundwater monitoring wells per EPA SOP EPASOP#2048. Unless Site conditions (e.g. shallow bedrock or confining layers) warrant modified well construction, each monitoring well will be installed using ten feet of 2-inch PVC well materials including a well point or cap, 10 feet of 0.010-inch slotted pipe, and solid pipe to grade. Washed No. 1 size silica sand will be placed around the slotted pipe to an elevation approximately two (2) feet above the slotted pipe to establish a well annulus. At least one (1) foot of bentonite chips will be placed on top of each well annulus to prevent stormwater infiltration into the wells. Each well will then be completed to grade with a flush mounted road box protected by a minimum of a 1-foot by 1-foot concrete pad. Each monitoring well will be developed by overpumping and agitation, and then allowed to equilibrate for at least two weeks prior to sampling.

6.3.2 Rod and Level Survey

Following installation, each monitoring well will be surveyed with a rod and level to determine the top of well and ground elevation at each location in accordance with ASTM E 1364-95. The monitoring wells will be tied to the existing monitoring well network at the Site. If readily available, the monitoring well network will also be tied to a landmark with a known elevation (e.g. a utility manhole or USGS benchmark) to establish the regional datum.

6.4 CONCRETE SAMPLING

Samples will be collected from concrete floors or pads in accordance with the EPA Region I *Draft Standard Operating Procedure for Sampling Concrete in the Field*. Credere personnel will collect the samples using an impact hammer drill, dedicated 0.5-inch masonry drill bits, and dedicated brushes and scoopulas to collect a minimum of 10 grams of material from the sampling surface to 0.5-inches below grade.

6.5 GROUNDWATER SAMPLING

Prior to sampling, the depth to groundwater will be measured (and the presence of free floating product will be noted) in each groundwater monitoring well in accordance with NHDES SOP HWRB-1 to allow for the calculation of groundwater elevations and the determination of groundwater flow direction and gradients. Each monitoring well will then be sampled using low-flow sampling techniques and dedicated equipment in accordance with NHDES SOP HWRB-9. Each groundwater sample will be collected directly in laboratory glassware and will be submitted for off-site laboratory analysis.

6.6 ACM AND LEAD-BASED PAINT SURVEYS

A NHDES certified asbestos inspector will be contracted to perform an asbestos survey of the Site. During the asbestos survey, samples will be collected from each suspect media (i.e. piping insulation, flooring, ceiling tiles) in accordance with NHDES Certified Administrative Rule ENV-1800: Asbestos Management Control. Asbestos samples will be submitted to a State approved laboratory for asbestos analysis by polarized light microscopy (PLM) by USEPA 600/R-93/116.

Credere will perform a lead-based paint determination of the Site buildings to determine if lead is present in painted surfaces at concentrations that warrant construction worker notification under the Occupation Safety and Health Administration's Lead in Construction Standard 29 CFR 1926.62. An XRF will be used to screen each type of painted surface in accordance with Maine DEP SOP DR#025. Once formal Site redevelopment plans have been established, and if the Site buildings are to be used as residences or child-occupied facilities, a formal lead survey should be conducted by a NHDES Certified Lead Inspector.

6.7 PCB-CONTAINING BULK PRODUCTS

Credere will inventory all suspect PCB-containing building materials at the Site. Examples include paint, caulking, sealants, grout, mastic, glazing, and insulation. Consistent with this inventory and the results of previous investigations at similar sites, Credere will collect samples from distinct matrices which are most likely to contain PCBs for laboratory analysis of PCBs as a screening level assessment to determine if further assessment is warranted. Each sample will be collected from the matrix itself and no adjacent building materials (i.e. sheetrock or wood) will be included in the aliquot. This method will ensure that potentially regulated PCB

concentrations are not diluted by unrelated materials. All building material samples will be collected using dedicated sampling equipment in accordance with EPA SOPs #2011 and EIASOP_POROUSSAMPLING1.

Based on this screening level approach, the materials which present the highest degree of potential risk will be assessed. If the inventory identifies greater than ten (10) significantly suspect matrices, additional sample collection and analysis may be warranted. This may be accomplished either through SSQAPP revision or a separate investigation. The collected samples will be submitted for independent laboratory analysis. Following the receipt of laboratory results, a determination can be made whether there is risk of regulated PCB building materials at the Site and additional assessment, remediation, or no further action can be recommended.

7. REGULATORY STANDARDS

Sample results will be compared to the applicable state and/or federal standards/guidelines described below.

7.1 SOIL

Concentrations in soil samples will be compared to New Hampshire's Soil Remediation Standards detailed in NHDES Env-Or 600 Contaminated Site Management. Where guidelines are not available, soil concentrations will be compared to other appropriate regulatory standards and guidelines, e.g., USEPA Regional Screening Levels (RSL) for Chemical Contaminants at Superfund Sites, RSL Table Updated April 2009 for soil, and/or published background soil concentrations. If standards or guidelines do not exist, action levels will be triggered if the sample analytical results exceed background levels or naturally occurring ambient conditions.

7.2 GROUNDWATER

Groundwater sample results will be compared to the New Hampshire Ambient Groundwater Quality Standards (AGQS) detailed in NHDES Env-Or 600 Contaminated Site Management and USEPA Maximum Contaminant Levels (MCLs) for Drinking Water. In the event that no AGQS or MCLs exist for a particular contaminant, results will be compared to the USEPA Region 9 RSLs.

7.3 ACM

Asbestos sampling will be completed in accordance with NHDES Certified Administrative Rule ENV-1800: Asbestos Management Control. Levels of asbestos greater than or equal to 1% by volume as determined by weight, visual evaluation, and/or point count analysis within representative bulk samples obtained from the Site will result in the definition of such bulk materials as ACM.

7.4 LEAD-BASED PAINT

Concentrations of lead in paint as determined through the use of a XRF analyzer will be compared to a limit of 1.0 mg/cm² or 0.5% by weight. All construction work involving exposure or potential exposure to lead is covered by the Occupation Safety and Health Administration's Lead in Construction Standard 29 CFR 1926.62.

7.5 PCB BULK PRODUCTS

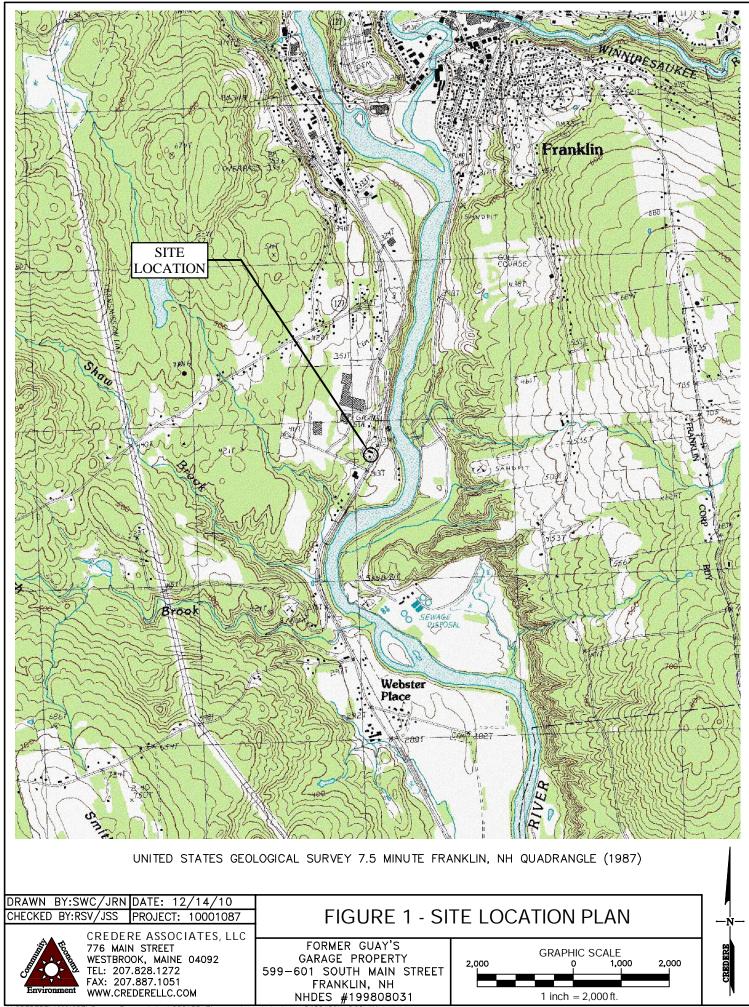
Building materials which have been analyzed to contain concentrations of total PCBs equal to or in excess of 50 parts per million (ppm) are defined as PCB bulk product wastes in accordance with 40 CFR 761.3. These materials are regulated for disposal under 40 CFR 761.62. Building materials that have been analyzed to contain total PCBs at a concentration of equal to or greater

than 1 ppm but less than 50 ppm is not regulated for disposal as long as it remains in use. However, if this material is removed from use, such as through demolition, they must be disposed of at a facility that is licensed to accept this waste. Building materials which have been analyzed to contain total PCBs at a concentration of less than 1 ppm are unrestricted for future use and/or disposal.

It should be noted that all samples collected for laboratory analysis of PCBs will be analyzed using EPA Method 8082 and manual Soxhlet extraction Method 3540 to meet the characterization requirements of 40 CFR 761.272.

8. ANTICIPATED PROJECT SCHEDULE

The following schedule is anticipated for the Phase II ESA activities at the Site:


DATE	ACTION
Week of June 6, 2011	Finalize SSQAPP
Week of June 20, 2011	GPR Survey, Lead-Based Paint Survey, ACM Survey, PCB building materials sampling, Soil Boring, Soil Sample Collection, and Monitoring Well Installation
Week of July 4, 2011	Groundwater Sampling
Week of July 18, 2011	Receive Laboratory Analytical Data
Week of August 22, 2011	Submit Draft Phase II ESA Report
Week of October 3, 2011	Submit Final Phase II ESA Report

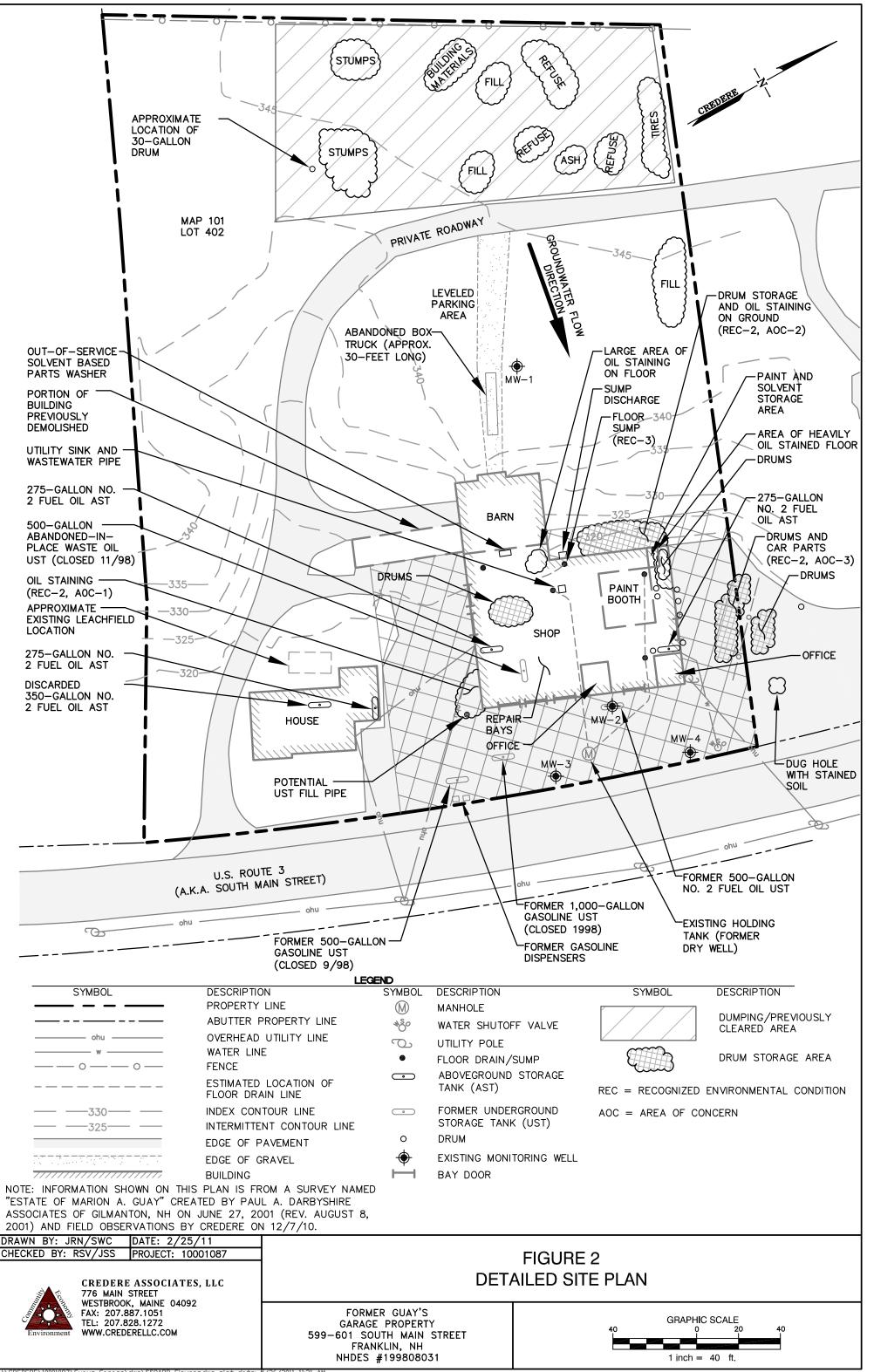
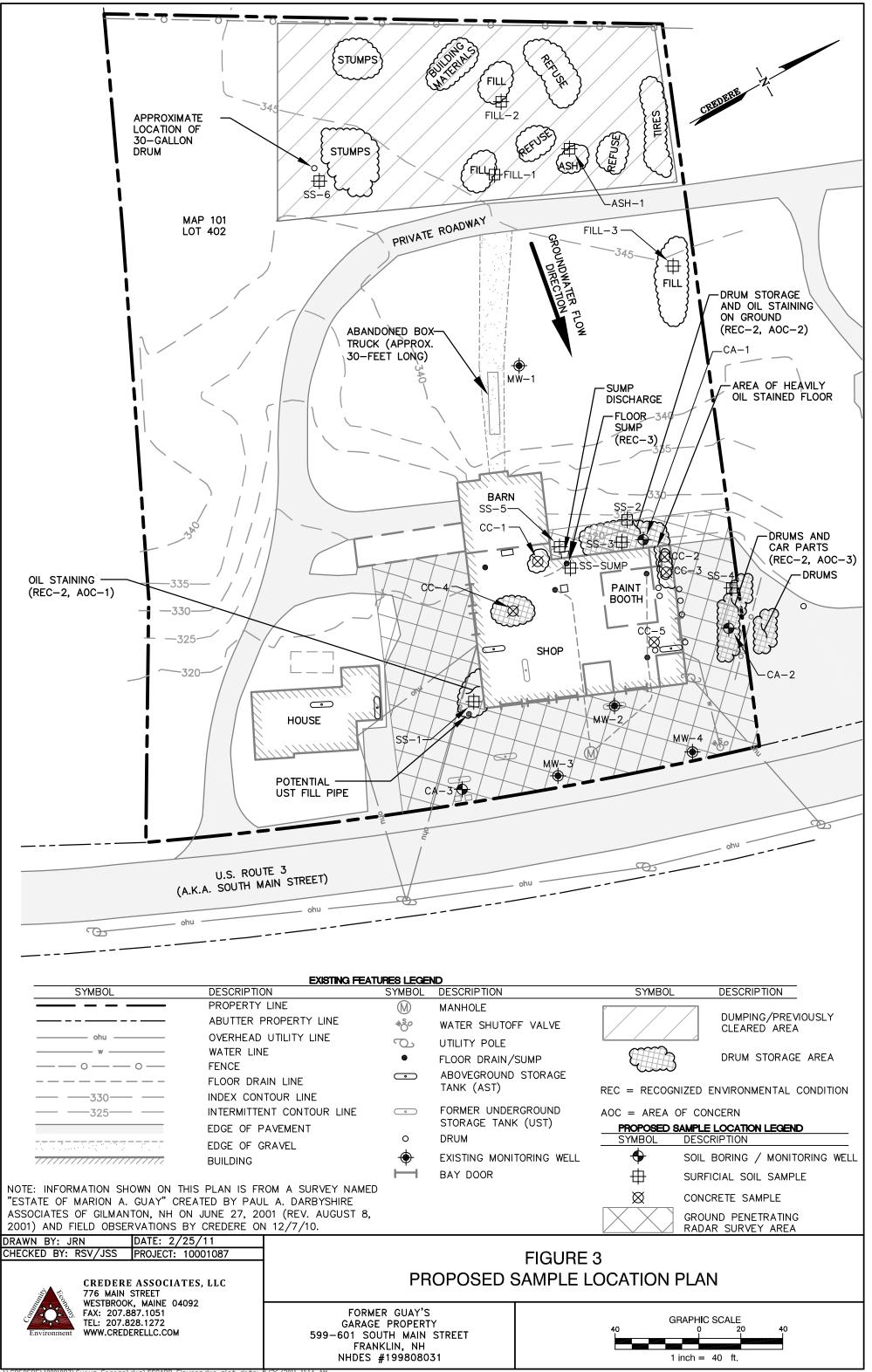
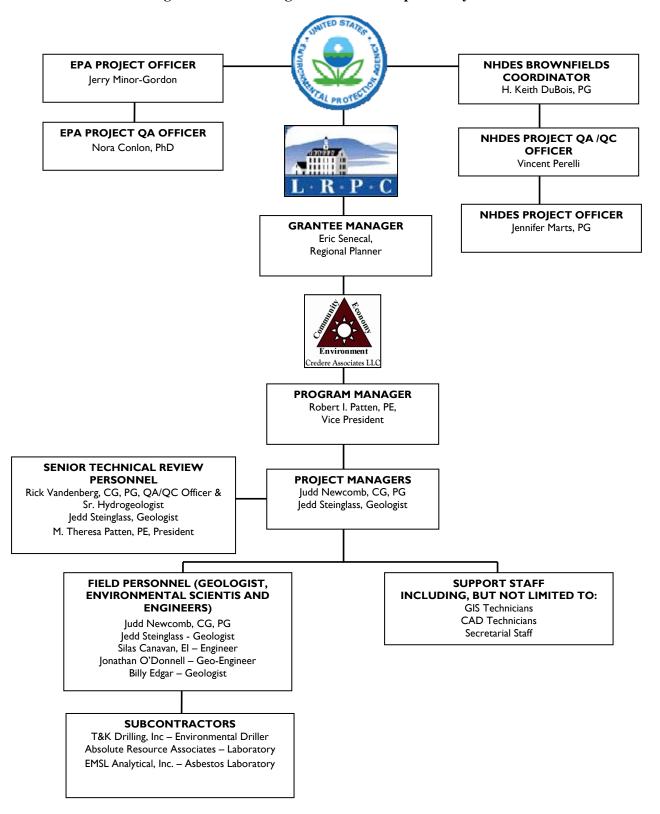
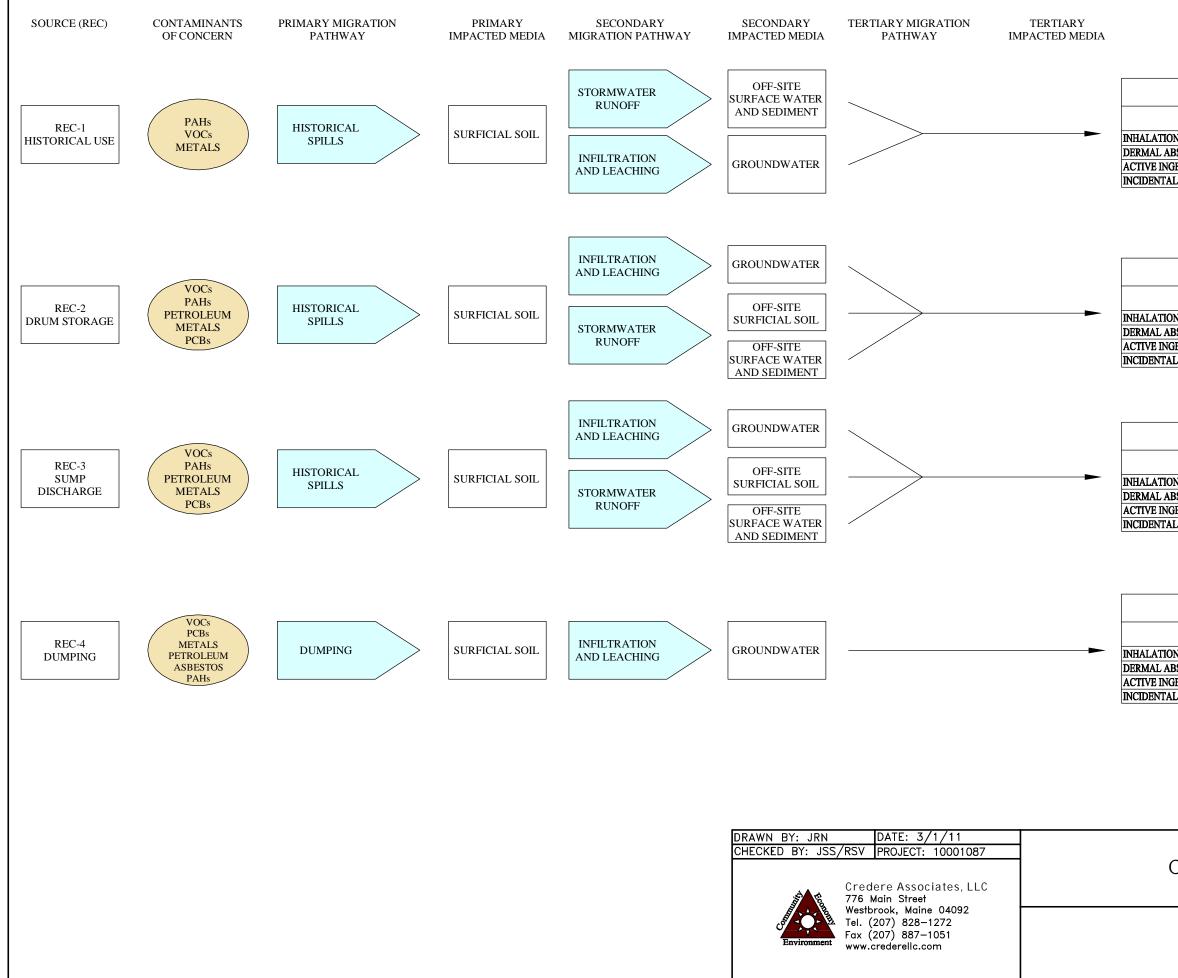

FIGURES

Figure 1	Site Location Map
8	Detailed Site Plan
8	Proposed Sample Location Plan
8	Credere Organization and Responsibility Chart
8	Conceptual Site Model
8	



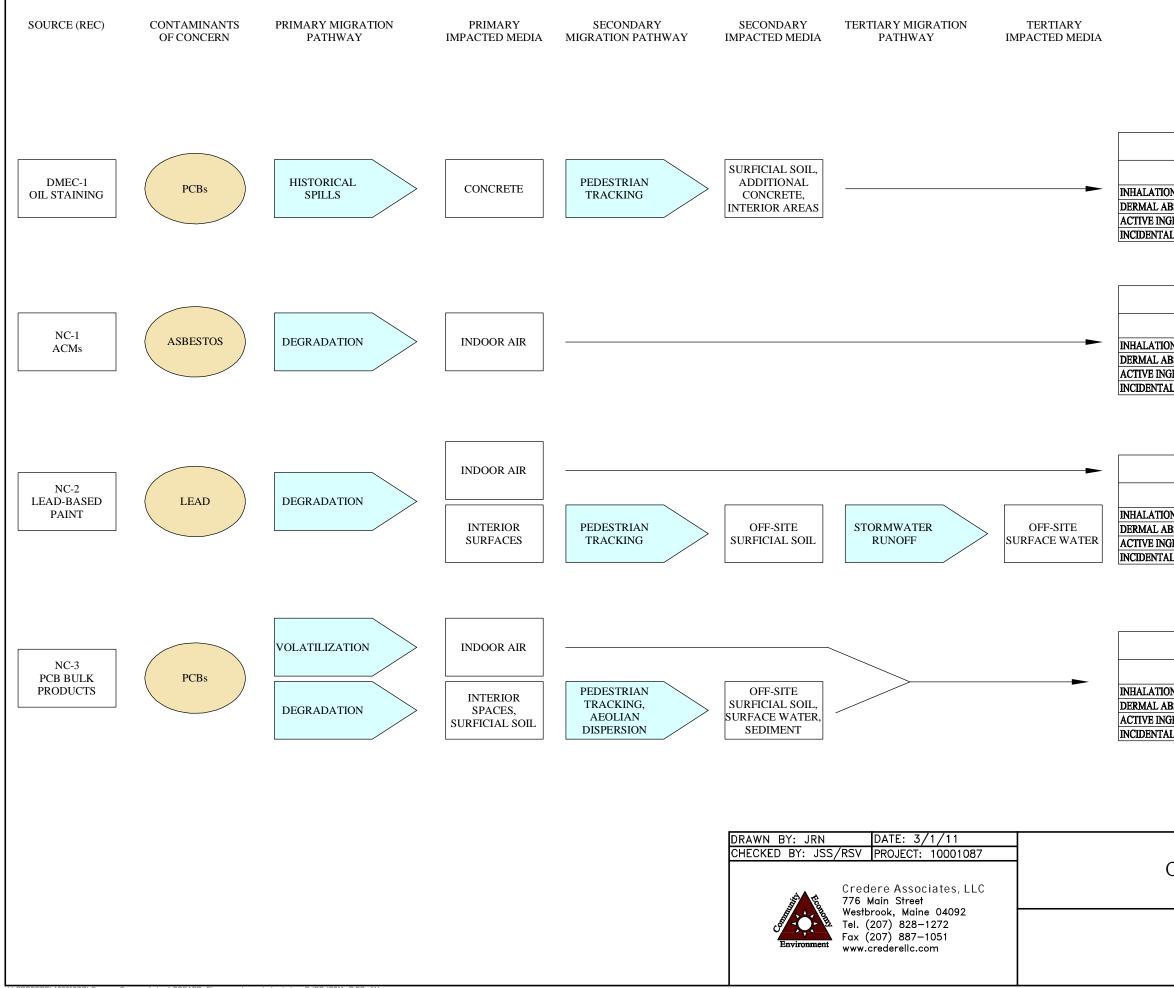

I\CREDERE\10001087\Guays Garage\dwg\SSQAPP Figures.dwg plot date: 3/23/2011 8:09 AM


J:\CREDERE\10001087\Guays Garage\dwg\SSQAPP Figures.dwg plot date: 5/26/2011 11:31 AM

J:\CREDERE\10001087\Guays Garage\dwg\SSQAPP Figures.dwg plot date: 5/26/2011 11:14 AM

Figure 4: Credere Organization and Responsibility Chart

POTENTIAL EXPOSURE PATHWAYS						
	RESIDENTIAL	COMMERCIAL	SITE WORKER	VISITOR	TERRESTRIAL BIOTA	AQUATIC BIOTA
N	Х		Х			
BSORPTION	Х		Х	Х	Х	
JESTION					Х	
L INGESTION	X	Х	Х	Х		


POTENTIAL EXPOSURE PATHWAYS						
	RESIDENTIAL	COMMERCIAL	SITE WORKER	VISITOR	TERRESTRIAL BIOTA	AQUATIC BIOTA
N	Х		Х			
BSORPTION	Х	Х	Х	Х	Х	
ESTION					Х	
L INGESTION	Х	Х	Х	Х		

POTENTIAL EXPOSURE PATHWAYS						
	RESIDENTIAL	COMMERCIAL	SITE WORKER	VISITOR	TERRESTRIAL BIOTA	AQUATIC BIOTA
N	Х		Х			
BSORPTION	Х	Х	Х	Х	Х	
JESTION					Х	
L INGESTION	Х	Х	Х	Х		

POTENTIAL EXPOSURE PATHWAYS						
	RESIDENTIAL	COMMERCIAL	SITE WORKER	VISITOR	TERRESTRIAL BIOTA	AQUATIC BIOTA
N	X		Х			
BSORPTION	Х	Х	Х	Х	Х	
JESTION					X	
L INGESTION	Х	Х	Х	Х		

FIGURE 5 CONCEPTUAL SITE MODEL (SHEET 1 OF 2)

FORMER GUAY'S GARAGE PROPERTY 599-601 SOUTH MAIN STREET FRANKLIN, NH NHDES #199808031

POTENTIAL EXPOSURE PATHWAYS						
	RESIDENTIAL	COMMERCIAL	SITE WORKER	VISITOR	TERRESTRIAL BIOTA	AQUATIC BIOTA
N			Х			
BSORPTION	Х	Х	Х	Х		
JESTION						
L INGESTION			Х			

POTENTIAL EXPOSURE PATHWAYS						
	RESIDENTIAL	COMMERCIAL	SITE WORKER	VISITOR	TERRESTRIAL BIOTA	AQUATIC BIOTA
N	Х	Х	Х	Х		
BSORPTION						
GESTION						
L INGESTION	Х	Х	Х	Х		

POTENTIAL EXPOSURE PATHWAYS						
	RESIDENTIAL	COMMERCIAL	SITE WORKER	VISITOR	TERRESTRIAL BIOTA	AQUATIC BIOTA
N	Х	Х	Х	Х		
BSORPTION	Х	Х	Х	Х		
JESTION						
L INGESTION	X	X	X	X		

POTENTIAL EXPOSURE PATHWAYS						
	RESIDENTIAL	COMMERCIAL	SITE WORKER	VISITOR	TERRESTRIAL BIOTA	AQUATIC BIOTA
N	Х	Х	Х	Х		
BSORPTION	Х	Х	Х	Х		
JESTION						
L INGESTION	Х	Х	Х	Х		

FIGURE 5 CONCEPTUAL SITE MODEL (SHEET 2 OF 2)

FORMER GUAY'S GARAGE PROPERTY 599-601 SOUTH MAIN STREET FRANKLIN, NH NHDES #199808031

TABLES

Table 1	Soil Sample Reference Table
Table 2	1
Table 3	1

Table 1: Soil Sample Reference Table Former Guay's Garage Property 599-601 South Main Street Franklin, New Hampshire NHDES #199808031												
Media to be Collected	Proposed Sample IDs	Associated RECs	Sample Design	Sample Depth (ft bgs)	Field SOPs to be Used	Field Analysis/ Observations	No. of Samples for Analysis	No. of Field Dups	Analytical Method	Sample Container information & Preservative (per location)	Lab SOPs	Laboratory To be Used
	SS-1 through SS-4	REC-2	Surficial soil samples will be collected from the stained drum storage areas to determine the degree and horizontal extent of contamination.	0-1	Credere-004 HWRB-11 HWRB-12 HWRB-15 HWRB-17 DR#012 DR#024 DR#025	Visual & Olfactory PID Headspace XRF Screening	4			TPH - 4 oz. amber glass VOCs - (1) 40 ml VOA w/5 ml methanol, (1) 40 ml VOA for % solids RCRA 8 Metals - 4 oz. glass with Teflon- lined cap PAHs - 4 oz. amber glass with Teflon- lined cap PCBs - 4 oz glass with Teflon lined cap	RL-4 RL-5 RL-6 RL-7 RL-9 RL-13	Absolute Resource Associates Portsmouth, NH
Surficial Soil	SS-5, SS-Sump	REC-3	Surficial soil samples will be collected from the stained soil around the sump and the sump discharge area to characterize the contaminants.				2	Soil samples will be duplicated at a rate of 5% per the generic QAPP for a total of one (1) based on the proposed total number of samples indicated in this table.	 TPH by EPA Method 8015 VOCs by EPA Method 8260 RCRA 8 Metals by EPA Methods 6010 and 7471A PAHs by EPA Method 8270 PCBs by EPA Method 8082 			
	SS-6, Fill-1 through Fill- 3, and Ash-1	REC-4	Samples will be collected from the western portion of the Site where a 30-gallon drum was noted, and fill materials, refuse, building materials, and ash were dumped to determine if soil has been impacted.				5					
Surficial and Subsurface Soil (Soil Borings)	CA-1 and CA-2	REC-2	Surficial and subsurface soil samples will be collected from these borings to determine the degree, and horizontal and vertical extents of contamination associated with stained drum storage areas.	Laboratory samples collected at highest field screening detection, visual/olfactory	HWRB-11 HWRB-12 HWRB-15 HWRB-17 VOCs/SOIL-2000 DR#012	Visual & Olfactory PID Headspace XRF Screening	4	Soil samples will be duplicated at a rate of 5% per the generic QAPP for a total of one (1) based on the proposed total number of samples indicated in	- PAHs by EPA Method 8270 - PCBs by EPA Method 8082	TPH - 4 oz. amber glass VOCs - (1) 40 ml VOA w/5 ml methanol, (1) 40 ml VOA for % solids RCRA 8 Metals - 4 oz. glass with Teflon- lined cap PAHs - 4 oz. amber glass with Teflon- lined cap PCBs - 4 oz glass with Teflon lined cap	RL-4 RL-5 RL-6 RL-7 RL-9 RL-13	Absolute Resource Associates Portsmouth, NH
	CA-3	REC-1	Soil samples will be continuously screened to below the depth of the water table to determine if historical releases of petroleum have occurred in the vicnity of the pump island.	evidence of contamination, OR at water table interface.			1	this table.	 TPH by EPA Method 8015 VOCs by EPA Method 8260 RCRA 8 Metals by EPA Methods 6010 and 7471A PAHs by EPA Method 8270 	TPH - 4 oz. amber glass VOCs - (1) 40 ml VOA w/5 ml methanol, (1) 40 ml VOA for % solids RCRA 8 Metals - 4 oz. glass with Teflon- lined cap PAHs - 4 oz. amber glass with Teflon- lined cap	RL-5 RL-6 RL-7 RL-9 RL-13	

	Table 2: Groundwater Sample Reference Table Former Guay's Garage Property 599-601 South Main Street Franklin, New Hampshire NHDES #199808031											
Media to be Collected	Proposed Sample IDs	Associated RECs	Sample Design	Field SOPs to be Used	Field Analysis/ Observations	No. of Samples for Analysis	No. of Field Dups	No. of Trip Blanks	Analytical Method	Sample Contair Preservative		
J.	MW-1 through MW-4	REC-1	Groundwater samples will be collected from the existing monitoring well network and newly installed monitoring wells to	Credere-004 HWRB-1 HWRB-3 HWRB-9 HWRB-15 HWRB-17 DR#012	Visual & Olfactory Field Parameters: Temperature, PH, Dissolved Oxygen, Turbidity, Conductivity, Oxidation-Reduction Potentional	4		f 1		VOCs - (2) 40 m PAHs - 1 Liter amb RCRA 8 Metals - 2: with		
Groundwater	CA-1 and CA-2 CA-3 (if installed)	REC-1 REC-2 REC-4	determine if historical petroleum storage, improper storage of drums, and dumping on the Site have affected groundwater quality.			3	Groundwater samples will be duplicated at a rate of 5% per the generic QAPP for a total of one (1) based on the proposed total number of samples indicated in this table.		 - VOCs by EPA Method 8260 - PAHs by EPA Method 8270 - Dissolved RCRA 8 Metals by EPA Methods 6010 and 7470A 			
	Sump	REC-3	One (1) water sample will be collected from the sump to determine if water infiltrating this area has been impacted by the use of the sump.	Credere-004 DR#012	Visual & Olfactory	1						

ainer information & ive (per location)	Lab SOPs	Laboratory To be Used
0 ml VOA with HCL mber bottle, unpreserved - 250ml plastic preserved ith HNO ₃	RL-5 RL-6 RL-9 RL-13	Absolute Resource Associates Portsmouth, NH

Table 3: Building Materials Sample Reference Table Former Guay's Garage Property 599-601 South Main Street Franklin, New Hampshire NHDES #199808031											
Media to be Collected	Proposed Sample IDs	Associated DMECs/NCs	Sample Design	Field SOPs to be Used	Field Analysis/ Observations	No. of Samples for Analysis	No. of Field Dups	Analytical Method	Sample Container information & Preservative (per location)	Lab SOPs	Laboratory To be Used
Concrete	CC-1 through CC-5	DMEC-1	Concrete samples will be collected from building floors to determine if PCBs are present from potential releases.	EIASOP_POROUSSAMPLIN G1 Credere-004 DR#012	Visual Inspection and Bulk Sampling	5	1	PCBs via EPA Method 8082	PBCs - 4 oz. glass with Teflon-lined cap, no preservative	RL-4	Absolute Resource Associates Portsmouth, NH
Asbestos Containing Materials	TBD Based on Visual Inspection	NC-1	An asbestos survey will be conducted to evaluate the "ASTM Non-scope" consideration related to potential ACMs at the Site.	According to NH DES Env-A- 1800	Visual Inspection and Bulk Sampling	According to NH DES Env-A-1800	According to NH DES Env-A- 1800	Polarized Light Microscopy by EPA 600/R- 93/116	Plastic bags, labeled (no preservation)	Included in SSQAPP Addendum No. 4	EMSL Analytical, Inc. Woburn, MA
Lead-Based Paint	TBD Based on Visual Inspection	NC-2	A lead based paint survey will be conducted to evaluate the "ASTM Non- scope" consideration related to lead-based paint. Each unique paint will be screened in the field with an XRF.	DR#012 DR#024 DR#025 Credere-004	XRF Screening	TBD	NA	EPA Method 6200	NA	NA	NA
Potential PCB- Containing Building Materials	As Needed: BM-01 through BM-10	NC-3	One (1) representative bulk sample will be collected from up to ten (10) representative suspect building material matrices.	EPA SOP No. 2011 EIASOP_POROUSSAMPLIN G1 Credere-004 DR#012	Visual Inspection and Bulk Sampling	Up to 10	Bulk samples will be duplicated at a rate of 5% per the generic QAPP for a total of one (1) based on the proposed total number of samples indicated in this table.	PCBs via EPA Method 8082	PBCs - 4 oz. glass with Teflon-lined cap, no preservative	RL-4	Absolute Resource Associates Portsmouth, NH

APPENDIX B

SITE PHOTOGRAPHS

PHASE II Environmental Site Assessment Former Guay's Garage Site 599-601 South Main Street Franklin, NH NHDES Site # 199808031

Picture 1 - View of the GPR survey and House, looking south

Picture 2 – location of concrete sample CC-1 in garage, where PCBs were identified in concrete

PHASE II Environmental Site Assessment Former Guay's Garage Site 599-601 South Main Street Franklin, NH NHDES Site # 199808031

Picture 3 - View of the former location of drums and stained soil on northwest side of garage/barn building, location of surficial soil samples SS-2 and SS-3, facing south

Picture 4 - View of the former location of drums on northern side of garage/barn building, location of soil boring/monitoring well CA-2, facing north

PHASE II Environmental Site Assessment Former Guay's Garage Site 599-601 South Main Street Franklin, NH NHDES Site # 199808031

Picture 5 - View of peeling exterior Lead-Based Paint on western side of barn portion of garage/barn building

APPENDIX C

SOIL BORING LOGS

						Geologic Log					
	A					SITE INFORMATION Project Number/Client:	WELL SPECIFICATIONS Well Depth (feet) from TOC: 20				
	inni	Ecomo		re Associates, L	LC	10001087/Guay'sGarage Site	_				
00	Enviro	nment		ain Street rook, Maine 040	92	Site Location: 599-601 South Main Street, Franklin, NH DES #: Date Start/Finish:	Screen Le TOW Elev	-	t): 10 96.82 Ground Elevation: NM		
						NHDES#199808031 06-30-11 Credere, LLC Representative:	Well Mate	erial			
						Jonathan O'Donnell).010-incl	PVC Slotted Pipe and Riser		
			\sim			CONTRACTOR Drilling Contractor:	Equipmer	nt:	LING EQUIPMENT		
			CA	-1		T&K Drilling Foreman:	4 1/4" ID I Casing Di		em Auger		
						Sean McGarry	NA				
						Drilling Method: Hollow Stem Augur	Casing Ma NA	aterial:			
									Equipment Installed		
		5		nformation		-		USCS			
o Depth	Sample No.	Pen/Rec (In.)	Depth (Ft.)	Blows (/0.5')	PID (ppm) (RF=1.0)	Soil Description and Classification	Strata	Code	2-inch expansion plug		
1	S-1	24/8	0-2	3-3-4-4	0.8	Black, medium SAND. Surficial staining in area. Slightly Moist. No petroleum odor.	Poorly graded, Fine to medium sand	SP			
2 3 4	S-2	24/8	2-4	5-5-3-4	1.2	Gray, fine SAND, some Silt. Slightly Moist. No petroleum odor.	Poorly gra mediu		2-inch PVC riser		
5	S-3	24/6	4-6	3-2-4-4	3.2	Noise ivo ped ofcani odor.			Clean Backfill 6		
7	S-4	24/9	6-8*	7-6-7-7	0.6				7		
8 9	S-5	24/16	8-10	3-5-6-6	0.8				Bentonite 9		
10 11	S-6	24/18	10-12	3-5-6-7	1.2						
12 13	S-7	24/21	12-14	3-6-10-11	0.6	Gray, SILT. Wet. Slight petroleum odor.	Silt	ML	2-inch PVC 0.010 slotted		
14 15	S-8	24/18	14-16	5-6-8-8	0.8				pipe 14		
16 17	S-9	24/18	16-18	7-8-12-12	0.8				Clean Sand Filter pack 16		
18 19	S-10	24/17	18-20	5-10-10-13	1.2				18		
20 21	S-11	24/16	20-22	6-8-9-12	0.8				Bentonite plug		
22 23	S-12	24/22	22-24	9-13-15-19	0.8	Light brown medium SAND. Drier. No petroleum odor.	Poorly graded, Medium sand	SP	22 23		
24				End of explor	ration an	id sampling discontinued at 24'			24		
Soil TO' NM NS	W Ele [,] I - Not - No s	ribed us vation - Measu ample f	Elevation red for intervated for lab	al ; oratory analysis	ll PVC S	" lotted Pipe and Riser, approximate ble as inferred from field observations.					
SI	tratificatio onditions	n lines repr stated. Flue	esent approxir tuations of gr	mate boundaries betwee oundwater may occur d	en soil types, ue to other fa	transitions may be gradual. Water level readings have been mad ctors than those present at the time measurements were made.	le at times and u	nder	Page 1 of 1 Boring No: CA-1		
<u> </u>									201115 1101 011-1		

						Geologic Log					
						SITE INFORMATION					
						Project Number/Client:	Well Dept				
	III	E CO	Creat		10	10001087/Guay'sGarage Site		(
-	1.	· E		re Associates, L ain Street	10	Site Location:	Screen Le	ngth (fee	t): 10		
9	A.	L B		rook, Maine 040	92	599-601 South Main Street, Franklin, NH		g (100			
4	nview	n men t				DES #: Date Start/Finish:	TOW Ele	evation: 97.44 Ground Elevation: NM			
		ament				NHDES#199808031 06-30-11		-			
	_					Credere, LLC Representative:	Well Mate	erial			
						Jonathan O'Donnell			n PVC Slotted Pipe and R	iser	
						CONTRACTOR			LING EQUIPMENT		
			\sim			Drilling Contractor:	Equipmer				
			CA	2.		T&K Drilling			tem Auger		
						Foreman:	Casing Di		Ų		
						Sean McGarry	NA				
						Drilling Method:	Casing M	aterial:			
						Hollow Stem Augur	NA				
		5	Sample I	nformation					Equipment Insta	led	
Depth	Sample No.	Pen/Rec (In.)	Depth (Ft.)	Blows (/0.5')	PID (ppm) (RF=1.0)	Soil Description and Classification	Strata	USCS Code		Flush unt well box	
	<u>s z</u>	E P	Ð.		E B				2-inch	+	
0							æ		expansion plug	0	
-	S-1	24/9	0-2	9-7-7-9	1.4	Brown, coarse to medium SAND, some	ars	1	2 S	135	
1						Gravel. Slightly moist. No petroleum odor.	00	1	1. M	1	
_							to	1	1	199	
2							Poorly, graded, Fine to coarse Sand	1	2-inch	2	
	S-2	24/0	2-4	10-11-14-18	2.1	No sample recovery.	led, Fi Sand	SP	PVC riser	100	
3	52	200				tio sumple feed fory.	Jed Sa	51		3	
							rac	1			
4					_		60	1	19.41	4	
	6.2	24/2	4.5	6 11 11 17	62	Brown and gray, fine SAND with Silt. Slightly	urly	1	Clean	5.60	
5	S-3	24/3	4-6	6-11-11-17	6.3	moist. No petroleum odor.	00	1	backfill	5	
1						I I I I I I I I I I I I I I I I I I I	1	1			
6								1		6	
9						Gray, SILT. Some red oxidation. Very moist.		1	Bentonite	0	
7	S-4	24/15	6-8	10-12-11-10	6.9			1	403.0	- U.S.S.	
1						No petroleum odor.		1		7	
_								1		1000	
8								1201	8		
	S-5	24/13	8-10	6-6-8-8	4.0					1	
9								1.1	9		
									0.62	- 18 M	
10									100	10	
	0 <		10-12	4-5-7-8	6.3	Gray, SILT. Some red oxidation. Wet. No			1.14		
	N-6	24/14		4570	0.5	petroleum odor.				11	
11	S-6	24/14			1			ML	9095		
11	S- 6	24/14	-		1						
	5-6	24/14					Silt	ML	Clean Sand Filter	12	
				7.0.0.10	60		Sil	ML	Clean Sand Filter	12	
12	S-6 S-7	24/14 24/16	12-14	7-9-9-12	6.9		Si	ML		12	
12				7-9-9-12	6.9		Sil	ML		- 10 A	
12 13				7-9-9-12	6.9		SI	ML		13	
12 13	S-7	24/16	12-14			Gray, SILT, Wet, All gray, no more red	SI	ML	pack	- 10 A	
12 13 14				7-9-9-12 4-5-7-9	6.9	Gray, SILT. Wet. All gray, no more red oxidation. No petroleum odor.	SI	ML	2-inch PVC	13	
12 13 14	S-7	24/16	12-14			Gray, SILT. Wet. All gray, no more red oxidation. No petroleum odor.	SI	ML	pack	13	
12 13 14 15	S-7	24/16	12-14				SI	ML	2-inch PVC	13 14 15	
111 112 113 114 115 116	S-7	24/16	12-14 14-16*			oxidation. No petroleum odor.	SI	ML	2-inch PVC	13	
12 13 14 15 16	S-7	24/16	12-14			oxidation. No petroleum odor. Gray, SILT. Wet. No red oxidation. No	20 20	ML	2-inch PVC	13 14 15 16	
12 13 14 15 16	S-7 S-8	24/16	12-14 14-16*	4-5-7-9	10.2	oxidation. No petroleum odor.	SI	ML	2-inch PVC	13 14 15	
12 13 14 15 16 17	S-7 S-8	24/16	12-14 14-16*	4-5-7-9	10.2	oxidation. No petroleum odor. Gray, SILT. Wet. No red oxidation. No petroleum odor.			2-inch PVC 0.010 slotted pipe	13 14 15 16 17	
2 3 4 5 6 7	S-7 S-8	24/16	12-14 14-16*	4-5-7-9	10.2	oxidation. No petroleum odor. Gray, SILT. Wet. No red oxidation. No			2-inch PVC 0.010 slotted pipe	13 14 15 16	
12 13 14 15 16 17	S-7 S-8	24/16	12-14 14-16*	4-5-7-9	10.2	oxidation. No petroleum odor. Gray, SILT. Wet. No red oxidation. No petroleum odor.			2-inch PVC 0.010 slotted pipe	13 14 15 16 17	
12 13 14 15 16 17 18	S-7 S-8 S-9	24/16 24/17 24/12	12-14 14-16*	4-5-7-9	10.2	oxidation. No petroleum odor. Gray, SILT. Wet. No red oxidation. No petroleum odor.			2-inch PVC 0.010 slotted pipe	13 14 15 16 17	
12 13 14 15 16 17 18	S-7 S-8 S-9	24/16 24/17 24/12	12-14 14-16* 16-18	4-5-7-9 5-7-9-12	10.2	oxidation. No petroleum odor. Gray, SILT. Wet. No red oxidation. No petroleum odor.			2-inch PVC 0.010 slotted pipe	13 14 15 16 17	
12 13 14 15 16 17 18 cem	S-7 S-8 S-9	24/16 24/17 24/12 ibed usi	12-14 14-16* 16-18	4-5-7-9 5-7-9-12	10.2 7.2 Method"	oxidation. No petroleum odor. Gray, SILT. Wet. No red oxidation. No petroleum odor. Sampling Discontinued, End of Exploration,			2-inch PVC 0.010 slotted pipe	13 14 15 16 17	
12 13 14 15 16 17 18 Colls OW	S-7 S-8 S-9 a descri V Eleva	24/16 24/17 24/12 ibed usi: ation - E	12-14 14-16* 16-18 ng "Modi	4-5-7-9 5-7-9-12	10.2 7.2 Method"	oxidation. No petroleum odor. Gray, SILT. Wet. No red oxidation. No petroleum odor.			2-inch PVC 0.010 slotted pipe	13 14 15 16 17	
12 13 14 15 16 17 18 xem oils OW	S-7 S-8 S-9 Marks: a descri V Eleva - Not I	24/16 24/17 24/12 ibed usi: ation - F Measure	12-14 14-16* 16-18 ng "Modi ilevation d	4-5-7-9 5-7-9-12 ified Burmister of Top of Well	10.2 7.2 Method"	oxidation. No petroleum odor. Gray, SILT. Wet. No red oxidation. No petroleum odor. Sampling Discontinued, End of Exploration,			2-inch PVC 0.010 slotted pipe	13 14 15 16 17	
12 13 14 15 16 17 18 xem oils OW	S-7 S-8 S-9 Marks: a descri V Eleva - Not I	24/16 24/17 24/12 ibed usi: ation - F Measure	12-14 14-16* 16-18 ng "Modi	4-5-7-9 5-7-9-12 ified Burmister of Top of Well	10.2 7.2 Method"	oxidation. No petroleum odor. Gray, SILT. Wet. No red oxidation. No petroleum odor. Sampling Discontinued, End of Exploration,			2-inch PVC 0.010 slotted pipe	13 14 15 16 17	
12 13 14 15 16 17 18 20 18 00 W M JN JN JN JN	S-7 S-8 S-9 descri V Elevi - Not I No sa	24/16 24/17 24/12 ibed usiation - E Measure mple fo	12-14 14-16* 16-18 ng "Modi Clevation d r interval	4-5-7-9 5-7-9-12 ified Burmister of Top of Well	10.2 7.2 Method"	oxidation. No petroleum odor. Gray, SILT. Wet. No red oxidation. No petroleum odor. Sampling Discontinued, End of Exploration,			2-inch PVC 0.010 slotted pipe	13 14 15 16 17	
12 13 14 15 16 17 17 18 cem oils OW	S-7 S-8 S-9 W Elev; V Elev; Not 1 No sa nple su	24/16 24/17 24/12 ibed usi: ation - E Measure umple fo abmitted	12-14 14-16* 16-18 ng "Modi Elevation d r interval for labo	4-5-7-9 5-7-9-12 ified Burmister of Top of Well ; ratory analysis.	10.2 7.2 Method" PVC Slot	oxidation. No petroleum odor. Gray, SILT. Wet. No red oxidation. No petroleum odor. Sampling Discontinued, End of Exploration,			2-inch PVC 0.010 slotted pipe	13 14 15 16 17	
12 13 14 15 16 17 18 8 0 W M S -	S-7 S-8 S-9 W Elev; V Elev; Not 1 No sa nple su	24/16 24/17 24/12 ibed usi: ation - E Measure umple fo abmitted	12-14 14-16* 16-18 ng "Modi Elevation d r interval for labo	4-5-7-9 5-7-9-12 ified Burmister of Top of Well ; ratory analysis.	10.2 7.2 Method" PVC Slot	oxidation. No petroleum odor. Gray, SILT. Wet. No red oxidation. No petroleum odor. Sampling Discontinued, End of Exploration, ted Pipe and Riser, approximate			2-inch PVC 0.010 slotted pipe	13 14 15 16 17	
2 3 4 5 .6 .7 .8 em oils OW M S - San	S-7 S-8 S-9 s descri v Elevi - Not N No sa nple su	24/16 24/17 24/12 ibed usi ation - E Measure mple fo ubmitted Graphic	12-14 14-16* 16-18 ng "Modi Elevation d r interval for labo cally show	4-5-7-9 5-7-9-12 ified Burmister of Top of Well ; ratory analysis. ws depth of the	10.2 7.2 Method" PVC Slot water tabl	oxidation. No petroleum odor. Gray, SILT. Wet. No red oxidation. No petroleum odor. Sampling Discontinued, End of Exploration, ted Pipe and Riser, approximate e as inferred from field observations.	, and Wel	I Set at 1	2-inch PVC 0.010 slotted pipe	13 14 15 16 17 18	
2 3 4 5 6 7 8 0011s 00W M S - San Stra	S-7 S-8 S-9 Marks: a descri V Elev. V Elev. V Elev. No sa nple su	24/16 24/17 24/12 ibed usi: ation - F Measure mple fo abmitted Graphic	12-14 14-16* 16-18 ng "Modi Elevation d r interval for labo cally show	4-5-7-9 5-7-9-12 ified Burmister of Top of Well ; ratory analysis. ws depth of the te boundaries between	10.2 7.2 Method" PVC Slot water tabl	oxidation. No petroleum odor. Gray, SILT. Wet. No red oxidation. No petroleum odor. Sampling Discontinued, End of Exploration, ted Pipe and Riser, approximate	, and Wel	I Set at 1	2-inch PVC 0.010 slotted pipe	13 14 15 16 17 18	

VELL SPECIFICATIONS rom TOC: N/A i): N/A N/A Ground Elevation: NM LING EQUIPMENT tem Auger Equipment Installed 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 2 14 15 16
t): N/A N/A Ground Elevation: NM LING EQUIPMENT tem Auger Equipment Installed 0 1 2 3 4 5 6 7 8 9 10 11 11 11 12 13 8 9 14 15 16
N/A Ground Elevation: NM ING EQUIPMENT tem Auger Equipment Installed 0 1 2 3 4 5 6 7 8 9 10 11 11 12 13 0 14 15 16 16 16 16 16 16 16 16 16
LING EQUIPMENT tem Auger Equipment Installed 0 1 2 3 4 5 6 7 8 9 10 11 11 12 13 8 9 14 15 16
tem Auger Equipment Installed U U U U U U U U U U U U U
Equipment Installed ####################################
Equipment Installed # Equipment Installed 1 0 1 2 3 4 5 6 7 8 9 10 11 21 13 22 13 33 15 16 16
Equipment Installed
Image: second
Hado O 0 1 2 3 3 4 5 6 7 8 9 10 11 12 13 13 15 16
Hado O 0 1 2 3 3 4 5 6 7 8 9 10 11 12 13 13 15 16
0 1 2 3 4 5 6 7 8 9 10 11 11 12 10 11 12 13 14 15 16 16
1 2 3 4 5 6 7 7 8 9 9 10 10 11 11 12 13 2 8 14 15 16
2 3 4 5 6 7 8 9 10 11 12 13 12 13 14 15 16 16
3 4 5 6 7 7 8 9 9 10 10 11 11 12 13 14 15 16
4 5 6 7 8 9 10 10 11 12 13 13 14 15 16
5 6 7 9 9 10 11 12 12 12 13 14 15 16
6 77 8 9 10 11 12 12 13 13 14 15 16 16
7 8 9 10 11 11 12 12 13 13 14 15 16
8 9 10 11 12 12 13 14 15 16 16
9 10 10 11 11 12 13 14 15 16 16 16 16 16 16 16 16 17 17 18 19 10 10 10 10 10 10 10 10 10 10
10 10 11 12 12 13 13 14 14 15 16
15
15
15
15
15
15
17
18
19
19
20
21
22

						Geologic Log				
		1				SITE INFORMATION Project Number/Client:	Well Dorf		VELL SPECIFICATIONS	
		Comot		Associates, LL	.c	Project Number/Client: 10001087/Guay'sGarage Site	_		rom TOC: N/A	
0		5 E		in Street ook, Maine 0409	2	Site Location: 599-601 South Main Street, Franklin, NH	Screen Le	ngth (fee	t): N/A	
E	nviron	ment				DES #: Date Start/Finish:	TOW Elev	vation:	N/A Ground Elevation:	NM
_						NHDES#199808031 06-30-11 Credere, LLC Representative:	Well Mate	erial		
						Jonathan O'Donnell CONTRACTOR	N/A	DDILI	INC FOURMENT	
						Drilling Contractor:	Equipmer		LING EQUIPMENT	
			CA	_3		T&K Drilling	4 1/4" ID I	Hollow St	em Auger	
						Foreman: Sean McGarry	Casing Di NA	ameter:		
						Drilling Method:	Casing M	aterial:		
_			omnlo I	nformation		Hollow Stem Augur	NA		Equipment Installed	1
ľ			ampic n	normation	Î	-		USCS	Equipment Instance	_
mdaar 4	Sample No.	Pen/Rec (In.)	Depth (Ft.)	Blows (/0.5')	PID (ppm) (RF=1.0)	Soil Description and Classification	Strata	Code		Depth
1										24
5	S-13	24/14	24-26	7-9-11-11	1.2					25
6						4				26
	S-14	24/12	26-28	6-5-5-2	0.8					
7	5-14	2-4/12	20-20	0-5-5-2	0.0					27
3						4				28
	S-15	24/10	28-30	10-12-18-25	0.6					
9	5-15	2- 1 /10	20-50	10 12-10-23	0.0		·el.			29
)						4	grav			30
	S-16	24/12	30-32	15-18-21-25	1.2		vith			
l	5 10	24/12	50 52	15 10 21 25	1.2	Light brown medium SAND with	w pu			31
2						Light brown, medium SAND, with Gravel. Dry. No Petroleum odor.	d saı	SP		32
	S-17	24/8	32-34	29-20-20-24	1.2	-	adec			
3							y gr		a a	33
1						4	Poorly graded sand with gravel.		No Monitoring Well Installed	34
	S-18	24/14	34-36	6-12-17-13	1.2		P		Inst	_
5	~ .0	, 1-1	2.50						Well	35
6						1			in g	36
	S-19	24/14	36-38	10-21-31-36	0.8				litor	<u> </u>
7										Mon
8						1			No]	38
	S-20	24/16	38-40	15-25-19-15	1.2					<u> </u>
9										39
0							1			40
1	S-21	24/10	40-42	12-22-33-56	0.8					4.
Ľ						Light brown, GRAVEL, with Sand.	and.			41
2		l				Dry. No Petroleum odor.	th s:			42
3	S-22	24/7	42-44	34-52-REF	0.8		el wi			43
							irav.	GP		
4						Linktheren ODAUDI ist o	ed G	Gr		44
5	S-23	24/15	44-46	10-18-33-28	0.8	Light brown, GRAVEL, with Sand. Moist. No Petroleum odor.	Poorly graded Gravel with sand.			45
							rly g			
6	_				_	Light brown, GRAVEL, with Sand.	P001			46
	S-24	24/14	46-48	27-21-13-10	0.4	Wet. No Petroleum odor.			· ·	47
7										
					Samplin	g discontinued at 48'				48
7					-	-				4
8 en		ribed usi		ified Burmister of Top of Wel						
8 en oil	s desci V Elev	ribed usi	Elevation			otted Pipe and Riser, approximate				
8 oil OV M	s descı V Elev - Not - No sa	ribed usi vation - l Measure ample fo	Elevation ed or interva	of Top of Wel l ;	l PVC SI					
8 en oil OV M Sai	s descı V Elev - Not - No sa	ribed usi vation - 1 Measure ample fo ubmittee	Elevation ed or interva d for labo	of Top of Wel l ; pratory analysis	I PVC SI	otted Pipe and Riser, approximate				
8 oil OV M	s descı V Elev - Not - No sa	ribed usi vation - 1 Measure ample fo ubmittee	Elevation ed or interva d for labo	of Top of Wel l ; pratory analysis	I PVC SI					
8 en oil OV M Sai	s descı V Elev - Not - No sa	ribed usi vation - 1 Measure ample fo ubmittee	Elevation ed or interva d for labo	of Top of Wel l ; pratory analysis	I PVC SI	otted Pipe and Riser, approximate				
8 en oil OV M S au	s descr V Elev - Not - No sa nple si	ribed usi vation - 1 Measure ample fo ubmittee Graphic	Elevation ed or interva d for labo cally show	of Top of Wel 1; oratory analysis ws depth of the ate boundaries betwee	l PVC SI water tab	otted Pipe and Riser, approximate	e at times and un	der	Page 2 of 2	

APPENDIX D

GROUNDWATER SAMPLING LOGS

CREDERE ASSOCIATES, LLC

		FLOW SAMPLIN EDERE ASSOCI	61	
PROJECT NAME:	Guar.	5	Credere	Associates LLC DATE: 07,14,11
PROJECT NUMBER:	1000108	37		LOCATION ACTIVITY START: 12.34
SAMPLE LOCATION ID:	CA-I			END: 103
WELL DATA: WELL DEPTH (ft): 19,	SY [7] MEASI [] HISTO	ORICAL []	TOP OF WELL TOP OF CASING FROM GRADE	WATER LEVEL EQUIPMENT USED: [_]ELECT. COND. PROBE [] FLOAT ACTIVATED PROBE
WATER DEPTH (ft): 17,	72 [A] MEASI	URED []] PRESSURE TRANSDUCER []]
WELL MATERIAL: WELL [ン{PVC LOCK []SS []Y [][ン{か	ED: SECURE: /ES [>]YES	CASING CONCRE INTACT: []]YES []NO	6	IENT AIR VOC: <u>N/A ppm</u> L MOUTH VOC: <u>N/A ppm</u>
EQUIPMENT DATA: PURGING SAMPLING [] [] PERISTAI [] [] SUBMERS [] [] BLADDER [] [] BLADDER [] [] DEDICATI [] [] DEDICATI [] [] DEDICATI [] [] DEDICATI [] [] NEW LDP [] [] FILTER [] [] FILTER [] [] PUMP ON:	R PUMP [] Diss MP [] ORF ED HDPE [] Turb ED LDPE ED LDPE	ecific Conductivity solved Oxygen bidity = = = = = = = = = = = = = = = = =	METER ID [[[[[[DECONTAMINATION FLUIDS USED:] DISTILLED WATER] DEIONIZED WATER] POTABLE WATER] TSP SOLUTION] ALCONOX SOLUTION] NONE]]]
TIME TEMP (°C) pH	COND. ORP (mS) (mV)	D.O. TURBID (mg/l) (ntu)		COMMENTS
1				
	1. 5125		140	
L.				
		1997 - 19	144 114	
			and and an and a second se	
		41	-1-	
SAMPLE DATA: SAMPLE BOTTLE ID TIME LOCATION 1248 CA-1	PRESERVATION METHOD HINO3 HICI NYDNL	SAMPLE CONTAIN # TXPE [L.S.YE 7 V/04 1 Amber	IER K	LABORATORY ANALYSIS REFELS NH VOCS DATES
NOTES: Could not stak Sampled without	- slabilization	level,	SAMPLER	UCM_

WA

		AMPLING LOG				
PROJECT NAME:	Guays	Credere Associates LLC DATE: 07,14,11				
PROJECT NUMBER:	10001087					
SAMPLE LOCATION ID:	CA-2	START: 1123 END: 1237				
WELL DATA:	1 → [×] MEASURED		۰n			
WELL DEPTH (ft): <u> - </u>	95 [X] MEASURED	[] TOP OF CASING [] FROM GRADE [] FLOAT ACTIVATED PROBE [] [] PRESSURE TRANSDUCER	J.			
WATER DEPTH (ft):		[]				
WELL MATERIAL: WELL [\rightarrow] PVC LOCKE []SS []Y [][\rightarrow] [[][\rightarrow] [[]]	ES []TES	CONCRETE COLLAR INTACT: AMBIENT AIR VOC: N/A PPM [] NO WELL MOUTH VOC: N/A PPM				
EQUIPMENT DATA:		DECONTAMINATION				
PURGING SAMPLING [X] [X] PERISTAL [] [] SUBMERS [] [] BLADDER [] [] HAND PUM [X] [X] DEDICATE [] [] NEW HDP [X] [X] DEDICATE [] [] NEW LDPH [X] [X] DEDICATE [] [] NEW LDPH [X] FILTER M [] [] []	SIBLE [] Specific Conduct PUMP [] Dissolved Oxyg MP [] ORP ED HDPE [] Turbidity E ED LDPE	METER ID FLUIDS USED: YSI 650 Abs [] DISTILLED WATER Other interval Other interval	10			
FIELD ANALYSIS DATA: PUMP ON: 1137 PUMP OFF: 1230 STABLE FLOW RATE (ml/min): 70 [] MEASURED [] ESTIMATED						
TIME TEMP (°C) pH	COND. ORP D.O. (mS) (mV) (mg/l)	TURBID. (ntu) COMMENTS				
1138 14,86 5.69	0.104 151,4 5.01	ZG. 1				
1148 13.75 5.53	0.097 164.2 3.77					
1158 14.16 5.53	0.098 162.2 3.31					
1205 15.05 5.55 1210 15.07 5.46	0.078 162.1 3.17	12.7				
SAMPLE DATA: SAMPLE BOTTLE ID TIME LOCATION 1215 CA-2	PRESERVATION SAMPLE METHOD # HNO3 ! HC1 Z None 1	CONTAINER LABORATORY TYPE RCICA & Metals VOA NHI VOCS PAHS				
NOTES: DUP - GW	1 concepted	SAMPLER SAMPLER				

W

s		0					Service State	recontinue		
PROJECT NAME:		Guay	15				Credere Ass	minter 11C	7117	11
PROJECT NUMBER	k:	10001	1087					LOCA START:		ΊΤΥ
SAMPLE LOCATIO	N ID:	/*/N)-7					END:	11.18	
WELL DATA: WELL DEPTH (ft): WATER DEPTH (ft)	17.4 7,5	18	[XMEAS [] HISTO [X]MEAS [] HISTO	RICAL URED	[]TC	DP OF WE DP OF CAS ROM GRAI	SING			BE PROBE
WELL MATERIAL: [WELL LOCKE []YE [×]NC	D: SEC	DTECTIVE (CURE: JYES) NO	CASING	CONCRET INTACT: [X]YES []NO	E COLLAR	AMBIE	NT AIR VOC: MOUTH VOC:	N/A N/A	PPM PPM
EQUIPMENT DATA PURGING SAMPLII [X] [X] [] [X]		IBLE PUMP 1P D HDPE E D LDPE	[X] Diss [X] ORF [X] Turt	cific Conduc olved Oxygo o oldity	ctivity	NETER ID <u>151 650</u> 1 1 1 1 1 1 1 1 1 1 1 1 1		DEIONIZIPOTABLETSP SOL	SED: D WATER ED WATER WATER UTION X SOLUTION	We Jamphy
FIELD ANALYSIS D	ATA:					معادي والعدك ال				
PUMP ON: 1030		<u>: </u>	STABLE	FLOW RA	TE (ml/min):	50	_ []	MEASURED	[Ҳ] ЕЅТІМ	ATED
TIME TEMP (°C)	рН	COND. (mS)	ORP (mV)	D.O. (mg/l)	TURBID. (ntu)			COMMENTS		
1034 15.2	6.27	0.298	102.1	2,98	53.9					
1039 14,59	5.81	6.266	90.4 86.0	1.43						
1056 15.25		0.253	85.9	1.4	20.2	OR	p + p	1) rec	lins w	
1102 14.9	5.72	0.232	84.8	0.93	1		<u> </u>	77 1 64(. /	kly
1107 15.20	5.72	0.229	85.6	1.03	-	r-10	zed to	check it	strume	nt
	E ID CATION W-4	PRESERV METHO HNO3 HC1 None	סכ	<u><u> </u></u>	CONTAINE TYPE DPE JOA MBER	R	NH PI	LABORATO ANALYSI VOCS	s	elc's
NOTES:							R	VII.		
e01seusse\Overhead\Environmenlal	Information\Logs\[Well	Sampling Log - Lov	w Flow2.xls]A					JAL	4	
						-				

\\N

APPENDIX E

LABORATORY ANALYTICAL REPORTS

Absolute Resource associates

124 Heritage Avenue #10 Portsmouth, NH 03801

Jonathan O'Donnell CREDERE Associates 776 Main Street Westbrook, ME 04092 PO Number: None Job ID: 21796 Date Received: 6/17/11

Project: Guay's 10001087

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

lluer (for)

Sue Sylvester Principal, General Manager

Date of Approval: 7/13/2011 Total number of pages: 91

Absolute Resource Associates Certifications

New Hampshire 1732 Maine NH903 Massachusetts M-NH902

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
SS-1	Solid	6/15/2011 11:33	21796-001	
				PCBs in soil by 8082
				TPH in solids by 8100
				PAHs in solid by 8270
				Soil Digestion for ICP Analysis
				Silver in solids by 6010
				Arsenic in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Chromium in solids by 6010
				Mercury in solids by 7471
				Lead in solids by 6010
				Selenium in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
SS-2	Solid	6/15/2011 11:55	21796-002	
	00114	0.10.20111100		PCBs in soil by 8082
				TPH in solids by 8100
				PAHs in solid by 8270
				Soil Digestion for ICP Analysis
				Silver in solids by 6010
				Arsenic in solids by 6010
				Barium in solids by 6010
				-
				Cadmium in solids by 6010
				Chromium in solids by 6010
				Mercury in solids by 7471
				Lead in solids by 6010
				Selenium in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
~ ~ ~				VOCs in solid by 8260 Petro & Haz Waste
SS-3	Solid	6/15/2011 11:55	21796-003	
				PCBs in soil by 8082
				TPH in solids by 8100
				PAHs in solid by 8270
				Soil Digestion for ICP Analysis
				Silver in solids by 6010
				Arsenic in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Chromium in solids by 6010
				Mercury in solids by 7471
				Lead in solids by 6010
				Selenium in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
SS-4	Solid	6/15/2011 11:50	21796-004	
				PCBs in soil by 8082
				TPH in solids by 8100
				PAHs in solid by 8270
				Soil Digestion for ICP Analysis
				Silver in solids by 6010
				Arsenic in solids by 6010

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
SS-4	Solid	6/15/2011 11:50	21796-004	
				Barium in solids by 6010
				Cadmium in solids by 6010
				Chromium in solids by 6010
				Mercury in solids by 7471
				Lead in solids by 6010
				Selenium in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
SS-5	Solid	6/15/2011 11:25	21796-005	
				PCBs in soil by 8082
				TPH in solids by 8100
				PAHs in solid by 8270
				Soil Digestion for ICP Analysis
				Silver in solids by 6010
				Arsenic in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Chromium in solids by 6010
				Mercury in solids by 7471
				Lead in solids by 6010
				Selenium in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
SS-DUP	Solid	6/15/2011	21796-006	····
				PCBs in soil by 8082
				TPH in solids by 8100
				PAHs in solid by 8270
				Soil Digestion for ICP Analysis
				Silver in solids by 6010
				Arsenic in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Chromium in solids by 6010
				Mercury in solids by 7471
				Lead in solids by 6010
				Selenium in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
SS-6	Solid	6/15/2011 15:00	21796-007	VOCS III Solid by 8200 Felio & Haz Waste
33-0	Soliu	0/15/2011 15:00	21790-007	BCPa in soil by 2022
				PCBs in soil by 8082 TPH in solids by 8100
				-
				PAHs in solid by 8270
				Soil Digestion for ICP Analysis
				Silver in solids by 6010
				Arsenic in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Chromium in solids by 6010
				Mercury in solids by 7471
				Lead in solids by 6010
				Selenium in solids by 6010

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
SS-6	Solid	6/15/2011 15:00	21796-007	
				Percent Dry Matter for Sample Calc by SM2540B,G
	Solid	6/15/2011 10:25	21706 008	VOCs in solid by 8260 Petro & Haz Waste
SS-SUMP	Solid	6/15/2011 10:25	21796-008	PCBs in soil by 8082
				TPH in solids by 8100
				PAHs in solid by 8270
				Soil Digestion for ICP Analysis
				Silver in solids by 6010
				Arsenic in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Chromium in solids by 6010
				Mercury in solids by 7471
				Lead in solids by 6010
				Selenium in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
ASH-1	Solid	6/15/2011 15:10	21796-009	
				PCBs in soil by 8082
				TPH in solids by 8100
				PAHs in solid by 8270
				Soil Digestion for ICP Analysis
				Silver in solids by 6010 Arsenic in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Chromium in solids by 6010
				Mercury in solids by 7471
				Lead in solids by 6010
				Selenium in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
FILL-1	Solid	6/15/2011 14:45	21796-010	
				PCBs in soil by 8082
				TPH in solids by 8100
				PAHs in solid by 8270
				Soil Digestion for ICP Analysis
				Silver in solids by 6010
				Arsenic in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010 Chromium in solids by 6010
				Mercury in solids by 7471
				Lead in solids by 6010
				Selenium in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
FILL-2	Solid	6/15/2011 15:05	21796-011	· · · · · · · · · · · · · · · · · · ·
				PCBs in soil by 8082
				TPH in solids by 8100
				PAHs in solid by 8270

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
FILL-2	Solid	6/15/2011 15:05	21796-011	
				Soil Digestion for ICP Analysis
				Silver in solids by 6010
				Arsenic in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Chromium in solids by 6010
				Mercury in solids by 7471
				Lead in solids by 6010
				Selenium in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
FILL-3	Solid	6/15/2011 15:15	21796-012	
				PCBs in soil by 8082
				TPH in solids by 8100
				PAHs in solid by 8270
				Soil Digestion for ICP Analysis
				Silver in solids by 6010
				Arsenic in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Chromium in solids by 6010
				Mercury in solids by 7471
				Lead in solids by 6010
				Selenium in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
SUMP	Water	6/15/2011 10:20	21796-013	
OOINI	Water	0/10/2011 10.20	21750-015	PAHs in water by 8270
				Water Digestion for ICP Analysis
				Silver in water by 6010
				Arsenic in water by 6010
				Barium in water by 6010
				Cadmium in water by 6010
				Chromium in water by 6010
				Mercury in water by 7470
				Lead in water by 6010
				Selenium in water by 6010
00.4		0/45/0044.0.00	04700.044	VOCs in water by 8260 Petro & Haz Waste
CC-1	Solid	6/15/2011 9:30	21796-014	
				PCBs in soil by 8082
~~~	<b>o</b>		04700 047	Percent Dry Matter for Sample Calc by SM2540B,G
CC-2	Solid	6/15/2011 10:00	21796-015	
				PCBs in soil by 8082
	<b>.</b>			Percent Dry Matter for Sample Calc by SM2540B,G
CC-3	Solid	6/15/2011 9:50	21796-016	
				PCBs in soil by 8082
				Percent Dry Matter for Sample Calc by SM2540B,G
CC-4	Solid	6/15/2011 9:20	21796-017	
				PCBs in soil by 8082
				Percent Dry Matter for Sample Calc by SM2540B,G
CC-DUP	Solid	6/15/2011		recent bry matter for cample cale by cm20+0B,C



Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
CC-DUP	Solid	6/15/2011	21796-018	
				PCBs in soil by 8082
				Percent Dry Matter for Sample Calc by SM2540B,G
BM-01	Solid	6/15/2011 11:10	21796-019	
				PCBs in soil by 8082
CC-5	Solid	6/15/2011 9:40	21796-020	
				PCBs in soil by 8082
				Percent Dry Matter for Sample Calc by SM2540B,G
BM-02	Solid	6/15/2011 13:18	21796-021	
				PCBs in soil by 8082
BM-DUP	Solid	6/15/2011	21796-022	
				PCBs in soil by 8082
Trip Blank	Solid	6/15/2011	21796-023	
				VOCs in solid by 8260 Petro & Haz Waste



Job ID: 21796

Sample#: 21796-001

Sample ID: SS-1

Matrix: Solid Percent Dry: 88.6% Results expressed on a dry weight basis.

Sampled: 6/15/11	11:33								
•		Quant		Instr Dil'n	Prep Analyst Date	Datah	Anal	-	Deferre
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	8:38	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	8:38	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	8:38	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	8:38	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	8:38	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	8:38	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	8:38	SW5035A8260B
acetone	< 2	2	ug/g	1	LMM 6/20/11	4261	6/22/11	8:38	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	8:38	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	8:38	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	8:38	SW5035A8260B
methyl t-butyl ether (MTBE	) < 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	8:38	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	8:38	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	8:38	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	8:38	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	8:38	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	LMM 6/20/11	4261	6/22/11	8:38	SW5035A8260B
2-butanone (MEK)	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261	6/22/11	8:38	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	8:38	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	8:38	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	8:38	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	8:38	SW5035A8260B
tetrahydrofuran (THF)	< 0.4	0.4	ug/g	1	LMM 6/20/11	4261	6/22/11	8:38	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	8:38	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	8:38	SW5035A8260B
t-amyl-methyl ether (TAME	i) < 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	8:38	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	8:38	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	8:38	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	8:38	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	8:38	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	8:38	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	8:38	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	LMM 6/20/11		6/22/11	8:38	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	8:38	SW5035A8260B
4-methyl-2-pentanone (MIE		0.4	ug/g	1	LMM 6/20/11		6/22/11	8:38	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	8:38	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	8:38	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	8:38	SW5035A8260B
2-hexanone	< 0.4	0.1	ug/g	1	LMM 6/20/11		6/22/11	8:38	SW5035A8260B
	< 0.4 < 0.1	0.4			LMM 6/20/11		6/22/11		
1,1,2-trichloroethane 1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11 LMM 6/20/11		6/22/11	8:38 8:38	SW5035A8260B SW5035A8260B
tetrachloroethene		0.1	ug/g	1	LMM 6/20/11 LMM 6/20/11		6/22/11	o.so 8:38	SW5035A8260B
dibromochloromethane	<b>0.2</b> < 0.1		ug/g	1	LMM 6/20/11 LMM 6/20/11		6/22/11		
	< 0.1	0.1	ug/g	1		4201	0/22/11	8:38	SW5035A8260B



Job ID: 21796

Sample#: 21796-001

Sample ID: SS-1

Matrix: Solid Percent Dry: 88.6% Results expressed on a dry weight basis.

Sampled: 6/15/11 11:33 Quant Analysis Prep Instr Dil'n Date Parameter Result Limit Units Factor Analyst Date Batch Time Reference < 0.1 4261 6/22/11 1,2-dibromoethane (EDB) 0.1 1 LMM 6/20/11 8:38 SW5035A8260B ug/g chlorobenzene < 0.1 0.1 ug/g 1 LMM 6/20/11 4261 6/22/11 8:38 SW5035A8260B < 0.1 LMM 6/20/11 4261 6/22/11 8:38 SW5035A8260B 1,1,1,2-tetrachloroethane 0.1 ug/g 1 < 0.1 4261 6/22/11 8:38 ethylbenzene 0.1 ug/g 1 LMM 6/20/11 SW5035A8260B < 0.1 m&p-xylenes 0.1 1 LMM 6/20/11 4261 6/22/11 8:38 SW5035A8260B ug/g o-xylene < 0.1 0.1 ug/g 1 LMM 6/20/11 4261 6/22/11 8:38 SW5035A8260B < 0.1 SW5035A8260B styrene 0.1 ug/g 1 LMM 6/20/11 4261 6/22/11 8:38 SW5035A8260B bromoform < 0.1 0.1 1 LMM 6/20/11 4261 6/22/11 8:38 ug/g isopropylbenzene < 0.1 0.1 ug/g 1 LMM 6/20/11 4261 6/22/11 8:38 SW5035A8260B 1,1,2,2-tetrachloroethane < 0.1 0.1 ug/g 1 LMM 6/20/11 4261 6/22/11 8:38 SW5035A8260B 1,2,3-trichloropropane < 0.1 0.1 1 LMM 6/20/11 4261 6/22/11 8:38 SW5035A8260B ug/g < 0.1 n-propylbenzene 0.1 ug/g 1 LMM 6/20/11 4261 6/22/11 8:38 SW5035A8260B bromobenzene < 0.1 0.1 1 4261 6/22/11 8:38 SW5035A8260B ug/g LMM 6/20/11 1,3,5-trimethylbenzene < 0.1 0.1 ug/g 1 LMM 6/20/11 4261 6/22/11 8:38 SW5035A8260B < 0.1 4261 6/22/11 8:38 2-chlorotoluene 0.1 ug/g 1 LMM 6/20/11 SW5035A8260B < 0.1 4261 6/22/11 8:38 4-chlorotoluene 0.1 ug/g 1 LMM 6/20/11 SW5035A8260B < 0.1 0.1 1 4261 6/22/11 8:38 tert-butylbenzene ug/g LMM 6/20/11 SW5035A8260B 1,2,4-trimethylbenzene < 0.1 0.1 ug/g 1 LMM 6/20/11 4261 6/22/11 8:38 SW5035A8260B sec-butylbenzene < 0.1 4261 6/22/11 8:38 0.1 ug/g 1 LMM 6/20/11 SW5035A8260B 1,3-dichlorobenzene < 0.1 0.1 1 LMM 6/20/11 4261 6/22/11 8:38 SW5035A8260B ug/g 4-isopropyltoluene < 0.1 0.1 LMM 6/20/11 4261 6/22/11 8:38 SW5035A8260B ug/g 1 1,4-dichlorobenzene < 0.1 0.1 LMM 6/20/11 4261 6/22/11 8:38 SW5035A8260B ug/g 1 < 0.1 1 1.2-dichlorobenzene 0.1 LMM 6/20/11 4261 6/22/11 8:38 SW5035A8260B ug/g n-butylbenzene < 0.1 0.1 1 LMM 6/20/11 4261 6/22/11 8:38 SW5035A8260B ug/g 1,2-dibromo-3-chloropropane (DBCP) < 0.1 0.1 1 LMM 6/20/11 4261 6/22/11 8:38 SW5035A8260B ug/g < 0.1 0.1 1 4261 6/22/11 8:38 1,2,4-trichlorobenzene ug/g LMM 6/20/11 SW5035A8260B < 0.1 1,3,5-trichlorobenzene 0.1 ug/g 1 LMM 6/20/11 4261 6/22/11 8:38 SW5035A8260B < 0.1 4261 6/22/11 hexachlorobutadiene 0.1 ug/g 1 LMM 6/20/11 8:38 SW5035A8260B naphthalene < 0.1 0.1 ug/g 1 LMM 6/20/11 4261 6/22/11 8:38 SW5035A8260B < 0.1 0.1 4261 6/22/11 SW5035A8260B 1,2,3-trichlorobenzene ug/g 1 LMM 6/20/11 8:38 Surrogate Recovery Limits dibromofluoromethane SUR 92 78-114 % 1 LMM 6/20/11 4261 6/22/11 8:38 SW5035A8260B toluene-D8 SUR 98 88-110 % 1 LMM 6/20/11 4261 6/22/11 8:38 SW5035A8260B % 1 4-bromofluorobenzene SUR 97 86-115 LMM 6/20/11 4261 6/22/11 8:38 SW5035A8260B a.a.a-trifluorotoluene SUR 84 70-130 % 1 LMM 6/20/11 4261 6/22/11 8:38 SW5035A8260B



Job ID: 21796

Sample#: 21796-002

Sample ID: SS-2

Matrix: Solid Percent Dry: 76.1% Results expressed on a dry weight basis.

Sampled: 6/15/11 11:55	Diy. 70.17					<b>.</b>			
•	Desult	Quant		Instr Dil'n	Prep	Datah	Anal	-	Defenses
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	6:02	SW5035A8260B
acetone	< 3	3	ug/g	1	LMM 6/20/11	4261	6/22/11	6:02	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	6:02	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	6:02	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	6:02	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	6:02	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	6:02	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	6:02	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	6:02	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	6:02	SW5035A8260B
t-butanol (TBA)	< 3	3	ug/g	1	LMM 6/20/11	4261	6/22/11	6:02	SW5035A8260B
2-butanone (MEK)	< 0.3	0.3	ug/g	1	LMM 6/20/11	4261	6/22/11	6:02	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	6:02	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	6:02	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	6:02	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	6:02	SW5035A8260B
tetrahydrofuran (THF)	< 0.5	0.5	ug/g	1	LMM 6/20/11	4261	6/22/11	6:02	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
1,4-dioxane	< 3	3	ug/g	1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
dibromomethane	< 0.1	0.1		1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
4-methyl-2-pentanone (MIBK)		0.1	ug/g				6/22/11		SW5035A8260B
	< 0.5		ug/g	1	LMM 6/20/11			6:02	
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
2-hexanone	< 0.5	0.5	ug/g	1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	6:02	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	6:02	SW5035A8260B



Job ID: 21796

Sample#: 21796-002

Sample ID: SS-2

Matrix: Solid Percent Dry: 76.1% Results expressed on a dry weight basis.

	r oroont bry		a ary worgine ba
11	11.55		

Sampled: 6/15/11 11:55	Quant		•	Instr Dil'n	Prep	A	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B
Surrogate Recovery		Limits						
dibromofluoromethane SUR	91	78-114	%	1	LMM 6/20/11	4261 6/22/1		SW5035A8260B
toluene-D8 SUR	98	88-110	%	1	LMM 6/20/11	4261 6/22/1		SW5035A8260B
4-bromofluorobenzene SUR	103	86-115	%	1	LMM 6/20/11	4261 6/22/1		SW5035A8260B
a,a,a-trifluorotoluene SUR	78	70-130	%	1	LMM 6/20/11	4261 6/22/1	1 6:02	SW5035A8260B



Job ID: 21796

Sample#: 21796-003

Sample ID: SS-3

Matrix: Solid Percent Dry: 81.9% Results expressed on a dry weight basis.

Sampled: 6/15/11 11:55	Sent Dry. 01.07					5.	A		
•	Decult	Quant Limit		Instr Dil'n	Prep Analyst Data	Patab	Anal Date	ysıs Time	Deference
Parameter	Result		Units	Factor	Analyst Date	Batch			Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	1:53	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	1:53	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	1:53	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	1:53	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	1:53	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	1:53	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	1:53	SW5035A8260B
acetone	< 2	2	ug/g	1	LMM 6/20/11		6/22/11	1:53	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	1:53	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:53	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	1:53	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	1:53	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:53	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:53	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:53	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:53	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	LMM 6/20/11	4261	6/22/11	1:53	SW5035A8260B
2-butanone (MEK)	< 0.3	0.3	ug/g	1	LMM 6/20/11	4261	6/22/11	1:53	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:53	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:53	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:53	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:53	SW5035A8260B
tetrahydrofuran (THF)	< 0.5	0.5	ug/g	1	LMM 6/20/11	4261	6/22/11	1:53	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:53	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:53	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:53	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:53	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:53	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:53	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:53	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:53	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:53	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	LMM 6/20/11		6/22/11	1:53	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	1:53	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.4	0.4	ug/g	1	LMM 6/20/11		6/22/11	1:53	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	1:53	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	1:53	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	1:53	SW5035A8260B
2-hexanone	< 0.5	0.5	ug/g	1	LMM 6/20/11		6/22/11	1:53	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.0	ug/g	1	LMM 6/20/11		6/22/11	1:53	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g ug/g	1	LMM 6/20/11		6/22/11	1:53	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g ug/g	1	LMM 6/20/11		6/22/11	1:53	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g ug/g	1	LMM 6/20/11		6/22/11	1:53	SW5035A8260B
	\$ 0.1	0.1	ug/g			7201	5/22/11	1.00	



Job ID: 21796

Sample#: 21796-003

Sample ID: SS-3

4-bromofluorobenzene SUR

a,a,a-trifluorotoluene SUR

Matrix: Solid Percent Dry: 81.9% Results expressed on a dry weight basis.

Sampled:	6/15/11	11:55

Sampled: 6/15/11 11:55		Quant		Instr Dil'n	Prep		Analys	sis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch		Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	/22/11	1:53	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	/22/11	1:53	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	/22/11	1:53	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	/22/11	1:53	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	/22/11	1:53	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	/22/11	1:53	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	/22/11	1:53	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	/22/11	1:53	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	/22/11	1:53	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	/22/11	1:53	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	/22/11	1:53	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	/22/11	1:53	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	/22/11	1:53	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	/22/11	1:53	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6		1:53	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	/22/11	1:53	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6		1:53	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6		1:53	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6		1:53	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	/22/11	1:53	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6		1:53	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	/22/11	1:53	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6		1:53	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6		1:53	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6		1:53	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6		1:53	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6		1:53	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6		1:53	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6		1:53	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	/22/11	1:53	SW5035A8260B
Surrogate Recovery		Limit							
dibromofluoromethane SUR	91	78-114	%	1	LMM 6/20/11	4261 6		1:53	SW5035A8260B
toluene-D8 SUR	100	88-110	%	1	LMM 6/20/11	4261 6	/22/11	1:53	SW5035A8260B



SW5035A8260B

SW5035A8260B

99

81

86-115

70-130

%

%

1

1

LMM 6/20/11

LMM 6/20/11

4261 6/22/11

4261 6/22/11

1:53

1:53

Job ID: 21796

#### Sample#: 21796-004

Sample ID: SS-4

Matrix: Solid Percent Dry: 91.2% Results expressed on a dry weight basis.

Sampled: 6/15/11 11:50	Dry. 91.27					5.			
•	Decult	Quant Limit		Instr Dil'n	Prep Analyst Date	Batch	Anal Date	ysıs Time	Deference
Parameter dichlorodifluoromethane	<b>Result</b> < 0.1	0.1	Units	Factor	Analyst Date LMM 6/20/11		6/22/11	2:24	Reference SW5035A8260B
chloromethane	< 0.1 < 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:24 2:24	SW5035A8260B
vinyl chloride	< 0.1 < 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:24	SW5035A8260B
bromomethane	< 0.1 < 0.1	0.1	ug/g ug/g	1	LMM 6/20/11		6/22/11	2:24	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g ug/g	1	LMM 6/20/11		6/22/11	2:24	SW5035A8260B
trichlorofluoromethane	< 0.1 < 0.1	0.1	ug/g ug/g	1	LMM 6/20/11		6/22/11	2:24	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:24	SW5035A8260B
acetone	< 2	2	ug/g ug/g	1	LMM 6/20/11		6/22/11	2:24	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g ug/g	1	LMM 6/20/11		6/22/11	2:24	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:24	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:24	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:24	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:24	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:24	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:24	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:24	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	LMM 6/20/11		6/22/11	2:24	SW5035A8260B
2-butanone (MEK)	< 0.2	0.2	ug/g	1	LMM 6/20/11		6/22/11	2:24	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:24	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:24	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:24	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:24	SW5035A8260B
tetrahydrofuran (THF)	< 0.4	0.4	ug/g	1	LMM 6/20/11		6/22/11	2:24	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:24	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:24	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:24	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:24	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:24	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:24	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:24	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:24	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:24	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	LMM 6/20/11	4261	6/22/11	2:24	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:24	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.4	0.4	ug/g	1	LMM 6/20/11	4261	6/22/11	2:24	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:24	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:24	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:24	SW5035A8260B
2-hexanone	< 0.4	0.4	ug/g	1	LMM 6/20/11	4261	6/22/11	2:24	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:24	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:24	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:24	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:24	SW5035A8260B



Job ID: 21796

#### Sample#: 21796-004

Sample ID: SS-4

Matrix: Solid Percent Dry: 91.2% Results expressed on a dry weight basis.

Sampled: 6/15/11 11:50		Quant		Instr Dil'n	Prep		Analy	vsis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B
Surrogate Recovery		Limits							
dibromofluoromethane SUR	91	78-114	%	1	LMM 6/20/11	4261 6		2:24	SW5035A8260B
toluene-D8 SUR	99	88-110	%	1	LMM 6/20/11	4261 6		2:24	SW5035A8260B
4-bromofluorobenzene SUR	101	86-115	%	1	LMM 6/20/11	4261 6		2:24	SW5035A8260B
a,a,a-trifluorotoluene SUR	86	70-130	%	1	LMM 6/20/11	4261 6	6/22/11	2:24	SW5035A8260B



Job ID: 21796

Sample#: 21796-005

Sample ID: SS-5

Matrix: Solid Percent Dry: 75% Results expressed on a dry weight basis.

Sampled: 6/15/11 11:25	Jiy. 75701				y weight basis.		Anal	voio	
Parameter	Result	Quant Limit	Units	Instr Dil'n Factor	Prep Analyst Date	Batch	Anal Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:55	SW5035A8260B
chloromethane	< 0.1 < 0.1	0.1	ug/g ug/g	1	LMM 6/20/11		6/22/11	2:55	SW5035A8260B
vinyl chloride	< 0.1 < 0.1	0.1		1	LMM 6/20/11		6/22/11	2:55	SW5035A8260B
bromomethane	< 0.1 < 0.1	0.1	ug/g ug/g	1	LMM 6/20/11		6/22/11	2:55	SW5035A8260B
chloroethane	< 0.1 < 0.1	0.1		1	LMM 6/20/11		6/22/11	2:55	SW5035A8260B
trichlorofluoromethane	< 0.1 < 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:55	SW5035A8260B
diethyl ether	< 0.1 < 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:55	SW5035A8260B
-	< 0.1	2	ug/g	1	LMM 6/20/11		6/22/11	2:55	SW5035A8260B
acetone	< 0.1	0.1	ug/g	1	LMM 6/20/11 LMM 6/20/11		6/22/11		SW5035A8260B
1,1-dichloroethene	< 0.1 < 0.1	0.1	ug/g	1	LMM 6/20/11 LMM 6/20/11		6/22/11	2:55	SW5035A8260B
methylene chloride carbon disulfide	< 0.1 < 0.1	0.1	ug/g		LMM 6/20/11		6/22/11	2:55 2:55	SW5035A8260B
	< 0.1 < 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:55	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1 < 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11		SW5035A8260B
trans-1,2-dichloroethene			ug/g	1				2:55	
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11 6/22/11	2:55	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/20/11 LMM 6/20/11			2:55	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1			6/22/11	2:55	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	LMM 6/20/11		6/22/11	2:55	SW5035A8260B
2-butanone (MEK)	< 0.3	0.3	ug/g	1	LMM 6/20/11		6/22/11	2:55	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:55	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:55	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:55	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:55	SW5035A8260B
tetrahydrofuran (THF)	< 0.5	0.5	ug/g	1	LMM 6/20/11		6/22/11 6/22/11	2:55	SW5035A8260B
1,1,1-trichloroethane	< 0.1 < 0.1	0.1 0.1	ug/g	1	LMM 6/20/11 LMM 6/20/11		6/22/11	2:55 2:55	SW5035A8260B SW5035A8260B
1,1-dichloropropene		0.1	ug/g	1	LMM 6/20/11 LMM 6/20/11		6/22/11		SW5035A8260B
t-amyl-methyl ether (TAME) carbon tetrachloride	< 0.1 < 0.1	0.1	ug/g	1	LMM 6/20/11 LMM 6/20/11		6/22/11	2:55 2:55	SW5035A8260B
1,2-dichloroethane	< 0.1 < 0.1	0.1	ug/g	1 1	LMM 6/20/11		6/22/11	2:55	SW5035A8260B
	< 0.1 < 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11		SW5035A8260B
benzene			ug/g	1				2:55	
trichloroethene 1,2-dichloropropane	< 0.1 < 0.1	0.1 0.1	ug/g		LMM 6/20/11 LMM 6/20/11		6/22/11 6/22/11	2:55 2:55	SW5035A8260B SW5035A8260B
	< 0.1 < 0.1	0.1	ug/g	1			6/22/11	2:55	
bromodichloromethane 1,4-dioxane	< 0.1		ug/g	1	LMM 6/20/11 LMM 6/20/11		6/22/11	2:55	SW5035A8260B SW5035A8260B
dibromomethane	< 0.1	2 0.1	ug/g	1	LMM 6/20/11 LMM 6/20/11		6/22/11	2:55	
			ug/g	1			6/22/11		SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.4	0.4	ug/g	1	LMM 6/20/11			2:55	SW5035A8260B SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	2:55	
toluene	< 0.1 < 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11 6/22/11	2:55	SW5035A8260B
trans-1,3-dichloropropene		0.1	ug/g	1	LMM 6/20/11		6/22/11	2:55	SW5035A8260B
2-hexanone	< 0.5	0.5	ug/g	1	LMM 6/20/11			2:55	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11 6/22/11	2:55 2:55	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11			2:55	SW5035A8260B
tetrachloroethene dibromochloromethane	< 0.1 < 0.1	0.1	ug/g	1	LMM 6/20/11 LMM 6/20/11		6/22/11 6/22/11	2:55	SW5035A8260B
	< 0.1	0.1	ug/g	1		4201	0/22/11	2:55	SW5035A8260B



Job ID: 21796

Sample#: 21796-005

Sample ID: SS-5

Matrix: Solid Percent Dry: 75% Results expressed on a dry weight basis.

Sampled: 6/15/11 1	1:25	Quant	•	Instr Dil'n	Prep		Anal	vsis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
1,2-dibromo-3-chloropropane	e (DBCP) < 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B
Surrogate Recovery		Limit							
dibromofluoromethane SUR	89	78-114	%	1	LMM 6/20/11		6/22/11	2:55	SW5035A8260B
toluene-D8 SUR	99	88-110	%	1	LMM 6/20/11		6/22/11	2:55	SW5035A8260B
4-bromofluorobenzene SUR	98	86-115	%	1	LMM 6/20/11		6/22/11	2:55	SW5035A8260B
a,a,a-trifluorotoluene SUR	100	70-130	%	1	LMM 6/20/11	4261	6/22/11	2:55	SW5035A8260B



Job ID: 21796

Sample#: 21796-006

Sample ID: SS-DUP

Matrix: Solid Percent Dry: 89.4% Results expressed on a dry weight basis.

	ercent Dry. 09.4 /		express	seu on a	ury weight basis	5.			
Sampled: 6/15/11		Quant		Instr Dil'n	Prep		Anal	•	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
acetone	< 2	2	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
2-butanone (MEK)	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
tetrahydrofuran (THF)	< 0.4	0.4	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	9:09	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	9:09	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.4	0.4	ug/g	1	LMM 6/20/11		6/22/11	9:09	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	9:09	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	9:09	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	9:09	SW5035A8260B
2-hexanone	< 0.4	0.4	ug/g	1	LMM 6/20/11		6/22/11	9:09	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	9:09	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	9:09	SW5035A8260B
tetrachloroethene	0.3	0.1	ug/g	1	LMM 6/20/11		6/22/11	9:09	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	9:09	SW5035A8260B
			55						



Job ID: 21796

Sample#: 21796-006

Sample ID: SS-DUP

Matrix: Solid

Sampled: 6/15/11

Percent Dry: 89.4% Results expressed on a dry weight basis.

Sampled: 6/15/11		Quant		Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Da	e Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	/11 9:09	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	/11 9:09	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	/11 9:09	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	/11 9:09	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	/11 9:09	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	/11 9:09	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	/11 9:09	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	/11 9:09	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	/11 9:09	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	/11 9:09	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	/11 9:09	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	/11 9:09	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	11 9:09	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	/11 9:09	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	11 9:09	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	11 9:09	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	11 9:09	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	11 9:09	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	11 9:09	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	11 9:09	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	11 9:09	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	11 9:09	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	11 9:09	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	11 9:09	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	11 9:09	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	11 9:09	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	11 9:09	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	11 9:09	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	11 9:09	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 6/22	11 9:09	SW5035A8260B
Surrogate Recovery		Limits	5					
dibromofluoromethane SUR	89	78-114	%	1	LMM 6/20/11	4261 6/22		SW5035A8260B
toluene-D8 SUR	98	88-110	%	1	LMM 6/20/11	4261 6/22		SW5035A8260B
4-bromofluorobenzene SUR	102	86-115	%	1	LMM 6/20/11	4261 6/22		SW5035A8260B
a,a,a-trifluorotoluene SUR	83	70-130	%	1	LMM 6/20/11	4261 6/22	11 9:09	SW5035A8260B



Job ID: 21796

Sample#: 21796-007

Sample ID: SS-6

Matrix: Solid Percent Dry: 77% Results expressed on a dry weight basis.

Sampled: 6/15/11 15:00		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
acetone	< 3	3	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
t-butanol (TBA)	< 3	3	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
2-butanone (MEK)	< 0.4	0.4	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
tetrahydrofuran (THF)	< 0.6	0.6	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
1,4-dioxane	< 3	3	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.6	0.6	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
2-hexanone	< 0.6	0.6	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B



Job ID: 21796

Sample#: 21796-007

Sample ID: SS-6

Matrix: Solid Percent Dry: 77% Results expressed on a dry weight basis.

Sampled: 6/15/11 15:00	-	Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
Surrogate Recovery		Limits							
dibromofluoromethane SUR	91	78-114	%	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
toluene-D8 SUR	101	88-110	%	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
4-bromofluorobenzene SUR	99	86-115	%	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B
a,a,a-trifluorotoluene SUR	85	70-130	%	1	LMM 6/20/11	4261	6/22/11	3:26	SW5035A8260B



Job ID: 21796

Sample#: 21796-008

Sample ID: SS-SUMP

Matrix: Solid Percent Dry: 72.7% Results expressed on a dry weight basis.

Sampled: 6/15/11 10:25		Quant		Instr Dil'n	Prep		Anal	-	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	17:52	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	17:52	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	17:52	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	17:52	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	17:52	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
acetone	< 3	3	ug/g	1	LMM 6/20/11		6/22/11	17:52	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
t-butanol (TBA)	< 3	3	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
2-butanone (MEK)	< 0.4	0.4	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
tetrahydrofuran (THF)	< 0.6	0.6	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
1,4-dioxane	< 3	3	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.6	0.6	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
2-hexanone	< 0.6	0.6	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	17:52	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	17:52	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	17:52	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	17:52	SW5035A8260B
			- 3- 3						



Job ID: 21796

Sample#: 21796-008

Sample ID: SS-SUMP

Matrix: Solid Percent Dry: 72.7% Results expressed on a dry weight basis.

Sampled: 6/15/11 10:25	<b>,</b>	Quant	•	Instr Dil'n	Prep		Anal	vsis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
Surrogate Recovery		Limit	S						
dibromofluoromethane SUR	88	78-114	%	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
toluene-D8 SUR	99	88-110	%	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
4-bromofluorobenzene SUR	102	86-115	%	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
a,a,a-trifluorotoluene SUR	68 *	70-130	%	1	LMM 6/20/11	4261	6/22/11	17:52	SW5035A8260B
* The surregate showed recovery outs	ida tha ac	contanco	limite	Doonalys	is of the sample of	showed	cimilar ra	oculto	

* The surrogate showed recovery outside the acceptance limits. Reanalysis of the sample showed similar results.



Job ID: 21796

Sample#: 21796-009

Sample ID: ASH-1

Matrix: Solid Percent Dry: 60.5% Results expressed on a dry weight basis.

Sampled: 6/15/11 15:10	Jiy. 00.07				Dron		Anal	voio	
Parameter	Result	Quant Limit	Units	Instr Dil'n Factor	Prep Analyst Date	Batch	Anal Date	ysis Time	Reference
dichlorodifluoromethane	< 0.2	0.2	ug/g	1 actor	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
chloromethane	< 0.2 < 0.2	0.2	ug/g ug/g	1	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
vinyl chloride	< 0.2	0.2	ug/g	1	LMM 6/20/11		6/22/11 6/22/11	8:07	SW5035A8260B
bromomethane	< 0.2	0.2	ug/g	1	LMM 6/20/11			8:07	SW5035A8260B
chloroethane	< 0.2	0.2	ug/g	1	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
trichlorofluoromethane	< 0.2	0.2	ug/g	1	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
diethyl ether	< 0.2	0.2	ug/g	1	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
acetone	< 5	5	ug/g	1	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
1,1-dichloroethene	< 0.2	0.2	ug/g	1	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
methylene chloride	< 0.2	0.2	ug/g	1	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
carbon disulfide	< 0.2	0.2	ug/g	1	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.2	0.2	ug/g	1	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
trans-1,2-dichloroethene	< 0.2	0.2	ug/g	1	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
isopropyl ether (DIPE)	< 0.2	0.2	ug/g	1	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261	6/22/11	8:07	SW5035A8260B
1,1-dichloroethane	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261	6/22/11	8:07	SW5035A8260B
t-butanol (TBA)	< 5	5	ug/g	1	LMM 6/20/11	4261	6/22/11	8:07	SW5035A8260B
2-butanone (MEK)	< 0.7	0.7	ug/g	1	LMM 6/20/11	4261	6/22/11	8:07	SW5035A8260B
2,2-dichloropropane	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261	6/22/11	8:07	SW5035A8260B
cis-1,2-dichloroethene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261	6/22/11	8:07	SW5035A8260B
chloroform	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261	6/22/11	8:07	SW5035A8260B
bromochloromethane	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261	6/22/11	8:07	SW5035A8260B
tetrahydrofuran (THF)	< 1.1	1.1	ug/g	1	LMM 6/20/11	4261	6/22/11	8:07	SW5035A8260B
1,1,1-trichloroethane	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261	6/22/11	8:07	SW5035A8260B
1,1-dichloropropene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261	6/22/11	8:07	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261	6/22/11	8:07	SW5035A8260B
carbon tetrachloride	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261	6/22/11	8:07	SW5035A8260B
1,2-dichloroethane	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261	6/22/11	8:07	SW5035A8260B
benzene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261	6/22/11	8:07	SW5035A8260B
trichloroethene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261	6/22/11	8:07	SW5035A8260B
1,2-dichloropropane	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261	6/22/11	8:07	SW5035A8260B
bromodichloromethane	< 0.2	0.2	ug/g	1	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
1,4-dioxane	< 5	5	ug/g	1	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
dibromomethane	< 0.2	0.2	ug/g	1	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 1.0	1.0	ug/g	1	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
cis-1,3-dichloropropene	< 0.2	0.2	ug/g	1	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
toluene	< 0.2	0.2	ug/g	1	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
trans-1,3-dichloropropene	< 0.2	0.2	ug/g	1	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
2-hexanone	< 1.1	1.1	ug/g	1	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
1,1,2-trichloroethane	< 0.2	0.2	ug/g	1	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
1,3-dichloropropane	< 0.2	0.2	ug/g	1	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
tetrachloroethene	< 0.2	0.2	ug/g	1	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
dibromochloromethane	< 0.2 < 0.2	0.2	ug/g ug/g	1	LMM 6/20/11		6/22/11	8:07	SW5035A8260B
albromochloromenane	× 0.2	0.2	ug/g	I		7201	0122111	0.07	



Job ID: 21796

4-bromofluorobenzene SUR

a,a,a-trifluorotoluene SUR

Sample#: 21796-009

Sample ID: ASH-1

Matrix: Solid Percent Dry: 60.5% Results expressed on a dry weight basis.

Sampled: 6/15/11 15:10	,	Quant	·	Instr Dil'n	Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	l 8:07	SW5035A8260B
chlorobenzene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	l 8:07	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	l 8:07	SW5035A8260B
ethylbenzene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	8:07	SW5035A8260B
m&p-xylenes	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	8:07	SW5035A8260B
o-xylene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	8:07	SW5035A8260B
styrene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	8:07	SW5035A8260B
bromoform	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	8:07	SW5035A8260B
isopropylbenzene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	8:07	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	8:07	SW5035A8260B
1,2,3-trichloropropane	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	8:07	SW5035A8260B
n-propylbenzene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	8:07	SW5035A8260B
bromobenzene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	l 8:07	SW5035A8260B
1,3,5-trimethylbenzene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	l 8:07	SW5035A8260B
2-chlorotoluene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	l 8:07	SW5035A8260B
4-chlorotoluene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	8:07	SW5035A8260B
tert-butylbenzene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	8:07	SW5035A8260B
1,2,4-trimethylbenzene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	8:07	SW5035A8260B
sec-butylbenzene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	l 8:07	SW5035A8260B
1,3-dichlorobenzene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	8:07	SW5035A8260B
4-isopropyltoluene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	8:07	SW5035A8260B
1,4-dichlorobenzene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	8:07	SW5035A8260B
1,2-dichlorobenzene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11		SW5035A8260B
n-butylbenzene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11		SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11		SW5035A8260B
1,2,4-trichlorobenzene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	8:07	SW5035A8260B
1,3,5-trichlorobenzene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	l 8:07	SW5035A8260B
hexachlorobutadiene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	l 8:07	SW5035A8260B
naphthalene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	l 8:07	SW5035A8260B
1,2,3-trichlorobenzene	< 0.2	0.2	ug/g	1	LMM 6/20/11	4261 6/22/11	l 8:07	SW5035A8260B
Surrogate Recovery		Limit	s					
dibromofluoromethane SUR	89	78-114	%	1	LMM 6/20/11	4261 6/22/11		SW5035A8260B
toluene-D8 SUR	98	88-110	%	1	LMM 6/20/11	4261 6/22/11	8:07	SW5035A8260B

97

92

86-115

70-130

%

%

1

1

LMM 6/20/11

LMM 6/20/11

4261 6/22/11

4261 6/22/11

8:07

8:07



SW5035A8260B

SW5035A8260B

Job ID: 21796

Sample#: 21796-010

Sample ID: FILL-1

Matrix: Solid Percent Dry: 90% Results expressed on a dry weight basis.

Sampled: 6/15/11 14:45		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
acetone	< 2	2	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
2-butanone (MEK)	< 0.3	0.3	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
tetrahydrofuran (THF)	< 0.4	0.4	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.4	0.4	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
2-hexanone	< 0.4	0.4	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B



Job ID: 21796

Sample#: 21796-010

Sample ID: FILL-1

Matrix: Solid Percent Dry: 90% Results expressed on a dry weight basis.

Sampled: 6/15/11 14:45	5	Quant		Instr Dil'n	Prep		Anal	vsis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B
Surrogate Recovery		Limits							
dibromofluoromethane SUR	89	78-114	%	1	LMM 6/20/11		6/22/11	4:29	SW5035A8260B
toluene-D8 SUR	99	88-110	%	1	LMM 6/20/11		6/22/11	4:29	SW5035A8260B
4-bromofluorobenzene SUR	103	86-115	%	1	LMM 6/20/11		6/22/11	4:29	SW5035A8260B
a,a,a-trifluorotoluene SUR	82	70-130	%	1	LMM 6/20/11	4261	6/22/11	4:29	SW5035A8260B



Job ID: 21796

Sample#: 21796-011

Sample ID: FILL-2

Matrix: Solid Percent Dry: 88.7% Results expressed on a dry weight basis.

Sampled: 6/15/11 15:05		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
acetone	< 3	3	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
t-butanol (TBA)	< 3	3	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
2-butanone (MEK)	< 0.4	0.4	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
tetrahydrofuran (THF)	< 0.6	0.6	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
1,4-dioxane	< 3	3	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.6	0.6	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
2-hexanone	< 0.6	0.6	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	5:00	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	5:00	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	5:00	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	5:00	SW5035A8260B
			- 3- 3	-					



Job ID: 21796

Sample#: 21796-011

Sample ID: FILL-2

Matrix: Solid Percent Dry: 88.7% Results expressed on a dry weight basis.

Sampled: 6/15/11 15:05	2	Quant	•	Instr Dil'n	Prep		Anal	vsis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	5:00	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	5:00	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	5:00	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B
Surrogate Recovery		Limit							
dibromofluoromethane SUR	87	78-114	%	1	LMM 6/20/11		6/22/11	5:00	SW5035A8260B
toluene-D8 SUR	97	88-110	%	1	LMM 6/20/11		6/22/11	5:00	SW5035A8260B
4-bromofluorobenzene SUR	97	86-115	%	1	LMM 6/20/11		6/22/11	5:00	SW5035A8260B
a,a,a-trifluorotoluene SUR	84	70-130	%	1	LMM 6/20/11	4261	6/22/11	5:00	SW5035A8260B



Job ID: 21796

Sample#: 21796-012

Sample ID: FILL-3

Matrix: Solid Percent Dry: 85.3% Results expressed on a dry weight basis.

Sampled: 6/15/11 15:15		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
acetone	< 3	3	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
t-butanol (TBA)	< 3	3	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
2-butanone (MEK)	< 0.3	0.3	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
tetrahydrofuran (THF)	< 0.6	0.6	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
1,4-dioxane	< 3	3	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.5	0.5	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
2-hexanone	< 0.6	0.6	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	5:31	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	5:31	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	5:31	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/11		6/22/11	5:31	SW5035A8260B
			- 3- 3	-					



Job ID: 21796

Sample#: 21796-012

Sample ID: FILL-3

Matrix: Solid Percent Dry: 85.3% Results expressed on a dry weight basis.

Sampled: 6/15/11	15:15	Quant	·	Instr Dil'n	Prep		Anal	vsis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 (	6/22/11	5:31	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 (	6/22/11	5:31	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 (	6/22/11	5:31	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 (	6/22/11	5:31	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 (	6/22/11	5:31	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 (	6/22/11	5:31	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 (	6/22/11	5:31	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 (	6/22/11	5:31	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 (	6/22/11	5:31	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 (	6/22/11	5:31	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 (	6/22/11	5:31	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 (	6/22/11	5:31	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261 (	6/22/11	5:31	SW5035A8260B
1,2-dibromo-3-chloropropa	ane (DBCP) < 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	5:31	SW5035A8260B
Surrogate Recovery		Limit							
dibromofluoromethane SU	R <b>91</b>	78-114	%	1	LMM 6/20/11		6/22/11	5:31	SW5035A8260B
toluene-D8 SUR	100	88-110	%	1	LMM 6/20/11		6/22/11	5:31	SW5035A8260B
4-bromofluorobenzene SU		86-115	%	1	LMM 6/20/11		6/22/11	5:31	SW5035A8260B
a,a,a-trifluorotoluene SUR	86	70-130	%	1	LMM 6/20/11	4261 (	6/22/11	5:31	SW5035A8260B



Job ID: 21796

Sample#: 21796-013

Sample ID: SUMP

Matrix: Water

Sampled: 6/15/11 10:20		0							
•	Decult	Quant Limit		Instr Dil'n	Analyst	Prep		lysis Time	Deference
Parameter dichlorodifluoromethane	Result < 2		Units	Factor	Analyst	Date	Batch Date 1101207 6/22/11	6:33	Reference
chloromethane	< 2 < 2	2	ug/L	1	LMM LMM		1101207 6/22/11	6:33	SW5030B8260B SW5030B8260B
	< 2	2	ug/L	1					
vinyl chloride bromomethane	< 2 < 2	2 2	ug/L	1	LMM LMM		1101207 6/22/11 1101207 6/22/11	6:33 6:33	SW5030B8260B SW5030B8260B
	< 2		ug/L	1					
chloroethane trichlorofluoromethane	< 2	2	ug/L	1 1			1101207 6/22/11 1101207 6/22/11	6:33 6:33	SW5030B8260B SW5030B8260B
	< 2 < 5	2	ug/L						
diethyl ether		5	ug/L	1			1101207 6/22/11	6:33	SW5030B8260B
acetone	< 50 < 1	50	ug/L	1 1	LMM LMM		1101207 6/22/11 1101207 6/22/11	6:33 6:33	SW5030B8260B SW5030B8260B
1,1-dichloroethene methylene chloride	< 1 < 5	1 5	ug/L ug/L	1			1101207 6/22/11	6:33	SW5030B8260B
carbon disulfide	< 2		-	1	LMM		1101207 6/22/11	6:33	SW5030B8260B
methyl t-butyl ether (MTBE)	< 2	2 2	ug/L ug/L	1			1101207 6/22/11	6:33	SW5030B8260B
trans-1,2-dichloroethene	< 2	2	ug/∟ ug/L	1			1101207 6/22/11	6:33	SW5030B8260B
	< 2		-				1101207 6/22/11	6:33	SW5030B8260B
isopropyl ether (DIPE) ethyl t-butyl ether (ETBE)	< 2	2 2	ug/L	1 1			1101207 6/22/11	6:33	SW5030B8260B
	< 2	2	ug/L				1101207 6/22/11	6:33	SW5030B8260B
1,1-dichloroethane		30	ug/L	1					
t-butanol (TBA) 2-butanone (MEK)	< 30 < 10	30 10	ug/L	1 1	LMM LMM		1101207 6/22/11 1101207 6/22/11	6:33 6:33	SW5030B8260B SW5030B8260B
	< 10		ug/L						
2,2-dichloropropane	< 2 < 2	2	ug/L	1 1			1101207 6/22/11 1101207 6/22/11	6:33 6:33	SW5030B8260B SW5030B8260B
cis-1,2-dichloroethene chloroform	< 2	2 2	ug/L				1101207 6/22/11	6:33	SW5030B8260B
bromochloromethane	< 2	2	ug/L ug/L	1 1			1101207 6/22/11	6:33	SW5030B8260B
	< 10	10	-	1	LMM		1101207 6/22/11	6:33	SW5030B8260B
tetrahydrofuran (THF)	< 10		ug/L	1			1101207 6/22/11	6:33	SW5030B8260B
1,1,1-trichloroethane 1,1-dichloropropene	< 2	2 2	ug/L ug/L	1			1101207 6/22/11	6:33	SW5030B8260B
t-amyl-methyl ether (TAME)	< 2	2	ug/L	1	LMM		1101207 6/22/11	6:33	SW5030B8260B
carbon tetrachloride	< 2	2	ug/∟ ug/L	1	LMM		1101207 6/22/11	6:33	SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		1101207 6/22/11	6:33	SW5030B8260B
	< 2	2	-	1	LMM		1101207 6/22/11	6:33	SW5030B8260B
benzene trichloroethene		_	ug/L						
	< 2 < 2	2	ug/L	1 1	LMM		1101207 6/22/11 1101207 6/22/11	6:33 6:33	SW5030B8260B SW5030B8260B
1,2-dichloropropane bromodichloromethane	< 0.6	2 0.6	ug/L ug/L	1	LMM		1101207 6/22/11	6:33	SW5030B8260B
1,4-dioxane	< 0.0 < 50	50	ug/∟ ug/L	1	LMM		1101207 6/22/11	6:33	SW5030B8260B
dibromomethane	< 30 < 2	2	ug/L	1	LMM		1101207 6/22/11	6:33	SW5030B8260B
4-methyl-2-pentanone (MIBK)	< 10	10	ug/L	1	LMM		1101207 6/22/11	6:33	SW5030B8260B
cis-1,3-dichloropropene	< 2				LMM		1101207 6/22/11	6:33	SW5030B8260B
toluene	< 2	2 2	ug/L ug/L	1 1			1101207 6/22/11	6:33	SW5030B8260B
trans-1,3-dichloropropene	< 2	2	-	1	LMM		1101207 6/22/11	6:33	SW5030B8260B
2-hexanone	< 10		ug/L		LMM		1101207 6/22/11	6:33	SW5030B8260B
	< 10	10	ug/L	1					
1,1,2-trichloroethane	< 2 < 2	2	ug/L	1 1			1101207 6/22/11	6:33 6:33	SW5030B8260B
1,3-dichloropropane		2	ug/L				1101207 6/22/11	6:33 6:33	SW5030B8260B
tetrachloroethene	< 2	2	ug/L	1			1101207 6/22/11	6:33	SW5030B8260B
dibromochloromethane	< 2	2	ug/L	1	LMM		1101207 6/22/11	6:33	SW5030B8260B



Job ID: 21796

Sample#: 21796-013

Sample ID: SUMP

Matrix: Water

Sampled: 6/15/11 10:20		Quant				Dran		Anal	vele	
Parameter	Result	Quant Limit	Units	Instr Dil'n Factor	Analyst	Prep Date	Batch	Anal Date	Time	Reference
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM	2410	1101207		6:33	SW5030B8260B
chlorobenzene	< 2	2	ug/L	1	LMM		1101207		6:33	SW5030B8260B
1,1,1,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1101207		6:33	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
styrene	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
bromoform	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
isopropylbenzene	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
1,1,2,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
1,2,3-trichloropropane	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
n-propylbenzene	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
bromobenzene	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
2-chlorotoluene	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
4-chlorotoluene	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
tert-butylbenzene	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
sec-butylbenzene	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
1,3-dichlorobenzene	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
4-isopropyltoluene	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
1,4-dichlorobenzene	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
1,2-dichlorobenzene	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
n-butylbenzene	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	) < 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
1,2,4-trichlorobenzene	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
1,3,5-trichlorobenzene	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
hexachlorobutadiene	< 0.5	0.5	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
1,2,3-trichlorobenzene	< 2	2	ug/L	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
Surrogate Recovery		Limits	S							
dibromofluoromethane SUR	93	78-114	%	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
toluene-D8 SUR	99	88-110	%	1	LMM		1101207	6/22/11	6:33	SW5030B8260B
4-bromofluorobenzene SUR	93	86-115	%	1	LMM		1101207	6/22/11	6:33	SW5030B8260B



Job ID: 21796

Sample#: 21796-023

Sample ID: Trip Blank

Sampled: 6/15/11		Quant		Instr Dil'n	Pre	0	Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Dat	e Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
acetone	< 2	2	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
2-butanone (MEK)	< 0.3	0.3	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
tetrahydrofuran (THF)	< 0.5	0.5	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.4	0.4	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
2-hexanone	< 0.5	0.5	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/20/1	1 4261	6/22/11	1:22	SW5035A8260B



Job ID: 21796

Sample#: 21796-023

Sample ID: Trip Blank

Sampled: 6/15/11		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B
Surrogate Recovery		Limits	5						
dibromofluoromethane SUR	94	78-114	%	1	LMM 6/20/11		6/22/11	1:22	SW5035A8260B
toluene-D8 SUR	102	88-110	%	1	LMM 6/20/11		6/22/11	1:22	SW5035A8260B
4-bromofluorobenzene SUR	98	86-115	%	1	LMM 6/20/11		6/22/11	1:22	SW5035A8260B
a,a,a-trifluorotoluene SUR	79	70-130	%	1	LMM 6/20/11	4261	6/22/11	1:22	SW5035A8260B



Job ID: 21796

Sample#: 21796-001

Sample ID: SS-1

Matrix: Solid Percent Dry: 88.6% Results expressed on a dry weight basis.

Sampled: 6/15/11 11:33		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
naphthalene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	19:32	SW3550B8270D
2-methylnaphthalene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	19:32	SW3550B8270D
acenaphthylene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	19:32	SW3550B8270D
acenaphthene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	19:32	SW3550B8270D
dibenzofuran	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	19:32	SW3550B8270D
fluorene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	19:32	SW3550B8270D
phenanthrene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	19:32	SW3550B8270D
anthracene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	19:32	SW3550B8270D
fluoranthene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	19:32	SW3550B8270D
pyrene	1.2	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	19:32	SW3550B8270D
benzo(a)anthracene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	19:32	SW3550B8270D
chrysene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	19:32	SW3550B8270D
benzo(b)fluoranthene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	19:32	SW3550B8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	19:32	SW3550B8270D
benzo(a)pyrene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	19:32	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	19:32	SW3550B8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	19:32	SW3550B8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	19:32	SW3550B8270D
Surrogate Recovery		Limits	S						
2-fluorobiphenyl SUR	115	43-116	%	1	AJD 6/22/11	4264	6/23/11	19:32	SW3550B8270D
o-terphenyl SUR	125	33-141	%	1	AJD 6/22/11	4264	6/23/11	19:32	SW3550B8270D



Job ID: 21796

Sample#: 21796-002

Sample ID: SS-2

Matrix: Solid Percent Dry: 76.1% Results expressed on a dry weight basis.

_ -

Sampled: 6/15/11 11:55		Quant		nstr Dil'n	Prep	Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:00	SW3550B8270D
2-methylnaphthalene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:00	SW3550B8270D
acenaphthylene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:00	SW3550B8270D
acenaphthene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:00	SW3550B8270D
dibenzofuran	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:00	SW3550B8270D
fluorene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:00	SW3550B8270D
phenanthrene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:00	SW3550B8270D
anthracene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:00	SW3550B8270D
fluoranthene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:00	SW3550B8270D
pyrene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:00	SW3550B8270D
benzo(a)anthracene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:00	SW3550B8270D
chrysene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:00	SW3550B8270D
benzo(b)fluoranthene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:00	SW3550B8270D
benzo(k)fluoranthene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:00	SW3550B8270D
benzo(a)pyrene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:00	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:00	SW3550B8270D
dibenzo(a,h)anthracene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:00	SW3550B8270D
benzo(g,h,i)perylene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:00	SW3550B8270D
Surrogate Recovery		Limit	S					
2-fluorobiphenyl SUR	137 *	43-116	%	1	AJD 6/22/11	4264 6/23/11	17:00	SW3550B8270D
o-terphenyl SUR	148 *	33-141	%	1	AJD 6/22/11	4264 6/23/11	17:00	SW3550B8270D

* This surrogate showed recovery above the acceptance limits. Since no targets were detected above the quantitation limit, there is no impact to the data.



Job ID: 21796

Sample#: 21796-003

Matrix: Solid Percent Dry: 81.9% Results expressed on a dry weight basis.

Sampled: 6/15/11 11:55		Quant	•	Instr Dil'n	Prep		Anal	vsis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
naphthalene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264	6/23/11	18:54	SW3550B8270D
2-methylnaphthalene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264	6/23/11	18:54	SW3550B8270D
acenaphthylene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264	6/23/11	18:54	SW3550B8270D
acenaphthene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264	6/23/11	18:54	SW3550B8270D
dibenzofuran	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264	6/23/11	18:54	SW3550B8270D
fluorene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264	6/23/11	18:54	SW3550B8270D
phenanthrene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264	6/23/11	18:54	SW3550B8270D
anthracene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264	6/23/11	18:54	SW3550B8270D
fluoranthene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264	6/23/11	18:54	SW3550B8270D
pyrene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264	6/23/11	18:54	SW3550B8270D
benzo(a)anthracene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264	6/23/11	18:54	SW3550B8270D
chrysene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264	6/23/11	18:54	SW3550B8270D
benzo(b)fluoranthene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264	6/23/11	18:54	SW3550B8270D
benzo(k)fluoranthene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264	6/23/11	18:54	SW3550B8270D
benzo(a)pyrene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264	6/23/11	18:54	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264	6/23/11	18:54	SW3550B8270D
dibenzo(a,h)anthracene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264	6/23/11	18:54	SW3550B8270D
benzo(g,h,i)perylene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264	6/23/11	18:54	SW3550B8270D
Surrogate Recovery		Limits	5						
2-fluorobiphenyl SUR	103	43-116	%	1	AJD 6/22/11	4264	6/23/11	18:54	SW3550B8270D
o-terphenyl SUR	110	33-141	%	1	AJD 6/22/11	4264	6/23/11	18:54	SW3550B8270D



Sample ID: SS-3

Job ID: 21796

Sample#: 21796-004

Matrix: Solid Percent Dry: 91.2% Results expressed on a dry weight basis.

Sampled: 6/15/11 11:50	5	Quant		la ata Dilla	Dron	Ano	lucio	
Parameter	Result	Limit	Units	Instr Dil'n Factor	Prep Analyst Date	Batch Date	lysis Time	Reference
naphthalene	< 2.6	2.6		5	AJD 6/22/11	4264 6/30/11	6:02	SW3550B8270D
•			ug/g	-				
2-methylnaphthalene	< 2.6	2.6	ug/g	5	AJD 6/22/11	4264 6/30/11	6:02	SW3550B8270D
acenaphthylene	< 2.6	2.6	ug/g	5	AJD 6/22/11	4264 6/30/11	6:02	SW3550B8270D
acenaphthene	< 2.6	2.6	ug/g	5	AJD 6/22/11	4264 6/30/11	6:02	SW3550B8270D
dibenzofuran	< 2.6	2.6	ug/g	5	AJD 6/22/11	4264 6/30/11	6:02	SW3550B8270D
fluorene	< 2.6	2.6	ug/g	5	AJD 6/22/11	4264 6/30/11	6:02	SW3550B8270D
phenanthrene	< 2.6	2.6	ug/g	5	AJD 6/22/11	4264 6/30/11	6:02	SW3550B8270D
anthracene	< 2.6	2.6	ug/g	5	AJD 6/22/11	4264 6/30/11	6:02	SW3550B8270D
fluoranthene	< 2.6	2.6	ug/g	5	AJD 6/22/11	4264 6/30/11	6:02	SW3550B8270D
pyrene	< 2.6	2.6	ug/g	5	AJD 6/22/11	4264 6/30/11	6:02	SW3550B8270D
benzo(a)anthracene	< 2.6	2.6	ug/g	5	AJD 6/22/11	4264 6/30/11	6:02	SW3550B8270D
chrysene	< 2.6	2.6	ug/g	5	AJD 6/22/11	4264 6/30/11	6:02	SW3550B8270D
benzo(b)fluoranthene	< 2.6	2.6	ug/g	5	AJD 6/22/11	4264 6/30/11	6:02	SW3550B8270D
benzo(k)fluoranthene	< 2.6	2.6	ug/g	5	AJD 6/22/11	4264 6/30/11	6:02	SW3550B8270D
benzo(a)pyrene	< 2.6	2.6	ug/g	5	AJD 6/22/11	4264 6/30/11	6:02	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 2.6	2.6	ug/g	5	AJD 6/22/11	4264 6/30/11	6:02	SW3550B8270D
dibenzo(a,h)anthracene	< 2.6	2.6	ug/g	5	AJD 6/22/11	4264 6/30/11	6:02	SW3550B8270D
benzo(g,h,i)perylene	< 2.6	2.6	ug/g	5	AJD 6/22/11	4264 6/30/11	6:02	SW3550B8270D
Surrogate Recovery		Limits	5					
2-fluorobiphenyl SUR	94	43-116	%	5	AJD 6/22/11	4264 6/30/11	6:02	SW3550B8270D
o-terphenyl SUR	98	33-141	%	5	AJD 6/22/11	4264 6/30/11	6:02	SW3550B8270D

Note: Dilution was required due to matrix interference, causing internal standard suppression.



Sample ID: SS-4

Job ID: 21796

Sample#: 21796-005

Matrix: Solid Percent Dry: 75% Results expressed on a dry weight basis.

Sampled: 6/15/11 11:25	5	Quant		Instr Dil'n	Prep	Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:38	SW3550B8270D
2-methylnaphthalene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:38	SW3550B8270D
acenaphthylene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:38	SW3550B8270D
acenaphthene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:38	SW3550B8270D
dibenzofuran	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:38	SW3550B8270D
fluorene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:38	SW3550B8270D
phenanthrene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:38	SW3550B8270D
anthracene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:38	SW3550B8270D
fluoranthene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:38	SW3550B8270D
pyrene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:38	SW3550B8270D
benzo(a)anthracene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:38	SW3550B8270D
chrysene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:38	SW3550B8270D
benzo(b)fluoranthene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:38	SW3550B8270D
benzo(k)fluoranthene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:38	SW3550B8270D
benzo(a)pyrene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:38	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:38	SW3550B8270D
dibenzo(a,h)anthracene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:38	SW3550B8270D
benzo(g,h,i)perylene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	17:38	SW3550B8270D
Surrogate Recovery		Limit	S					
2-fluorobiphenyl SUR	119 *	43-116	%	1	AJD 6/22/11	4264 6/23/11	17:38	SW3550B8270D
o-terphenyl SUR	134	33-141	%	1	AJD 6/22/11	4264 6/23/11	17:38	SW3550B8270D
* This surrogate showed recover	erv above the acc	rentance l	imits S	ince no ta	araets were dete	cted above the	auantitat	ion limit

* This surrogate showed recovery above the acceptance limits. Since no targets were detected above the quantitation limit, there is no impact to the data.



Sample ID: SS-5

Job ID: 21796

Sample#: 21796-006

Sample ID: SS-DUP

Matrix: Solid Percent Dry: 89.4% Results expressed on a dry weight basis.

Sampled: 6/15/11		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
naphthalene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	22:02	SW3550B8270D
2-methylnaphthalene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	22:02	SW3550B8270D
acenaphthylene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	22:02	SW3550B8270D
acenaphthene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	22:02	SW3550B8270D
dibenzofuran	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	22:02	SW3550B8270D
fluorene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	22:02	SW3550B8270D
phenanthrene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	22:02	SW3550B8270D
anthracene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	22:02	SW3550B8270D
fluoranthene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	22:02	SW3550B8270D
pyrene	1.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	22:02	SW3550B8270D
benzo(a)anthracene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	22:02	SW3550B8270D
chrysene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	22:02	SW3550B8270D
benzo(b)fluoranthene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	22:02	SW3550B8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	22:02	SW3550B8270D
benzo(a)pyrene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	22:02	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	22:02	SW3550B8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	22:02	SW3550B8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264	6/23/11	22:02	SW3550B8270D
Surrogate Recovery		Limit	s						
2-fluorobiphenyl SUR	108	43-116	%	1	AJD 6/22/11	4264	6/23/11	22:02	SW3550B8270D
o-terphenyl SUR	131	33-141	%	1	AJD 6/22/11	4264	6/23/11	22:02	SW3550B8270D



Job ID: 21796

Sample#: 21796-007

Sample ID: SS-6

Matrix: Solid Percent Dry: 77% Results expressed on a dry weight basis.

Sampled: 6/15/11 15:00		Quant		Instr Dil'n	Prep	Ar	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/1	1 18:16	SW3550B8270D
2-methylnaphthalene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/1	1 18:16	SW3550B8270D
acenaphthylene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/1	1 18:16	SW3550B8270D
acenaphthene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/1	1 18:16	SW3550B8270D
dibenzofuran	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/1	1 18:16	SW3550B8270D
fluorene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/1	1 18:16	SW3550B8270D
phenanthrene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/1	1 18:16	SW3550B8270D
anthracene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/1	1 18:16	SW3550B8270D
fluoranthene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/1	1 18:16	SW3550B8270D
pyrene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/1	1 18:16	SW3550B8270D
benzo(a)anthracene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/1	1 18:16	SW3550B8270D
chrysene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/1	1 18:16	SW3550B8270D
benzo(b)fluoranthene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/1	1 18:16	SW3550B8270D
benzo(k)fluoranthene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/1	1 18:16	SW3550B8270D
benzo(a)pyrene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/1	1 18:16	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/1	1 18:16	SW3550B8270D
dibenzo(a,h)anthracene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/1	1 18:16	SW3550B8270D
benzo(g,h,i)perylene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/1	1 18:16	SW3550B8270D
Surrogate Recovery		Limits	S					
2-fluorobiphenyl SUR	94	43-116	%	1	AJD 6/22/11	4264 6/23/1	1 18:16	SW3550B8270D
o-terphenyl SUR	96	33-141	%	1	AJD 6/22/11	4264 6/23/1	1 18:16	SW3550B8270D



Job ID: 21796

Sample#: 21796-008

Sample ID: SS-SUMP

Matrix: Solid Percent Dry: 72.7% Results expressed on a dry weight basis.

Sampled:	6/15/11	10:25
Sampleu.	0/10/11	10.20

Sampled: 6/15/11 10:25		Quant		Instr Dil'n	Prep	Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 3.4	3.4	ug/g	5	AJD 6/22/11	4264 6/30/11	5:24	SW3550B8270D
2-methylnaphthalene	< 3.4	3.4	ug/g	5	AJD 6/22/11	4264 6/30/11	5:24	SW3550B8270D
acenaphthylene	< 3.4	3.4	ug/g	5	AJD 6/22/11	4264 6/30/11	5:24	SW3550B8270D
acenaphthene	< 3.4	3.4	ug/g	5	AJD 6/22/11	4264 6/30/11	5:24	SW3550B8270D
dibenzofuran	< 3.4	3.4	ug/g	5	AJD 6/22/11	4264 6/30/11	5:24	SW3550B8270D
fluorene	< 3.4	3.4	ug/g	5	AJD 6/22/11	4264 6/30/11	5:24	SW3550B8270D
phenanthrene	< 3.4	3.4	ug/g	5	AJD 6/22/11	4264 6/30/11	5:24	SW3550B8270D
anthracene	< 3.4	3.4	ug/g	5	AJD 6/22/11	4264 6/30/11	5:24	SW3550B8270D
fluoranthene	8.4	3.4	ug/g	5	AJD 6/22/11	4264 6/30/11	5:24	SW3550B8270D
pyrene	14	3.4	ug/g	5	AJD 6/22/11	4264 6/30/11	5:24	SW3550B8270D
benzo(a)anthracene	< 3.4	3.4	ug/g	5	AJD 6/22/11	4264 6/30/11	5:24	SW3550B8270D
chrysene	4.2	3.4	ug/g	5	AJD 6/22/11	4264 6/30/11	5:24	SW3550B8270D
benzo(b)fluoranthene	4.6	3.4	ug/g	5	AJD 6/22/11	4264 6/30/11	5:24	SW3550B8270D
benzo(k)fluoranthene	< 3.4	3.4	ug/g	5	AJD 6/22/11	4264 6/30/11	5:24	SW3550B8270D
benzo(a)pyrene	< 3.4	3.4	ug/g	5	AJD 6/22/11	4264 6/30/11	5:24	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 3.4	3.4	ug/g	5	AJD 6/22/11	4264 6/30/11	5:24	SW3550B8270D
dibenzo(a,h)anthracene	< 3.4	3.4	ug/g	5	AJD 6/22/11	4264 6/30/11	5:24	SW3550B8270D
benzo(g,h,i)perylene	< 3.4	3.4	ug/g	5	AJD 6/22/11	4264 6/30/11	5:24	SW3550B8270D
Surrogate Recovery		Limit	S					
2-fluorobiphenyl SUR	104	43-116	%	5	AJD 6/22/11	4264 6/30/11	5:24	SW3550B8270D
o-terphenyl SUR	123	33-141	%	5	AJD 6/22/11	4264 6/30/11	5:24	SW3550B8270D

Note: Dilution was required due to interferences caused by hydrocarbons in the sample.



Job ID: 21796

Sample#: 21796-009

Sample ID: ASH-1

Matrix: Solid Percent Dry: 60.5% Results expressed on a dry weight basis.

Sampled: 6/15/11 15:10		Quant		Instr Dil'n	Prep	Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.8	0.8	ug/g	1	AJD 6/22/11	4264 6/23/11	21:25	SW3550B8270D
2-methylnaphthalene	< 0.8	0.8	ug/g	1	AJD 6/22/11	4264 6/23/11	21:25	SW3550B8270D
acenaphthylene	< 0.8	0.8	ug/g	1	AJD 6/22/11	4264 6/23/11	21:25	SW3550B8270D
acenaphthene	< 0.8	0.8	ug/g	1	AJD 6/22/11	4264 6/23/11	21:25	SW3550B8270D
dibenzofuran	< 0.8	0.8	ug/g	1	AJD 6/22/11	4264 6/23/11	21:25	SW3550B8270D
fluorene	< 0.8	0.8	ug/g	1	AJD 6/22/11	4264 6/23/11	21:25	SW3550B8270D
phenanthrene	< 0.8	0.8	ug/g	1	AJD 6/22/11	4264 6/23/11	21:25	SW3550B8270D
anthracene	< 0.8	0.8	ug/g	1	AJD 6/22/11	4264 6/23/11	21:25	SW3550B8270D
fluoranthene	< 0.8	0.8	ug/g	1	AJD 6/22/11	4264 6/23/11	21:25	SW3550B8270D
pyrene	< 0.8	0.8	ug/g	1	AJD 6/22/11	4264 6/23/11	21:25	SW3550B8270D
benzo(a)anthracene	< 0.8	0.8	ug/g	1	AJD 6/22/11	4264 6/23/11	21:25	SW3550B8270D
chrysene	< 0.8	0.8	ug/g	1	AJD 6/22/11	4264 6/23/11	21:25	SW3550B8270D
benzo(b)fluoranthene	< 0.8	0.8	ug/g	1	AJD 6/22/11	4264 6/23/11	21:25	SW3550B8270D
benzo(k)fluoranthene	< 0.8	0.8	ug/g	1	AJD 6/22/11	4264 6/23/11	21:25	SW3550B8270D
benzo(a)pyrene	< 0.8	0.8	ug/g	1	AJD 6/22/11	4264 6/23/11	21:25	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.8	0.8	ug/g	1	AJD 6/22/11	4264 6/23/11	21:25	SW3550B8270D
dibenzo(a,h)anthracene	< 0.8	0.8	ug/g	1	AJD 6/22/11	4264 6/23/11	21:25	SW3550B8270D
benzo(g,h,i)perylene	< 0.8	0.8	ug/g	1	AJD 6/22/11	4264 6/23/11	21:25	SW3550B8270D
Surrogate Recovery		Limits	5					
2-fluorobiphenyl SUR	143 *	43-116	%	1	AJD 6/22/11	4264 6/23/11	21:25	SW3550B8270D
o-terphenyl SUR	161 *	33-141	%	1	AJD 6/22/11	4264 6/23/11	21:25	SW3550B8270D

* This surrogate showed recovery above the acceptance limits. Since no targets were detected above the quantitation limit, there is no impact to the data.



Job ID: 21796

Sample#: 21796-010

Sample ID: FILL-1

Matrix: Solid Percent Dry: 90% Results expressed on a dry weight basis.

Sampled: 6/15/11 14:45		Quant		nstr Dil'n	Prep	Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/30/11	11:01	SW3550B8270D
2-methylnaphthalene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/30/11	11:01	SW3550B8270D
acenaphthylene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/30/11	11:01	SW3550B8270D
acenaphthene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/30/11	11:01	SW3550B8270D
dibenzofuran	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/30/11	11:01	SW3550B8270D
fluorene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/30/11	11:01	SW3550B8270D
phenanthrene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/30/11	11:01	SW3550B8270D
anthracene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/30/11	11:01	SW3550B8270D
fluoranthene	1.1	0.6	ug/g	1	AJD 6/22/11	4264 6/30/11	11:01	SW3550B8270D
pyrene	1.2	0.6	ug/g	1	AJD 6/22/11	4264 6/30/11	11:01	SW3550B8270D
benzo(a)anthracene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/30/11	11:01	SW3550B8270D
chrysene	0.7	0.6	ug/g	1	AJD 6/22/11	4264 6/30/11	11:01	SW3550B8270D
benzo(b)fluoranthene	0.8	0.6	ug/g	1	AJD 6/22/11	4264 6/30/11	11:01	SW3550B8270D
benzo(k)fluoranthene	0.9	0.6	ug/g	1	AJD 6/22/11	4264 6/30/11	11:01	SW3550B8270D
benzo(a)pyrene	0.9	0.6	ug/g	1	AJD 6/22/11	4264 6/30/11	11:01	SW3550B8270D
indeno(1,2,3-cd)pyrene	0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/30/11	11:01	SW3550B8270D
dibenzo(a,h)anthracene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/30/11	11:01	SW3550B8270D
benzo(g,h,i)perylene	0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/30/11	11:01	SW3550B8270D
Surrogate Recovery		Limit	s					
2-fluorobiphenyl SUR	91	43-116	%	1	AJD 6/22/11	4264 6/30/11	11:01	SW3550B8270D
o-terphenyl SUR	97	33-141	%	1	AJD 6/22/11	4264 6/30/11	11:01	SW3550B8270D



Job ID: 21796

Sample#: 21796-011

Sample ID: FILL-2

Matrix: Solid Percent Dry: 88.7% Results expressed on a dry weight basis.

Sampled: 6/15/11 15:05		Quant	-	Instr Dil'n	Prep	Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264 6/30/11	11:39	SW3550B8270D
2-methylnaphthalene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264 6/30/11	11:39	SW3550B8270D
acenaphthylene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264 6/30/11	11:39	SW3550B8270D
acenaphthene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264 6/30/11	11:39	SW3550B8270D
dibenzofuran	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264 6/30/11	11:39	SW3550B8270D
fluorene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264 6/30/11	11:39	SW3550B8270D
phenanthrene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264 6/30/11	11:39	SW3550B8270D
anthracene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264 6/30/11	11:39	SW3550B8270D
fluoranthene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264 6/30/11	11:39	SW3550B8270D
pyrene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264 6/30/11	11:39	SW3550B8270D
benzo(a)anthracene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264 6/30/11	11:39	SW3550B8270D
chrysene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264 6/30/11	11:39	SW3550B8270D
benzo(b)fluoranthene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264 6/30/11	11:39	SW3550B8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264 6/30/11	11:39	SW3550B8270D
benzo(a)pyrene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264 6/30/11	11:39	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264 6/30/11	11:39	SW3550B8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264 6/30/11	11:39	SW3550B8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/g	1	AJD 6/22/11	4264 6/30/11	11:39	SW3550B8270D
Surrogate Recovery		Limits	S					
2-fluorobiphenyl SUR	116	43-116	%	1	AJD 6/22/11	4264 6/30/11	11:39	SW3550B8270D
o-terphenyl SUR	119	33-141	%	1	AJD 6/22/11	4264 6/30/11	11:39	SW3550B8270D



Job ID: 21796

Sample#: 21796-012

Sample ID: FILL-3

Matrix: Solid Percent Dry: 85.3% Results expressed on a dry weight basis.

Sampled: 6/15/11 15:15		Quant		Instr Dil'n	Prep	Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	20:09	SW3550B8270D
2-methylnaphthalene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	20:09	SW3550B8270D
acenaphthylene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	20:09	SW3550B8270D
acenaphthene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	20:09	SW3550B8270D
dibenzofuran	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	20:09	SW3550B8270D
fluorene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	20:09	SW3550B8270D
phenanthrene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	20:09	SW3550B8270D
anthracene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	20:09	SW3550B8270D
fluoranthene	0.8	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	20:09	SW3550B8270D
pyrene	0.9	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	20:09	SW3550B8270D
benzo(a)anthracene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	20:09	SW3550B8270D
chrysene	0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	20:09	SW3550B8270D
benzo(b)fluoranthene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	20:09	SW3550B8270D
benzo(k)fluoranthene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	20:09	SW3550B8270D
benzo(a)pyrene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	20:09	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	20:09	SW3550B8270D
dibenzo(a,h)anthracene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	20:09	SW3550B8270D
benzo(g,h,i)perylene	< 0.6	0.6	ug/g	1	AJD 6/22/11	4264 6/23/11	20:09	SW3550B8270D
Surrogate Recovery		Limits	S					
2-fluorobiphenyl SUR	100	43-116	%	1	AJD 6/22/11	4264 6/23/11	20:09	SW3550B8270D
o-terphenyl SUR	105	33-141	%	1	AJD 6/22/11	4264 6/23/11	20:09	SW3550B8270D



Job ID: 21796

Sample#: 21796-013

Sample ID: SUMP

Matrix: Water

Sampled: 6/15/11 10:20		Quant	I	Instr Dil'n	Prep	Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.5	0.5	ug/L	1	AJD 6/21/11	4267 6/21/11	19:57	SW3510C8270D
2-methylnaphthalene	< 0.5	0.5	ug/L	1	AJD 6/21/11	4267 6/21/11	19:57	SW3510C8270D
acenaphthylene	< 0.5	0.5	ug/L	1	AJD 6/21/11	4267 6/21/11	19:57	SW3510C8270D
acenaphthene	< 0.5	0.5	ug/L	1	AJD 6/21/11	4267 6/21/11	19:57	SW3510C8270D
dibenzofuran	< 0.5	0.5	ug/L	1	AJD 6/21/11	4267 6/21/11	19:57	SW3510C8270D
fluorene	< 0.5	0.5	ug/L	1	AJD 6/21/11	4267 6/21/11	19:57	SW3510C8270D
phenanthrene	< 0.5	0.5	ug/L	1	AJD 6/21/11	4267 6/21/11	19:57	SW3510C8270D
anthracene	< 0.5	0.5	ug/L	1	AJD 6/21/11	4267 6/21/11	19:57	SW3510C8270D
fluoranthene	< 0.5	0.5	ug/L	1	AJD 6/21/11	4267 6/21/11	19:57	SW3510C8270D
pyrene	< 0.5	0.5	ug/L	1	AJD 6/21/11	4267 6/21/11	19:57	SW3510C8270D
benzo(a)anthracene	< 0.5	0.5	ug/L	1	AJD 6/21/11	4267 6/21/11	19:57	SW3510C8270D
chrysene	< 0.5	0.5	ug/L	1	AJD 6/21/11	4267 6/21/11	19:57	SW3510C8270D
benzo(b)fluoranthene	< 0.5	0.5	ug/L	1	AJD 6/21/11	4267 6/21/11	19:57	SW3510C8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/L	1	AJD 6/21/11	4267 6/21/11	19:57	SW3510C8270D
benzo(a)pyrene	< 0.2	0.2	ug/L	1	AJD 6/21/11	4267 6/21/11	19:57	SW3510C8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/L	1	AJD 6/21/11	4267 6/21/11	19:57	SW3510C8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/L	1	AJD 6/21/11	4267 6/21/11	19:57	SW3510C8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/L	1	AJD 6/21/11	4267 6/21/11	19:57	SW3510C8270D
Surrogate Recovery		Limits	5					
2-fluorobiphenyl SUR	56	43-116	%	1	AJD 6/21/11	4267 6/21/11	19:57	SW3510C8270D
o-terphenyl SUR	62	33-141	%	1	AJD 6/21/11	4267 6/21/11	19:57	SW3510C8270D



Job ID: 21796

Sample#: 21796-001

Sample ID: SS-1

Matrix: Solid Percent Dry: 88.6% Results expressed on a dry weight basis.

Sampled: 6/15/11 11:33		Quant	1	Instr Dil'n	Prep	Ar	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
PCB-1016	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/1	1 21:55	SW3540C8082A
PCB-1221	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/1	1 21:55	SW3540C8082A
PCB-1232	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/1	1 21:55	SW3540C8082A
PCB-1242	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/1	1 21:55	SW3540C8082A
PCB-1248	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/1	1 21:55	SW3540C8082A
PCB-1254	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/1	1 21:55	SW3540C8082A
PCB-1260	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/1	1 21:55	SW3540C8082A
Surrogate Recovery		Limits	5					
tetrachloro-m-xylene SUR	36	30-150	%	1	JLZ 6/20/11	4265 6/27/1	1 21:55	SW3540C8082A
decachlorobiphenyl SUR	6 *	30-150	%	1	JLZ 6/20/11	4265 6/27/1	1 21:55	SW3540C8082A

* This surrogate showed recovery outside the acceptance limits. Re-analysis showed similar results. Matrix interference suspected.

#### Sample#: 21796-002

#### Sample ID: SS-2

Matrix: Solid Percent Dry: 76.1% Results expressed on a dry weight basis.

Sampled: 6/15/11 11:55		Quant	1	Instr Dil'n	Prep	А	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
PCB-1016	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/	1 22:25	SW3540C8082A
PCB-1221	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/	1 22:25	SW3540C8082A
PCB-1232	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/	1 22:25	SW3540C8082A
PCB-1242	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/	1 22:25	SW3540C8082A
PCB-1248	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/	1 22:25	SW3540C8082A
PCB-1254	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/	1 22:25	SW3540C8082A
PCB-1260	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/	1 22:25	SW3540C8082A
Surrogate Recovery		Limits	S					
tetrachloro-m-xylene SUR	44	30-150	%	1	JLZ 6/20/11	4265 6/27/	1 22:25	SW3540C8082A
decachlorobiphenyl SUR	17 *	30-150	%	1	JLZ 6/20/11	4265 6/27/	1 22:25	SW3540C8082A

* This surrogate showed recovery outside the acceptance limits. Re-analysis showed similar results. Matrix interference suspected.



Job ID: 21796

#### Sample#: 21796-003

Matrix: Solid Percent Dry: 81.9% Results expressed on a dry weight basis.

Sampled: 6/15/11 11:55		Quant		Instr Dil'n	Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
PCB-1016	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/1	1 22:56	SW3540C8082A
PCB-1221	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/1	1 22:56	SW3540C8082A
PCB-1232	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/1	1 22:56	SW3540C8082A
PCB-1242	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/1	1 22:56	SW3540C8082A
PCB-1248	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/1	1 22:56	SW3540C8082A
PCB-1254	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/1	1 22:56	SW3540C8082A
PCB-1260	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/1	1 22:56	SW3540C8082A
Surrogate Recovery		Limits	5					
tetrachloro-m-xylene SUR	49	30-150	%	1	JLZ 6/20/11	4265 6/27/1	1 22:56	SW3540C8082A
decachlorobiphenyl SUR	58	30-150	%	1	JLZ 6/20/11	4265 6/27/1	1 22:56	SW3540C8082A

Sample#: 21796-004

Sample ID: SS-4

Matrix: Solid

Percent Dry: 91.2% Results expressed on a dry weight basis.

Sampled: 6/15/11 11:50		Quant	1	Instr Dil'n	Prep		Analy	/sis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
PCB-1016	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6	6/28/11	16:39	SW3540C8082A
PCB-1221	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6	6/28/11	16:39	SW3540C8082A
PCB-1232	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6	6/28/11	16:39	SW3540C8082A
PCB-1242	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6	6/28/11	16:39	SW3540C8082A
PCB-1248	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6	6/28/11	16:39	SW3540C8082A
PCB-1254	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6	6/28/11	16:39	SW3540C8082A
PCB-1260	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6	6/28/11	16:39	SW3540C8082A
Surrogate Recovery		Limits	5						
tetrachloro-m-xylene SUR	52	30-150	%	1	JLZ 6/20/11	4265 6	6/28/11	16:39	SW3540C8082A
decachlorobiphenyl SUR	31	30-150	%	1	JLZ 6/20/11	4265 6	6/28/11	16:39	SW3540C8082A



Sample ID: SS-3

Job ID: 21796

Sample#: 21796-005

```
Sample ID: SS-5
```

Matrix: Solid Percent Dry: 75% Results expressed on a dry weight basis.

Sampled: 6/15/11 11:25		Quant	1	Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Da	te Time	Reference
PCB-1016	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27	/11 20:23	SW3540C8082A
PCB-1221	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27	/11 20:23	SW3540C8082A
PCB-1232	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27	/11 20:23	SW3540C8082A
PCB-1242	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27	/11 20:23	SW3540C8082A
PCB-1248	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27	/11 20:23	SW3540C8082A
PCB-1254	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27	/11 20:23	SW3540C8082A
PCB-1260	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27	/11 20:23	SW3540C8082A
Surrogate Recovery		Limits	S					
tetrachloro-m-xylene SUR	62	30-150	%	1	JLZ 6/20/11	4265 6/27	/11 20:23	SW3540C8082A
decachlorobiphenyl SUR	67	30-150	%	1	JLZ 6/20/11	4265 6/27	/11 20:23	SW3540C8082A

Sample#: 21796-006

Sample ID: SS-DUP

Matrix: Solid

Percent Dry: 89.4% Results expressed on a dry weight basis.

Sampled: 6/15/11		Quant	1	nstr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
PCB-1016	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265	6/27/11	23:26	SW3540C8082A
PCB-1221	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265	6/27/11	23:26	SW3540C8082A
PCB-1232	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265	6/27/11	23:26	SW3540C8082A
PCB-1242	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265	6/27/11	23:26	SW3540C8082A
PCB-1248	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265	6/27/11	23:26	SW3540C8082A
PCB-1254	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265	6/27/11	23:26	SW3540C8082A
PCB-1260	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265	6/27/11	23:26	SW3540C8082A
Surrogate Recovery		Limits	6						
tetrachloro-m-xylene SUR	36	30-150	%	1	JLZ 6/20/11	4265	6/27/11	23:26	SW3540C8082A
decachlorobiphenyl SUR	6 *	30-150	%	1	JLZ 6/20/11	4265	6/27/11	23:26	SW3540C8082A

* This surrogate showed recovery outside the acceptance limits. Re-analysis showed similar results. Matrix interference suspected.



Job ID: 21796

Sample#: 21796-007

#### Sample ID: SS-6

Matrix: Solid Percent Dry: 77% Results expressed on a dry weight basis.

Sampled: 6/15/11 15:00		Quant	1	Instr Dil'n	Prep	Ar	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
PCB-1016	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/1	1 20:53	SW3540C8082A
PCB-1221	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/1	1 20:53	SW3540C8082A
PCB-1232	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/1	1 20:53	SW3540C8082A
PCB-1242	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/1	1 20:53	SW3540C8082A
PCB-1248	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/1	1 20:53	SW3540C8082A
PCB-1254	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/1	1 20:53	SW3540C8082A
PCB-1260	< 0.1	0.1	ug/g	1	JLZ 6/20/11	4265 6/27/1	1 20:53	SW3540C8082A
Surrogate Recovery		Limits	S					
tetrachloro-m-xylene SUR	49	30-150	%	1	JLZ 6/20/11	4265 6/27/1	1 20:53	SW3540C8082A
decachlorobiphenyl SUR	56	30-150	%	1	JLZ 6/20/11	4265 6/27/1	1 20:53	SW3540C8082A

#### Sample#: 21796-008

Sample ID: SS-SUMP

Matrix: Solid Percent Dry: 72.7% Results expressed on a dry weight basis.

Sampled: 6/15/11 10:25		Quant	I	nstr Dil'n	Prep		Analy	/sis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
PCB-1016	< 0.1	0.1	ug/g	1	JLZ 6/21/11	4265 6	6/27/11	21:24	SW3540C8082A
PCB-1221	< 0.1	0.1	ug/g	1	JLZ 6/21/11	4265 6	6/27/11	21:24	SW3540C8082A
PCB-1232	< 0.1	0.1	ug/g	1	JLZ 6/21/11	4265 6	6/27/11	21:24	SW3540C8082A
PCB-1242	< 0.1	0.1	ug/g	1	JLZ 6/21/11	4265 6	6/27/11	21:24	SW3540C8082A
PCB-1248	< 0.1	0.1	ug/g	1	JLZ 6/21/11	4265 6	6/27/11	21:24	SW3540C8082A
PCB-1254	< 0.1	0.1	ug/g	1	JLZ 6/21/11	4265 6	6/27/11	21:24	SW3540C8082A
PCB-1260	< 0.1	0.1	ug/g	1	JLZ 6/21/11	4265 6	6/27/11	21:24	SW3540C8082A
Surrogate Recovery		Limits	5						
tetrachloro-m-xylene SUR	41	30-150	%	1	JLZ 6/21/11	4265 6	6/27/11	21:24	SW3540C8082A
decachlorobiphenyl SUR	4 *	30-150	%	1	JLZ 6/21/11	4265 6	6/27/11	21:24	SW3540C8082A

* This surrogate showed recovery outside the acceptance limits. Re-analysis showed similar results. Matrix interference suspected.



Job ID: 21796

Sample#: 21796-009

Sample ID: ASH-1

Matrix: Solid Percent Dry: 60.5% Results expressed on a dry weight basis.

Sampled: 6/15/11 15:10		Quant		Instr Dil'n	Prep	Α	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
PCB-1016	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6/27/1	1 23:57	SW3540C8082A
PCB-1221	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6/27/1	1 23:57	SW3540C8082A
PCB-1232	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6/27/1	1 23:57	SW3540C8082A
PCB-1242	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6/27/1	1 23:57	SW3540C8082A
PCB-1248	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6/27/1	1 23:57	SW3540C8082A
PCB-1254	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6/27/1	1 23:57	SW3540C8082A
PCB-1260	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6/27/1	1 23:57	SW3540C8082A
Surrogate Recovery		Limits	S					
tetrachloro-m-xylene SUR	41	30-150	%	1	JLZ 6/22/11	4274 6/27/1	1 23:57	SW3540C8082A
decachlorobiphenyl SUR	4 *	30-150	%	1	JLZ 6/22/11	4274 6/27/1	1 23:57	SW3540C8082A

* This surrogate showed recovery outside the acceptance limits. Re-analysis showed similar results. Matrix interference suspected.

#### Sample#: 21796-010

#### Sample ID: FILL-1

Matrix: Solid Percent Dry: 90% Results expressed on a dry weight basis.

Sampled: 6/15/11 14:45		Quant		Instr Dil'n	Prep	Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
PCB-1016	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6/28/11	0:28	SW3540C8082A
PCB-1221	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6/28/11	0:28	SW3540C8082A
PCB-1232	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6/28/11	0:28	SW3540C8082A
PCB-1242	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6/28/11	0:28	SW3540C8082A
PCB-1248	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6/28/11	0:28	SW3540C8082A
PCB-1254	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6/28/11	0:28	SW3540C8082A
PCB-1260	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6/28/11	0:28	SW3540C8082A
Surrogate Recovery		Limit	s					
tetrachloro-m-xylene SUR	51	30-150	%	1	JLZ 6/22/11	4274 6/28/11	0:28	SW3540C8082A
decachlorobiphenyl SUR	37	30-150	%	1	JLZ 6/22/11	4274 6/28/11	0:28	SW3540C8082A



Job ID: 21796

Sample#: 21796-011

Sample ID: FILL-2

Matrix: Solid Percent Dry: 88.7% Results expressed on a dry weight basis.

Sampled: 6/15/11 15:05		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
PCB-1016	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 (	6/28/11	17:10	SW3540C8082A
PCB-1221	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 (	6/28/11	17:10	SW3540C8082A
PCB-1232	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 (	6/28/11	17:10	SW3540C8082A
PCB-1242	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 (	6/28/11	17:10	SW3540C8082A
PCB-1248	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 (	6/28/11	17:10	SW3540C8082A
PCB-1254	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 (	6/28/11	17:10	SW3540C8082A
PCB-1260	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 (	6/28/11	17:10	SW3540C8082A
Surrogate Recovery		Limits	S						
tetrachloro-m-xylene SUR	59	30-150	%	1	JLZ 6/22/11	4274 (	6/28/11	17:10	SW3540C8082A
decachlorobiphenyl SUR	49	30-150	%	1	JLZ 6/22/11	4274 (	6/28/11	17:10	SW3540C8082A

### Sample#: 21796-012

Sample ID: FILL-3

Matrix: Solid

Percent Dry: 85.3% Results expressed on a dry weight basis.

Sampled: 6/15/11 15:15		Quant	1	Instr Dil'n	Prep		Analys	sis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
PCB-1016	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6	6/28/11	0:58	SW3540C8082A
PCB-1221	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6	6/28/11	0:58	SW3540C8082A
PCB-1232	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6	6/28/11	0:58	SW3540C8082A
PCB-1242	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6	6/28/11	0:58	SW3540C8082A
PCB-1248	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6	6/28/11	0:58	SW3540C8082A
PCB-1254	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6	6/28/11	0:58	SW3540C8082A
PCB-1260	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6	6/28/11	0:58	SW3540C8082A
Surrogate Recovery		Limits	5						
tetrachloro-m-xylene SUR	52	30-150	%	1	JLZ 6/22/11	4274 6	6/28/11	0:58	SW3540C8082A
decachlorobiphenyl SUR	44	30-150	%	1	JLZ 6/22/11	4274 6	6/28/11	0:58	SW3540C8082A



Job ID: 21796

Sample#: 21796-014

```
Sample ID: CC-1
```

Matrix: Solid Percent Dry: 96.7% Results expressed on a dry weight basis.

Sampled: 6/15/11 9:30		Quant		nstr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Da	e Time	Reference
PCB-1016	#	0.1	ug/g	1	JLZ 6/22/11	4274 6/28	/11 17:40	SW3540C8082A
PCB-1221	#	0.1	ug/g	1	JLZ 6/22/11	4274 6/28	/11 17:40	SW3540C8082A
PCB-1232	#	0.1	ug/g	1	JLZ 6/22/11	4274 6/28	/11 17:40	SW3540C8082A
PCB-1242	#	0.1	ug/g	1	JLZ 6/22/11	4274 6/28	/11 17:40	SW3540C8082A
PCB-1248	#	0.1	ug/g	1	JLZ 6/22/11	4274 6/28	/11 17:40	SW3540C8082A
PCB-1254	#	0.1	ug/g	1	JLZ 6/22/11	4274 6/28	'11 17:40	SW3540C8082A
PCB-1260	#	0.1	ug/g	1	JLZ 6/22/11	4274 6/28	/11 17:40	SW3540C8082A
Surrogate Recovery		Limits	5					
tetrachloro-m-xylene SUR	54	30-150	%	1	JLZ 6/22/11	4274 6/28	11 17:40	SW3540C8082A
decachlorobiphenyl SUR	11 *	30-150	%	1	JLZ 6/22/11	4274 6/28	'11 17:40	SW3540C8082A
PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 <b>Surrogate Recovery</b> tetrachloro-m-xylene SUR	# # # # 54	0.1 0.1 0.1 0.1 0.1 0.1 Limits 30-150	ug/g ug/g ug/g ug/g ug/g ug/g %	1 1 1	JLZ 6/22/11 JLZ 6/22/11 JLZ 6/22/11 JLZ 6/22/11 JLZ 6/22/11 JLZ 6/22/11 JLZ 6/22/11	4274 6/28 4274 6/28 4274 6/28 4274 6/28 4274 6/28 4274 6/28 4274 6/28	'11         17:40           '11         17:40           '11         17:40           '11         17:40           '11         17:40           '11         17:40           '11         17:40           '11         17:40           '11         17:40           '11         17:40           '11         17:40	SW3540C8082 SW3540C8082 SW3540C8082 SW3540C8082 SW3540C8082 SW3540C8082 SW3540C8082

* This surrogate showed recovery outside the acceptance limits. Re-analysis showed similar results. Matrix interference suspected.

# The aroclor pattern does not resemble one of the above aroclors. The result is being reported as PCB-N.O.S at 2.1 ug/g.

Sample#: 21796-015

#### Sample ID: CC-2

Matrix: Solid Percent Dry: 96.8% Results expressed on a dry weight basis.

Sampled: 6/15/11 10:00		Quant		Instr Dil'n	Prep	Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
PCB-1016	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6/28/11	18:11	SW3540C8082A
PCB-1221	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6/28/11	18:11	SW3540C8082A
PCB-1232	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6/28/11	18:11	SW3540C8082A
PCB-1242	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6/28/11	18:11	SW3540C8082A
PCB-1248	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6/28/11	18:11	SW3540C8082A
PCB-1254	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6/28/11	18:11	SW3540C8082A
PCB-1260	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274 6/28/11	18:11	SW3540C8082A
Surrogate Recovery		Limits	5					
tetrachloro-m-xylene SUR	38	30-150	%	1	JLZ 6/22/11	4274 6/28/11	18:11	SW3540C8082A
decachlorobiphenyl SUR	6 *	30-150	%	1	JLZ 6/22/11	4274 6/28/11	18:11	SW3540C8082A

* This surrogate showed recovery outside the acceptance limits. Re-analysis showed similar results. Matrix interference suspected.



Job ID: 21796

#### Sample#: 21796-016

Sample ID: CC-3

Matrix: Solid Percent Dry: 96.9% Results expressed on a dry weight basis.

Sampled: 6/15/11 9:50		Quant	1	Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
PCB-1016	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274	6/28/11	3:31	SW3540C8082A
PCB-1221	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274	6/28/11	3:31	SW3540C8082A
PCB-1232	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274	6/28/11	3:31	SW3540C8082A
PCB-1242	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274	6/28/11	3:31	SW3540C8082A
PCB-1248	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274	6/28/11	3:31	SW3540C8082A
PCB-1254	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274	6/28/11	3:31	SW3540C8082A
PCB-1260	< 0.1	0.1	ug/g	1	JLZ 6/22/11	4274	6/28/11	3:31	SW3540C8082A
Surrogate Recovery		Limits	5						
tetrachloro-m-xylene SUR	58	30-150	%	1	JLZ 6/22/11	4274	6/28/11	3:31	SW3540C8082A
decachlorobiphenyl SUR	31	30-150	%	1	JLZ 6/22/11	4274	6/28/11	3:31	SW3540C8082A

#### Sample#: 21796-017

Sample ID: CC-4

Matrix: Solid

Percent Dry: 94% Results expressed on a dry weight basis.

Sampled: 6/15/11 9:20		Quant	1	Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
PCB-1016	< 0.1	0.1	ug/g	1	JLZ 6/23/11	4274	6/28/11	18:42	SW3540C8082A
PCB-1221	< 0.1	0.1	ug/g	1	JLZ 6/23/11	4274	6/28/11	18:42	SW3540C8082A
PCB-1232	< 0.1	0.1	ug/g	1	JLZ 6/23/11	4274	6/28/11	18:42	SW3540C8082A
PCB-1242	< 0.1	0.1	ug/g	1	JLZ 6/23/11	4274	6/28/11	18:42	SW3540C8082A
PCB-1248	< 0.1	0.1	ug/g	1	JLZ 6/23/11	4274	6/28/11	18:42	SW3540C8082A
PCB-1254	< 0.1	0.1	ug/g	1	JLZ 6/23/11	4274	6/28/11	18:42	SW3540C8082A
PCB-1260	< 0.1	0.1	ug/g	1	JLZ 6/23/11	4274	6/28/11	18:42	SW3540C8082A
Surrogate Recovery		Limits	5						
tetrachloro-m-xylene SUR	48	30-150	%	1	JLZ 6/23/11	4274	6/28/11	18:42	SW3540C8082A
decachlorobiphenyl SUR	17 *	30-150	%	1	JLZ 6/23/11	4274	6/28/11	18:42	SW3540C8082A

* This surrogate showed recovery outside the acceptance limits. Re-analysis showed similar results. Matrix interference suspected.



Job ID: 21796

Sample#: 21796-018

#### Sample ID: CC-DUP

Matrix: Solid Percent Dry: 96.2% Results expressed on a dry weight basis.

Sampled: 6/15/11		Quant		Instr Dil'n	Prep	Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
PCB-1016	#	0.1	ug/g	1	JLZ 6/23/11	4274 6/28/11	19:12	SW3540C8082A
PCB-1221	#	0.1	ug/g	1	JLZ 6/23/11	4274 6/28/11	19:12	SW3540C8082A
PCB-1232	#	0.1	ug/g	1	JLZ 6/23/11	4274 6/28/11	19:12	SW3540C8082A
PCB-1242	#	0.1	ug/g	1	JLZ 6/23/11	4274 6/28/11	19:12	SW3540C8082A
PCB-1248	#	0.1	ug/g	1	JLZ 6/23/11	4274 6/28/11	19:12	SW3540C8082A
PCB-1254	#	0.1	ug/g	1	JLZ 6/23/11	4274 6/28/11	19:12	SW3540C8082A
PCB-1260	#	0.1	ug/g	1	JLZ 6/23/11	4274 6/28/11	19:12	SW3540C8082A
Surrogate Recovery		Limits	6					
tetrachloro-m-xylene SUR	51	30-150	%	1	JLZ 6/23/11	4274 6/28/11	19:12	SW3540C8082A
decachlorobiphenyl SUR	9 *	30-150	%	1	JLZ 6/23/11	4274 6/28/11	19:12	SW3540C8082A
PCB-1260 Surrogate Recovery tetrachloro-m-xylene SUR	# 51 9*	0.1 Limits 30-150 30-150	ug/g s %	1 1 1 1	JLZ 6/23/11 JLZ 6/23/11 JLZ 6/23/11	4274 6/28/11 4274 6/28/11 4274 6/28/11	19:12 19:12 19:12	SW3540C8082A SW3540C8082A SW3540C8082A

* This surrogate showed recovery outside the acceptance limits. Re-analysis showed similar results. Matrix interference suspected.

# The aroclor pattern does not resemble one of the above aroclors. The result is being reported as PCB-N.O.S at 2.1 ug/g.

Sample#: 21796-019

Sample ID: BM-01

Sampled: 6/15/11 11:10		Quant	1	Instr Dil'n	Prep	Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
PCB-1016	< 0.2	0.2	ug/g	1	JLZ 6/23/11	4274 6/28/11	6:35	SW3540C8082A
PCB-1221	< 0.2	0.2	ug/g	1	JLZ 6/23/11	4274 6/28/11	6:35	SW3540C8082A
PCB-1232	< 0.2	0.2	ug/g	1	JLZ 6/23/11	4274 6/28/11	6:35	SW3540C8082A
PCB-1242	< 0.2	0.2	ug/g	1	JLZ 6/23/11	4274 6/28/11	6:35	SW3540C8082A
PCB-1248	< 0.2	0.2	ug/g	1	JLZ 6/23/11	4274 6/28/11	6:35	SW3540C8082A
PCB-1254	< 0.2	0.2	ug/g	1	JLZ 6/23/11	4274 6/28/11	6:35	SW3540C8082A
PCB-1260	< 0.2	0.2	ug/g	1	JLZ 6/23/11	4274 6/28/11	6:35	SW3540C8082A
Surrogate Recovery		Limit	S					
tetrachloro-m-xylene SUR	74	30-150	%	1	JLZ 6/23/11	4274 6/28/11	6:35	SW3540C8082A
decachlorobiphenyl SUR	41	30-150	%	1	JLZ 6/23/11	4274 6/28/11	6:35	SW3540C8082A



Job ID: 21796

Sample#: 21796-020

Sample ID: CC-5

Matrix: Solid Percent Dry: 98% Results expressed on a dry weight basis.

Sampled: 6/15/11 9:40		Quant		Instr Dil'n	Prep	1	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Dat	e Time	Reference
PCB-1016	< 0.1	0.1	ug/g	1	JLZ 6/23/11	4274 6/28/	11 19:43	SW3540C8082A
PCB-1221	< 0.1	0.1	ug/g	1	JLZ 6/23/11	4274 6/28/	11 19:43	SW3540C8082A
PCB-1232	< 0.1	0.1	ug/g	1	JLZ 6/23/11	4274 6/28/	11 19:43	SW3540C8082A
PCB-1242	< 0.1	0.1	ug/g	1	JLZ 6/23/11	4274 6/28/	11 19:43	SW3540C8082A
PCB-1248	< 0.1	0.1	ug/g	1	JLZ 6/23/11	4274 6/28/	11 19:43	SW3540C8082A
PCB-1254	< 0.1	0.1	ug/g	1	JLZ 6/23/11	4274 6/28/	11 19:43	SW3540C8082A
PCB-1260	< 0.1	0.1	ug/g	1	JLZ 6/23/11	4274 6/28/	11 19:43	SW3540C8082A
Surrogate Recovery		Limits	S					
tetrachloro-m-xylene SUR	52	30-150	%	1	JLZ 6/23/11	4274 6/28/	11 19:43	SW3540C8082A
decachlorobiphenyl SUR	11 *	30-150	%	1	JLZ 6/23/11	4274 6/28/	11 19:43	SW3540C8082A

* This surrogate showed recovery outside the acceptance limits. Re-analysis showed similar results. Matrix interference suspected.

Sample#: 21796-021

Sample ID: BM-02

Sampled: 6/15/11 13:18		Quant		Instr Dil'n	Prep		Analy	vsis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
PCB-1016	< 0.2	0.2	ug/g	1	JLZ 6/23/11	4274 6	6/28/11	7:05	SW3540C8082A
PCB-1221	< 0.2	0.2	ug/g	1	JLZ 6/23/11	4274 6	6/28/11	7:05	SW3540C8082A
PCB-1232	< 0.2	0.2	ug/g	1	JLZ 6/23/11	4274 6	6/28/11	7:05	SW3540C8082A
PCB-1242	< 0.2	0.2	ug/g	1	JLZ 6/23/11	4274 6	6/28/11	7:05	SW3540C8082A
PCB-1248	< 0.2	0.2	ug/g	1	JLZ 6/23/11	4274 6	6/28/11	7:05	SW3540C8082A
PCB-1254	< 0.2	0.2	ug/g	1	JLZ 6/23/11	4274 6	6/28/11	7:05	SW3540C8082A
PCB-1260	< 0.2	0.2	ug/g	1	JLZ 6/23/11	4274 6	6/28/11	7:05	SW3540C8082A
Surrogate Recovery		Limit	s						
tetrachloro-m-xylene SUR	91	30-150	%	1	JLZ 6/23/11	4274 6	6/28/11	7:05	SW3540C8082A
decachlorobiphenyl SUR	52	30-150	%	1	JLZ 6/23/11	4274 6	6/28/11	7:05	SW3540C8082A



Job ID: 21796

Sample#: 21796-022

Sample ID: BM-DUP

Sampled: 6/15/11		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
PCB-1016	< 0.2	0.2	ug/g	1	JLZ 6/23/11	4274	6/28/11	6:04	SW3540C8082A
PCB-1221	< 0.2	0.2	ug/g	1	JLZ 6/23/11	4274	6/28/11	6:04	SW3540C8082A
PCB-1232	< 0.2	0.2	ug/g	1	JLZ 6/23/11	4274	6/28/11	6:04	SW3540C8082A
PCB-1242	< 0.2	0.2	ug/g	1	JLZ 6/23/11	4274	6/28/11	6:04	SW3540C8082A
PCB-1248	< 0.2	0.2	ug/g	1	JLZ 6/23/11	4274	6/28/11	6:04	SW3540C8082A
PCB-1254	< 0.2	0.2	ug/g	1	JLZ 6/23/11	4274	6/28/11	6:04	SW3540C8082A
PCB-1260	< 0.2	0.2	ug/g	1	JLZ 6/23/11	4274	6/28/11	6:04	SW3540C8082A
Surrogate Recovery		Limits	5						
tetrachloro-m-xylene SUR	93	30-150	%	1	JLZ 6/23/11	4274	6/28/11	6:04	SW3540C8082A
decachlorobiphenyl SUR	43	30-150	%	1	JLZ 6/23/11	4274	6/28/11	6:04	SW3540C8082A



Job ID: 21796

Sample#: 21796-001

Sample ID: SS-1

Matrix: Solid Percent Dry: 88.6% Results expressed on a dry weight basis.

Sampled: 6/15/11 11:33

Sampled: 6/15/11 11:33		Quant		Instr Dil'n	Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
TPH C10-C36	10000	220	ug/g	1	JLZ 6/22/11	4263 6/23/17	22:26	SW3550B8100m
Surrogate Recovery		Limits	5					
2-fluorobiphenyl SUR	47	40-140	%	1	JLZ 6/22/11	4263 6/23/17	22:26	SW3550B8100m
o-terphenyl SUR	89	40-140	%	1	JLZ 6/22/11	4263 6/23/17	22:26	SW3550B8100m

Sample#: 21796-0 Sample ID: SS-2 Matrix: Solid		/: 76.1%	a Results e	express	sed on a d	dry weight basis				
Sampled: 6/15/11	11:55		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter		Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36		1300	250	ug/g	1	JLZ 6/22/11	4263	6/23/11	21:21	SW3550B8100m
Surrogate Recovery			Limits							
2-fluorobiphenyl SUR		101	40-140	%	1	JLZ 6/22/11	4263	6/23/11	21:21	SW3550B8100m
o-terphenyl SUR		127	40-140	%	1	JLZ 6/22/11	4263	6/23/11	21:21	SW3550B8100m

Note: The RPD for the sample duplicate, run as internal QC, was outside the 20% acceptance range. The analysis with the higher value has been reported.

Sample#: 21796-00 Sample ID: SS-3	03										
Matrix: Solid	Percent Dry:	: 81.9%	Results	express	sed on a	drv weig	ht basis				
Sampled: 6/15/11	11:55		Quant	•	Instr Dil'n	, ,	Prep		Anal	veie	
Parameter	F	Result	Limit	Units	Factor	Analyst		Batch	Date	Time	Reference
TPH C10-C36	<	< 240	240	ug/g	1	-	6/22/11	4263	6/23/11	20:31	SW3550B8100m
Surrogate Recovery			Limits								
2-fluorobiphenyl SUR		78	40-140	%	1	JLZ 6	6/22/11	4263	6/23/11	20:31	SW3550B8100m
o-terphenyl SUR		98	40-140	%	1	JLZ 6	6/22/11	4263	6/23/11	20:31	SW3550B8100m
Sample#: 21796-00 Sample ID: SS-4 Matrix: Solid	04 Percent Dry:	: 91.2%	Results	express	sed on a c	dry weig	ht basis				
Sampled: 6/15/11	11:50		Quant		Instr Dil'n		Prep		Anal	ysis	
Parameter	F	Result	Limit	Units	Factor	Analyst		Batch	Date	Time	Reference
TPH C10-C36		890	210	ug/g	1	JLZ 6	6/22/11	4263	6/23/11	22:42	SW3550B8100m
Surrogate Recovery			Limits	6							
2-fluorobiphenyl SUR		89	40-140	%	1	JLZ 6	6/22/11	4263	6/23/11	22:42	SW3550B8100m
o-terphenyl SUR		89	40-140	%	1	JLZ 6	6/22/11	4263	6/23/11	22:42	SW3550B8100m



Job ID: 21796

Sample#: 21796-005

Sample ID: SS-5

Percent Dry: 75% Results expressed on a dry weight basis. Matrix: Solid

Sampled: 6/15/11 11:25		Quant		Instr Dil'n	Prep	A	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
TPH C10-C36	< 250	250	ug/g	1	JLZ 6/22/11	4263 6/23/	1 19:09	SW3550B8100m
Surrogate Recovery		Limits	5					
2-fluorobiphenyl SUR	94	40-140	%	1	JLZ 6/22/11	4263 6/23/	1 19:09	SW3550B8100m
o-terphenyl SUR	120	40-140	%	1	JLZ 6/22/11	4263 6/23/	1 19:09	SW3550B8100m

Sample#: 21796-006 Sample ID: SS-DUP Matrix: Solid	Percent Dry: 89.4%	6 Results	express	sed on a	dry weight basis.				
Sampled: 6/15/11		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36	10000	210	ug/g	1	JLZ 6/22/11	4263	6/23/11	22:59	SW3550B8100m
Surrogate Recovery		Limit	s						
2-fluorobiphenyl SUR	47	40-140	%	1	JLZ 6/22/11	4263	6/23/11	22:59	SW3550B8100m
o-terphenyl SUR	85	40-140	%	1	JLZ 6/22/11	4263	6/23/11	22:59	SW3550B8100m

Sample#: 21796-007

Sample ID: SS-6

Percent Dry: 77% Results expressed on a dry weight basis. Matrix: Solid

Sampled: 6/15/11 15:00		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36	< 250	250	ug/g	1	JLZ 6/22/11	4263	6/23/11	20:48	SW3550B8100m
Surrogate Recovery		Limits	5						
2-fluorobiphenyl SUR	80	40-140	%	1	JLZ 6/22/11	4263	6/23/11	20:48	SW3550B8100m
o-terphenyl SUR	99	40-140	%	1	JLZ 6/22/11	4263	6/23/11	20:48	SW3550B8100m

Sample#: 21796-008 Sample ID: SS-SUMP Matrix: Solid Percent	t Dry: 72.7%	6 Results	express	sed on a	dry weight basis.				
Sampled: 6/15/11 10:25		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36	30000	2700	ug/g	10	JLZ 6/22/11	4263	6/24/11	15:05	SW3550B8100m
Surrogate Recovery		Limits	6						
2-fluorobiphenyl SUR	DOR	40-140	%	10	JLZ 6/22/11	4263	6/24/11	15:05	SW3550B8100m
o-terphenyl SUR	DOR	40-140	%	10	JLZ 6/22/11	4263	6/24/11	15:05	SW3550B8100m
DOR = Diluted out of range.									



Job ID: 21796

Sample#: 21796-009

Sample ID: ASH-1

Matrix: Solid Percent Dry: 60.5% Results expressed on a dry weight basis.

Sampled: 6/15/11 15:10

•				i ji në gjit zelën
/15/11	15:10	Quant	Instr Dil'n	Pren

Sampled: 6/15/11 15:10		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36	23000	3300	ug/g	10	JLZ 6/22/11	4263	6/24/11	15:22	SW3550B8100m
Surrogate Recovery		Limits	5						
2-fluorobiphenyl SUR	DOR	40-140	%	10	JLZ 6/22/11	4263	6/24/11	15:22	SW3550B8100m
o-terphenyl SUR	DOR	40-140	%	10	JLZ 6/22/11	4263	6/24/11	15:22	SW3550B8100m

# DOR = Diluted out of range.

Sample#: 21796-07	10
Sample ID: FILL-1	

Matrix: Solid Percent Dry: 90% Results expressed on a dry weight basis.

Sampled: 6/15/11 14:45		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36	< 220	220	ug/g	1	JLZ 6/22/11	4263 6	6/24/11	14:39	SW3550B8100m
Surrogate Recovery		Limits	6						
2-fluorobiphenyl SUR	98	40-140	%	1	JLZ 6/22/11	4263 6	6/24/11	14:39	SW3550B8100m
o-terphenyl SUR	105	40-140	%	1	JLZ 6/22/11	4263 6	6/24/11	14:39	SW3550B8100m

Sample#: 21796-011

Sample ID: FILL-2

Matrix: Solid Percent Dry: 88.7% Results expressed on a dry weight basis.

Sampled: 6/15/11 15:05		Quant		nstr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36	< 210	210	ug/g	1	JLZ 6/22/11	4263	6/24/11	0:04	SW3550B8100m
Surrogate Recovery		Limits	6						
2-fluorobiphenyl SUR	126	40-140	%	1	JLZ 6/22/11	4263	6/24/11	0:04	SW3550B8100m
o-terphenyl SUR	126	40-140	%	1	JLZ 6/22/11	4263	6/24/11	0:04	SW3550B8100m

Sample#: 21796-012

Sample ID: FILL-3

Matrix: Solid Percent Dry: 85.3% Results expressed on a dry weight basis.

Sampled: 6/15/11 15:15		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36	< 230	230	ug/g	1	JLZ 6/22/11	4263	6/24/11	0:20	SW3550B8100m
Surrogate Recovery		Limits	5						
2-fluorobiphenyl SUR	84	40-140	%	1	JLZ 6/22/11	4263	6/24/11	0:20	SW3550B8100m
o-terphenyl SUR	85	40-140	%	1	JLZ 6/22/11	4263	6/24/11	0:20	SW3550B8100m



Job ID: 21796

Sample#: 21796-001

Sample ID: SS-1

Matrix: Solid Percent Dry: 88.6% Results expressed on a dry weight basis.

Sampled: 6/15/11 11:33		Quant		Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Da	te Time	Reference
Arsenic	2.7	0.6	ug/g	1	BJS 6/23/11	4276 6/23	/11 20:00	SW3051A6010C
Barium	18	3	ug/g	1	BJS 6/23/11	4276 6/23	/11 20:00	SW3051A6010C
Cadmium	< 0.2	0.2	ug/g	1	BJS 6/23/11	4276 6/23	/11 20:00	SW3051A6010C
Chromium	7	3	ug/g	1	BJS 6/23/11	4276 6/23	/11 20:00	SW3051A6010C
Lead	26	0.6	ug/g	1	BJS 6/23/11	4276 6/23	/11 20:00	SW3051A6010C
Mercury	< 0.12	0.12	ug/g	1	AJD 6/24/11	4279 6/24	/11 14:41	SW7471B
Selenium	< 3	3	ug/g	1	BJS 6/23/11	4276 6/23	/11 20:00	SW3051A6010C
Silver	< 0.4	0.4	ug/g	1	BJS 6/23/11	4276 6/23	/11 20:00	SW3051A6010C

#### Sample#: 21796-002

Sample ID: SS-2

Matrix: Solid Percent Dry: 76.1% Results expressed on a dry weight basis.

Sampled: 6/15/11 11:55		Quant		Instr Dil'n	Prep	А	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
Arsenic	3.9	0.7	ug/g	1	BJS 6/23/11	4276 6/23/1	1 20:07	SW3051A6010C
Barium	44	3	ug/g	1	BJS 6/23/11	4276 6/23/1	1 20:07	SW3051A6010C
Cadmium	< 0.3	0.3	ug/g	1	BJS 6/23/11	4276 6/23/1	1 20:07	SW3051A6010C
Chromium	12	3	ug/g	1	BJS 6/23/11	4276 6/23/1	1 20:07	SW3051A6010C
Lead	44	0.7	ug/g	1	BJS 6/23/11	4276 6/23/1	1 20:07	SW3051A6010C
Mercury	< 0.10	0.10	ug/g	1	AJD 6/24/11	4279 6/24/1	1 14:43	SW7471B
Selenium	< 3	3	ug/g	1	BJS 6/23/11	4276 6/23/1	1 20:07	SW3051A6010C
Silver	< 0.5	0.5	ug/g	1	BJS 6/23/11	4276 6/23/1	1 20:07	SW3051A6010C

#### Sample#: 21796-003

Matrix: Solid Percent Dry: 81.9% Results expressed on a dry weight basis.

Sampled: 6/15/11 11:55		Quant		nstr Dil'n	Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
Arsenic	3.3	0.6	ug/g	1	BJS 6/23/11	4276 6/23/11	20:14	SW3051A6010C
Barium	31	3	ug/g	1	BJS 6/23/11	4276 6/23/11	20:14	SW3051A6010C
Cadmium	< 0.3	0.3	ug/g	1	BJS 6/23/11	4276 6/23/11	20:14	SW3051A6010C
Chromium	10	3	ug/g	1	BJS 6/23/11	4276 6/23/11	20:14	SW3051A6010C
Lead	31	0.6	ug/g	1	BJS 6/23/11	4276 6/23/11	20:14	SW3051A6010C
Mercury	< 0.12	0.12	ug/g	1	AJD 6/24/11	4279 6/24/11	14:45	SW7471B
Selenium	< 3	3	ug/g	1	BJS 6/23/11	4276 6/23/11	20:14	SW3051A6010C
Silver	< 0.4	0.4	ug/g	1	BJS 6/23/11	4276 6/23/11	20:14	SW3051A6010C



Sample ID: SS-3

Job ID: 21796

#### Sample#: 21796-004

Sample ID: SS-4

Matrix: Solid Percent Dry: 91.2% Results expressed on a dry weight basis.

Sampled: 6/15/11 11:50		Quant		Instr Dil'n	Prep	Α	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
Arsenic	7.1	0.6	ug/g	1	BJS 6/23/11	4276 6/23/1	1 20:20	SW3051A6010C
Barium	37	3	ug/g	1	BJS 6/23/11	4276 6/23/1	1 20:20	SW3051A6010C
Cadmium	0.3	0.2	ug/g	1	BJS 6/23/11	4276 6/23/1	1 20:20	SW3051A6010C
Chromium	11	3	ug/g	1	BJS 6/23/11	4276 6/23/1	1 20:20	SW3051A6010C
Lead	84	0.6	ug/g	1	BJS 6/23/11	4276 6/23/1	1 20:20	SW3051A6010C
Mercury	< 0.11	0.11	ug/g	1	AJD 6/24/11	4279 6/24/1	1 14:46	SW7471B
Selenium	< 3	3	ug/g	1	BJS 6/23/11	4276 6/23/1	1 20:20	SW3051A6010C
Silver	< 0.4	0.4	ug/g	1	BJS 6/23/11	4276 6/23/1	1 20:20	SW3051A6010C

#### Sample#: 21796-005

Sample ID: SS-5

Matrix: Solid Percent Dry: 75% Results expressed on a dry weight basis.

Sampled: 6/15/11 11:25		Quant		Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Dat	e Time	Reference
Arsenic	5.7	0.7	ug/g	1	BJS 6/23/11	4276 6/23/	11 20:39	SW3051A6010C
Barium	92	3	ug/g	1	BJS 6/23/11	4276 6/23/	11 20:39	SW3051A6010C
Cadmium	< 0.3	0.3	ug/g	1	BJS 6/23/11	4276 6/23/	11 20:39	SW3051A6010C
Chromium	23	3	ug/g	1	BJS 6/23/11	4276 6/23/	11 20:39	SW3051A6010C
Lead	30	0.7	ug/g	1	BJS 6/23/11	4276 6/23/	11 20:39	SW3051A6010C
Mercury	< 0.09	0.09	ug/g	1	AJD 6/24/11	4279 6/24/	11 14:48	SW7471B
Selenium	< 3	3	ug/g	1	BJS 6/23/11	4276 6/23/	11 20:39	SW3051A6010C
Silver	< 0.5	0.5	ug/g	1	BJS 6/23/11	4276 6/23/	11 20:39	SW3051A6010C

#### Sample#: 21796-006

Matrix: Solid Percent Dry: 89.4% Results expressed on a dry weight basis.

Sampled: 6/15/11		Quant	Instr Dil'n		Prep	Analysis			
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	2.9	0.6	ug/g	1	BJS 6/23/11	4276	6/23/11	20:47	SW3051A6010C
Barium	19	3	ug/g	1	BJS 6/23/11	4276	6/23/11	20:47	SW3051A6010C
Cadmium	< 0.2	0.2	ug/g	1	BJS 6/23/11	4276	6/23/11	20:47	SW3051A6010C
Chromium	7	3	ug/g	1	BJS 6/23/11	4276	6/23/11	20:47	SW3051A6010C
Lead	34	0.6	ug/g	1	BJS 6/23/11	4276	6/23/11	20:47	SW3051A6010C
Mercury	< 0.11	0.11	ug/g	1	AJD 6/24/11	4279	6/24/11	14:50	SW7471B
Selenium	< 3	3	ug/g	1	BJS 6/23/11	4276	6/23/11	20:47	SW3051A6010C
Silver	< 0.4	0.4	ug/g	1	BJS 6/23/11	4276	6/23/11	20:47	SW3051A6010C



Sample ID: SS-DUP

Job ID: 21796

#### Sample#: 21796-007

Sample ID: SS-6

Matrix: Solid Percent Dry: 77% Results expressed on a dry weight basis.

Sampled: 6/15/11 15:00		Quant		nstr Dil'n	Prep		Analy	vsis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	4.6	0.7	ug/g	1	BJS 6/23/11	4276 6	/23/11	20:54	SW3051A6010C
Barium	56	3	ug/g	1	BJS 6/23/11	4276 6	/23/11	20:54	SW3051A6010C
Cadmium	0.4	0.3	ug/g	1	BJS 6/23/11	4276 6	/23/11	20:54	SW3051A6010C
Chromium	9	3	ug/g	1	BJS 6/23/11	4276 6	/23/11	20:54	SW3051A6010C
Lead	110	0.7	ug/g	1	BJS 6/23/11	4276 6	/23/11	20:54	SW3051A6010C
Mercury	0.22	0.14	ug/g	1	AJD 6/24/11	4279 6	/24/11	14:52	SW7471B
Selenium	< 3	3	ug/g	1	BJS 6/23/11	4276 6	/23/11	20:54	SW3051A6010C
Silver	< 0.5	0.5	ug/g	1	BJS 6/23/11	4276 6	/23/11	20:54	SW3051A6010C

#### Sample#: 21796-008

Sample ID: SS-SUMP

Matrix: Solid Percent Dry: 72.7% Results expressed on a dry weight basis.

Sampled: 6/15/11 10:25		Quant		Instr Dil'n	Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
Arsenic	10.0	0.7	ug/g	1	BJS 6/23/11	4276 6/23/1	1 21:02	SW3051A6010C
Barium	140	4	ug/g	1	BJS 6/23/11	4276 6/23/1	1 21:02	SW3051A6010C
Cadmium	4.6	0.3	ug/g	1	BJS 6/23/11	4276 6/23/1	1 21:02	SW3051A6010C
Chromium	90	4	ug/g	1	BJS 6/23/11	4276 6/23/1	1 21:02	SW3051A6010C
Lead	150	0.7	ug/g	1	BJS 6/23/11	4276 6/23/1	1 21:02	SW3051A6010C
Mercury	< 0.09	0.09	ug/g	1	AJD 6/24/11	4279 6/24/1	1 14:53	SW7471B
Selenium	< 4	4	ug/g	1	BJS 6/23/11	4276 6/23/1	1 21:02	SW3051A6010C
Silver	< 0.5	0.5	ug/g	1	BJS 6/23/11	4276 6/23/1	1 21:02	SW3051A6010C

#### Sample#: 21796-009

Matrix: Solid Percent Dry: 60.5% Results expressed on a dry weight basis.

Sampled: 6/15/11 15:10		Quant		nstr Dil'n	Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
Arsenic	5.6	0.9	ug/g	1	BJS 6/23/11	4276 6/23/1	1 21:10	SW3051A6010C
Barium	610	4	ug/g	1	BJS 6/23/11	4276 6/23/1	1 21:10	SW3051A6010C
Cadmium	2.5	0.4	ug/g	1	BJS 6/23/11	4276 6/23/1	1 21:10	SW3051A6010C
Chromium	38	4	ug/g	1	BJS 6/23/11	4276 6/23/1	1 21:10	SW3051A6010C
Lead	330	0.9	ug/g	1	BJS 6/23/11	4276 6/23/1	1 21:10	SW3051A6010C
Mercury	< 0.17	0.17	ug/g	1	AJD 6/24/11	4279 6/24/1	1 14:55	SW7471B
Selenium	< 4	4	ug/g	1	BJS 6/23/11	4276 6/23/1	1 21:10	SW3051A6010C
Silver	2.0	0.6	ug/g	1	BJS 6/23/11	4276 6/23/1	1 21:10	SW3051A6010C



Sample ID: ASH-1

Job ID: 21796

Sample#: 21796-010

Sample ID: FILL-1

Matrix: Solid Percent Dry: 90% Results expressed on a dry weight basis.

Sampled: 6/15/11 14:45		Quant		Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch I	Date Time	Reference
Arsenic	11	0.6	ug/g	1	BJS 6/23/11	4276 6/2	23/11 21:17	SW3051A6010C
Barium	100	3	ug/g	1	BJS 6/23/11	4276 6/2	23/11 21:17	SW3051A6010C
Cadmium	0.6	0.2	ug/g	1	BJS 6/23/11	4276 6/2	23/11 21:17	SW3051A6010C
Chromium	14	3	ug/g	1	BJS 6/23/11	4276 6/2	23/11 21:17	SW3051A6010C
Lead	650	0.6	ug/g	1	BJS 6/23/11	4276 6/2	23/11 21:17	SW3051A6010C
Mercury	0.15	0.13	ug/g	1	AJD 6/24/11	4279 6/2	24/11 14:57	SW7471B
Selenium	< 3	3	ug/g	1	BJS 6/23/11	4276 6/2	23/11 21:17	SW3051A6010C
Silver	< 0.4	0.4	ug/g	1	BJS 6/23/11	4276 6/2	23/11 21:17	SW3051A6010C

#### Sample#: 21796-011

Sample ID: FILL-2

Matrix: Solid Percent Dry: 88.7% Results expressed on a dry weight basis.

Sampled: 6/15/11 15:05		Quant		Instr Dil'n	Prep	Ar	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
Arsenic	29	0.6	ug/g	1	BJS 6/23/11	4276 6/23/1	1 21:25	SW3051A6010C
Barium	95	3	ug/g	1	BJS 6/23/11	4276 6/23/1	1 21:25	SW3051A6010C
Cadmium	0.7	0.2	ug/g	1	BJS 6/23/11	4276 6/23/1	1 21:25	SW3051A6010C
Chromium	15	3	ug/g	1	BJS 6/23/11	4276 6/23/1	1 21:25	SW3051A6010C
Lead	560	0.6	ug/g	1	BJS 6/23/11	4276 6/23/1	1 21:25	SW3051A6010C
Mercury	< 0.13	0.13	ug/g	1	AJD 6/24/11	4279 6/24/1	1 15:04	SW7471B
Selenium	< 3	3	ug/g	1	BJS 6/23/11	4276 6/23/1	1 21:25	SW3051A6010C
Silver	< 0.4	0.4	ug/g	1	BJS 6/23/11	4276 6/23/1	1 21:25	SW3051A6010C

#### Sample#: 21796-012

Matrix: Solid Percent Dry: 85.3% Results expressed on a dry weight basis.

Sampled: 6/15/11 15:15		Quant	1	nstr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch D	ate Time	Reference
Arsenic	4.6	0.6	ug/g	1	BJS 6/23/11	4276 6/2	3/11 21:32	SW3051A6010C
Barium	180	3	ug/g	1	BJS 6/23/11	4276 6/2	3/11 21:32	SW3051A6010C
Cadmium	1.2	0.2	ug/g	1	BJS 6/23/11	4276 6/2	3/11 21:32	SW3051A6010C
Chromium	20	3	ug/g	1	BJS 6/23/11	4276 6/2	3/11 21:32	SW3051A6010C
Lead	500	0.6	ug/g	1	BJS 6/23/11	4276 6/2	3/11 21:32	SW3051A6010C
Mercury	0.21	0.12	ug/g	1	AJD 6/24/11	4279 6/2	4/11 15:06	SW7471B
Selenium	< 3	3	ug/g	1	BJS 6/23/11	4276 6/2	3/11 21:32	SW3051A6010C
Silver	< 0.4	0.4	ug/g	1	BJS 6/23/11	4276 6/2	3/11 21:32	SW3051A6010C



Sample ID: FILL-3

Job ID: 21796

Sample#: 21796-013

Sample ID: SUMP

Matrix: Water

Sampled: 6/15/11 10:20		Quant		Instr Dil'n	Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
Arsenic	< 0.008	0.008	mg/L	1	BJS 6/20/11	4260 6/20/11	19:22	SW3005A6010C
Barium	< 0.05	0.05	mg/L	1	BJS 6/20/11	4260 6/20/11	19:22	SW3005A6010C
Cadmium	< 0.004	0.004	mg/L	1	BJS 6/20/11	4260 6/20/11	19:22	SW3005A6010C
Chromium	< 0.05	0.05	mg/L	1	BJS 6/20/11	4260 6/20/11	19:22	SW3005A6010C
Lead	0.010	0.008	mg/L	1	BJS 6/20/11	4260 6/20/11	19:22	SW3005A6010C
Mercury	< 0.0002	0.0002	mg/L	1	BJS 6/23/11	4273 6/23/11	15:58	SW7470A
Selenium	< 0.05	0.05	mg/L	1	BJS 6/20/11	4260 6/20/11	19:22	SW3005A6010C
Silver	< 0.007	0.007	mg/L	1	BJS 6/20/11	4260 6/20/11	19:22	SW3005A6010C



# **Quality Control Report**



124 Heritage Avenue Unit 10 Portsmouth, NH 03801 www.absoluteresourceassociates.com

# Absolute Resource

associates

#### Case Narrative Lab # 21796



#### Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 5 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

#### Calibration

No exceptions noted.

#### **Method Blank**

No exceptions noted.

#### Surrogate Recoveries

PAH: The percent recovery for the extraction surrogates in samples 21796-002, -005, and -009 were above the acceptance criteria. Since no targets were detected above the quantitation limit, there is no impact to the data.

VOC: Sample 21796-008 did not meet acceptance criteria for the surrogate a,a,a-trifluorotoluene. The sample was re-analyzed and the results were similar. Matrix interference is suspected.

PCB: Sample 21796-001, -002, -006, -008, -009, -014, -015, -017, -018, and -020 did not meet acceptance criteria for the surrogate decachlorobiphenyl. The sample was re-extracted and the results were similar. Matrix interference is suspected.

TPH: The surrogates were unable to be evaluated for 21796-008 and -009 due to the dilution that was necessary for the analysis. The surrogates were diluted out of the range of the analysis as noted on the report pages.

#### Laboratory Control Sample Results

VOC: The LCSD1101207 did not meet the acceptance criteria for bromomethane. The LCS/D1101207 did not meet the acceptance criteria for 1,4-dioxane. These compounds showed high recovery. There is no impact to the data as these analytes were not detected in the associated samples.

VOC: The MLCS/D4261 did not meet the acceptance criteria for dichlorodifluoromethane, chloromethane, vinyl chloride, bromomethane, chloroethane, trichlorofluoromethane, 1,1-dichloroethene and carbon disulfide. These failures were determined to be the result of a degraded standard. The newly prepared standard produced acceptable results. No impact to the data suspected.

#### Matrix Spike/Matrix Spike Duplicate/Duplicate Results

TPH: The relative percent difference for the duplicate analysis, performed on the following sample as internal QC, 21796-002 was outside the acceptance criteria. The higher value has been reported. Sample heterogeneity suspected.

#### Other

PAH: The following samples required a re-analysis at a dilution due to internal standard interferences caused by matrix effect: 21796-004.

PAH: Sample dilution was required for 21796-008 due to interferences caused by hydrocarbons in the sample.

PCB: The aroclor pattern for sample 21796-018 did not resemble any of the reportable aroclors. Mass spectrometer analysis confirmed presence of polychlorinated analytes. The reported concentration was reported as PCB-N.O.S. (Not Otherwise Specified).

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

# - QC Report -

Method	QC ID	Parameter /	Associated Sample	_	Result	Units Amt Added	%R	Limits	RPD	RPD Limit
SW5030B8260B	BLK1101207	dichlorodifluoromethane		<	2	ug/L				
		chloromethane		<	2	ug/L				
		vinyl chloride		<	2	ug/L				
		bromomethane		<	2	ug/L				
		chloroethane		<	2	ug/L				
		trichlorofluoromethane		<	2	ug/L				
		diethyl ether		<	10	ug/L				
		acetone		<	50	ug/L				
		1,1-dichloroethene		<	1	ug/L				
		methylene chloride		<	5	ug/L				
		carbon disulfide		<	2	ug/L				
		methyl t-butyl ether (MTBE)		<	2	ug/L				
		trans-1,2-dichloroethene		<	2	ug/L				
		isopropyl ether (DIPE)		<	2	ug/L				
		ethyl t-butyl ether (ETBE)		<	2	ug/L				
		1,1-dichloroethane		<	2	ug/L				
		t-butanol (TBA)		<	30	ug/L				
		2-butanone (MEK)		<	10	ug/L				
		2,2-dichloropropane		<	2	ug/L				
		cis-1,2-dichloroethene		<	2	ug/L				
		chloroform		<	2	ug/L				
		bromochloromethane		<	2	ug/L				
		tetrahydrofuran (THF)		<	10	ug/L				
		1,1,1-trichloroethane		<	2	ug/L				
		1,1-dichloropropene		<	2	ug/L				
		t-amyl-methyl ether (TAME)		<	2	ug/L				
		carbon tetrachloride		<	2	ug/L				
		1,2-dichloroethane		<	2	ug/L				
		benzene		<	2	ug/L				
		trichloroethene		<	2	ug/L				
		1,2-dichloropropane		<	2	ug/L				
		bromodichloromethane		<	0.6	ug/L				
		1,4-dioxane		<	50	ug/L				
		dibromomethane		<	2	ug/L				
		4-methyl-2-pentanone (MIBł	()	<	10	ug/L				
		cis-1,3-dichloropropene		<	2	ug/L				
		toluene		<	2	ug/L				
		trans-1,3-dichloropropene		<	2	ug/L				
		2-hexanone		<	10	ug/L				
		1,1,2-trichloroethane		<	2	ug/L				
		1,3-dichloropropane		<	2	ug/L				
		tetrachloroethene		<	2	ug/L				
		dibromochloromethane		<	2	ug/L				
		1,2-dibromoethane (EDB)		<	2	ug/L				
		chlorobenzene		<	2	ug/L				
		1,1,1,2-tetrachloroethane		<	2	ug/L				
		ethylbenzene		<	2	ug/L				
		m&p-xylenes		<	2	ug/L				
		o-xylene		<	2	ug/L				
		styrene		<	2	ug/L				
					L	~g [,] −				. 1/



Method	QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Liı	mits	RPD	RPD Limit
SW5030B8260E	3 BLK1101207	bromoform		<	2	ug/L					
		isopropylbenzene		<	2	ug/L					
		1,1,2,2-tetrachloroethane		<	2	ug/L					
		1,2,3-trichloropropane		<	2	ug/L					
		n-propylbenzene		<	2	ug/L					
		bromobenzene		<	2	ug/L					
		1,3,5-trimethylbenzene		<	2	ug/L					
		2-chlorotoluene		<	2	ug/L					
		4-chlorotoluene		<	2	ug/L					
		tert-butylbenzene		<	2	ug/L					
		1,2,4-trimethylbenzene		<	2	ug/L					
		sec-butylbenzene		<	2	ug/L					
		1,3-dichlorobenzene		<	2	ug/L					
		4-isopropyltoluene		<	2	ug/L					
		1,4-dichlorobenzene		<	2	ug/L					
		1,2-dichlorobenzene		<	2	ug/L					
		n-butylbenzene		<	2	ug/L					
		1,2-dibromo-3-chloropropa	ane	<	2	ug/L					
		1,2,4-trichlorobenzene		<	2	ug/L					
		1,3,5-trichlorobenzene		<	2	ug/L					
		hexachlorobutadiene		<	0.5	ug/L					
		naphthalene		<	5	ug/L					
		1,2,3-trichlorobenzene		<	2	ug/L					
		dibromofluoromethane SU	IR		93	%		78	114		
		toluene-D8 SUR			98	%		88	110		
		4-bromofluorobenzene SU	IR		101	%		86	115		



Method	QC ID	Parameter	Associated Sample		Result	Units A	Mat Added	%R	Li	mits	RPD	RPD Limi
SW5030B8260B	LCS1101207	dichlorodifluoromethane			15	ug/L	20	77	70	130		
		chloromethane			19	ug/L	20	97	70	130		
		vinyl chloride			15	ug/L	20	76	70	130		
		bromomethane			42	ug/L	40	105	70	130		
		chloroethane			20	ug/L	20	98	70	130		
		trichlorofluoromethane			17	ug/L	20	87	70	130		
		diethyl ether			20	ug/L	20	98	70	130		
		acetone		<	50	ug/L	20	86				
		1,1-dichloroethene			16	ug/L	20	79	70	130		
		methylene chloride			18	ug/L	20	91	70	130		
		carbon disulfide			14	ug/L	20	71	70	130		
		methyl t-butyl ether (MTBE	E)		19	ug/L	20	95	70	130		
		trans-1,2-dichloroethene			18	ug/L	20	88	70	130		
		isopropyl ether (DIPE)			19	ug/L	20	96	70	130		
		ethyl t-butyl ether (ETBE)			19	ug/L	20	93	70	130		
		1,1-dichloroethane			17	ug/L	20	86	70	130		
		t-butanol (TBA)			120	ug/L	100	121	70	130		
		2-butanone (MEK)			18	ug/L	20	91	70	130		
		2,2-dichloropropane			18	ug/L	20	90	70	130		
		cis-1,2-dichloroethene			20	ug/L	20	100	70	130		
		chloroform			20	ug/L	20	99	70	130		
		bromochloromethane			20	ug/L	20	99	70	130		
		tetrahydrofuran (THF)			22	ug/L	20	112	70	130		
		1,1,1-trichloroethane			18	ug/L	20	90	70	130		
		1,1-dichloropropene			19	ug/L	20	93	70	130		
		t-amyl-methyl ether (TAME	E)		20	ug/L	20	98	70	130		
		carbon tetrachloride	/		16	ug/L	20	79	70	130		
		1,2-dichloroethane			20	ug/L	20	98	70	130		
		benzene			19	ug/L	20	97	70	130		
		trichloroethene			18	ug/L	20	92	70	130		
		1,2-dichloropropane			18	ug/L	20	89	70	130		
		bromodichloromethane			17	ug/L	20	85	70	130		
		1,4-dioxane			62	ug/L	40	156	* 70	130		
		dibromomethane			17	ug/L	20	86	70	130		
		4-methyl-2-pentanone (MI	3K)		19	ug/L	20	94	70	130		
		cis-1,3-dichloropropene	,		18	ug/L	20	90	70	130		
		toluene			19	ug/L	20	96	70	130		
		trans-1,3-dichloropropene			18	ug/L	20	89	70	130		
		2-hexanone			19	ug/L	20	93	70	130		
		1,1,2-trichloroethane			17	ug/L	20	87	70	130		
		1,3-dichloropropane			19	ug/L	20	95	70	130		
		tetrachloroethene			20	ug/L	20	101	70	130		
		dibromochloromethane			15	ug/L	20	73	70	130		
		1,2-dibromoethane (EDB)			18	ug/L	20	91	70	130		
		chlorobenzene			19	ug/L	20	94	70	130		
		1,1,1,2-tetrachloroethane			17	ug/L	20	84	70	130		
		ethylbenzene			21	ug/L	20	105	70	130		
		m&p-xylenes			41	ug/L	40	103	70	130		
		o-xylene			21	ug/L	20	103	70	130		
		styrene			18	ug/L	20	90	70	130		
		bromoform			13	ug/L	20	64	* 70	130		
					15	ug/L	20	UT	10	100		



Method	QC ID	Parameter	Associated Sample	Result	Units A	Mat Added	%R	Lir	nits	RPD	RPD Limit
SW5030B8260E	3 LCS1101207	isopropylbenzene		19	ug/L	20	95	70	130		
		1,1,2,2-tetrachloroethane		22	ug/L	20	111	70	130		
		1,2,3-trichloropropane		21	ug/L	20	103	70	130		
		n-propylbenzene		21	ug/L	20	105	70	130		
		bromobenzene		20	ug/L	20	98	70	130		
		1,3,5-trimethylbenzene		20	ug/L	20	102	70	130		
		2-chlorotoluene		21	ug/L	20	104	70	130		
		4-chlorotoluene		21	ug/L	20	106	70	130		
		tert-butylbenzene		21	ug/L	20	105	70	130		
		1,2,4-trimethylbenzene		21	ug/L	20	106	70	130		
		sec-butylbenzene		21	ug/L	20	104	70	130		
		1,3-dichlorobenzene		21	ug/L	20	103	70	130		
		4-isopropyltoluene		21	ug/L	20	103	70	130		
		1,4-dichlorobenzene		19	ug/L	20	96	70	130		
		1,2-dichlorobenzene		21	ug/L	20	107	70	130		
		n-butylbenzene		22	ug/L	20	109	70	130		
		1,2-dibromo-3-chloropropa	ane	18	ug/L	20	91	70	130		
		1,2,4-trichlorobenzene		20	ug/L	20	100	70	130		
		1,3,5-trichlorobenzene		20	ug/L	20	102	70	130		
		hexachlorobutadiene		20	ug/L	20	99	70	130		
		naphthalene		22	ug/L	20	110	70	130		
		1,2,3-trichlorobenzene		22	ug/L	20	110	70	130		
		dibromofluoromethane SL	JR	98	%			78	114		
		toluene-D8 SUR		99	%			88	110		
		4-bromofluorobenzene SL	JR	100	%			86	115		



Method	QC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Li	mits	RPD	RPD Limit
SW5030B8260B	LCSD1101207	dichlorodifluoromethane		34	ug/L	40	85	70	130		20
		chloromethane		39	ug/L	40	98	70	130		20
		vinyl chloride		32	ug/L	40	81	70	130		20
		bromomethane		75	ug/L	40	188	* 70	130	57	* 20
		chloroethane		42	ug/L	40	106	70	130		20
		trichlorofluoromethane		40	ug/L	40	99	70	130		20
		diethyl ether		21	ug/L	20	106	70	130	8	20
		acetone		< 50	ug/L	20	99			14	20
		1,1-dichloroethene		17	ug/L	20	85	70	130	7	20
		methylene chloride		20	ug/L	20	99	70	130	8	20
		carbon disulfide		15	ug/L	20	76	70	130	7	20
		methyl t-butyl ether (MTE	BE)	20	ug/L	20	102	70	130	6	20
		trans-1,2-dichloroethene	/	19	ug/L	20	94	70	130	7	20
	isopropyl ether (DIPE)		20	ug/L	20	102	70	130	6	20	
		ethyl t-butyl ether (ETBE	)	20	ug/L	20	101	70	130	8	20
		1,1-dichloroethane	)	18	ug/L	20	91	70	130	0 7	20
		t-butanol (TBA)		130	ug/L	100	129	70	130	6	20
		2-butanone (MEK)		19	ug/L	20	93	70	130	2	20
		2,2-dichloropropane		19	ug/L	20	96	70	130	6	20
		cis-1,2-dichloroethene		21	ug/L	20	104	70	130	3	20
		chloroform		21	ug/L	20	104	70	130	5	20
	bromochloromethane		21	ug/L	20	104	70	130	5	20	
		tetrahydrofuran (THF)		23	ug/L	20	117	70	130	4	20
		1,1,1-trichloroethane		19	ug/L	20	97	70	130	4	20
				19 20	-	20 20	97 98	70	130	о 5	20 20
		1,1-dichloropropene	<b>AC</b> )		ug/L	20 20					
		t-amyl-methyl ether (TAN	/i⊏)	21	ug/L		104	70	130	5	20
		carbon tetrachloride		18	ug/L	20	89	70	130	12	20
		1,2-dichloroethane		21	ug/L	20	105	70	130	7	20
		benzene		20	ug/L	20	102	70	130	5	20
		trichloroethene		19	ug/L	20	95	70	130	4	20
		1,2-dichloropropane		19	ug/L	20	94	70	130	5	20
		bromodichloromethane		19	ug/L	20	93	70 * 70	130	9	20
		1,4-dioxane		65	ug/L	40	104	10	130	5	20
		dibromomethane		18	ug/L	20	92	70	130	6	20
		4-methyl-2-pentanone (M	IIBK)	20	ug/L	20	100	70	130	6	20
		cis-1,3-dichloropropene		19	ug/L	20	96	70	130	6	20
		toluene		20	ug/L	20	102	70	130	6	20
		trans-1,3-dichloropropene	e	19	ug/L	20	94	70	130	5	20
		2-hexanone		19	ug/L	20	96	70	130	4	20
		1,1,2-trichloroethane		18	ug/L	20	92	70	130	6	20
		1,3-dichloropropane		20	ug/L	20	102	70	130	7	20
		tetrachloroethene		22	ug/L	20	110	70	130	8	20
		dibromochloromethane		17	ug/L	20	84	70	130	14	20
		1,2-dibromoethane (EDB	)	19	ug/L	20	96	70	130	6	20
		chlorobenzene		21	ug/L	20	103	70	130	9	20
		1,1,1,2-tetrachloroethane	)	19	ug/L	20	95	70	130	13	20
		ethylbenzene		23	ug/L	20	113	70	130	7	20
		m&p-xylenes		45	ug/L	40	112	70	130	9	20
		o-xylene		22	ug/L	20	110	70	130	7	20
		styrene		20	ug/L	20	99	70	130	9	20
					ug/L	20	76	70	130		20



Method	QC ID	Parameter	Associated Sample	Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limi
SW5030B826	0B LCSD1101207	isopropylbenzene		21	ug/L	20	104	70	130	9	20
		1,1,2,2-tetrachloroethane		23	ug/L	20	117	70	130	6	20
		1,2,3-trichloropropane		21	ug/L	20	105	70	130	2	20
		n-propylbenzene		23	ug/L	20	113	70	130	7	20
		bromobenzene		21	ug/L	20	105	70	130	7	20
		1,3,5-trimethylbenzene		22	ug/L	20	109	70	130	6	20
		2-chlorotoluene		22	ug/L	20	111	70	130	6	20
		4-chlorotoluene		23	ug/L	20	113	70	130	7	20
		tert-butylbenzene		22	ug/L	20	110	70	130	4	20
		1,2,4-trimethylbenzene		23	ug/L	20	113	70	130	6	20
		sec-butylbenzene		23	ug/L	20	113	70	130	8	20
		1,3-dichlorobenzene		22	ug/L	20	110	70	130	7	20
		4-isopropyltoluene		22	ug/L	20	111	70	130	7	20
		1,4-dichlorobenzene		21	ug/L	20	104	70	130	8	20
		1,2-dichlorobenzene		23	ug/L	20	114	70	130	6	20
		n-butylbenzene		23	ug/L	20	115	70	130	6	20
		1,2-dibromo-3-chloropropa	ane	20	ug/L	20	98	70	130	8	20
		1,2,4-trichlorobenzene		22	ug/L	20	108	70	130	8	20
		1,3,5-trichlorobenzene		22	ug/L	20	108	70	130	6	20
		hexachlorobutadiene		21	ug/L	20	103	70	130	4	20
		naphthalene		23	ug/L	20	114	70	130	3	20
		1,2,3-trichlorobenzene		24	ug/L	20	118	70	130	7	20
		dibromofluoromethane SU	R	101	%			78	114		
		toluene-D8 SUR		99	%			88	110		
		4-bromofluorobenzene SU	R	101	%			86	115		



Method QC ID	Parameter Associated Sam	ole	Result	Units Amt Added	%R	Limits	RPD	RPD Limi
SW5035A8260B MB4261	dichlorodifluoromethane	<	0.1	ug/g				
	chloromethane	<	0.1	ug/g				
	vinyl chloride	<	0.1	ug/g				
	bromomethane	<	0.2	ug/g				
	chloroethane	<	0.1	ug/g				
	trichlorofluoromethane	<	0.1	ug/g				
	diethyl ether	<	0.5	ug/g				
	acetone	<	2.5	ug/g				
	1,1-dichloroethene	<	0.1	ug/g				
	methylene chloride	<	0.2	ug/g				
	carbon disulfide	<	0.1	ug/g				
	methyl t-butyl ether (MTBE)	<	0.1	ug/g				
	trans-1,2-dichloroethene	<	0.1	ug/g				
	isopropyl ether (DIPE)	<	0.1	ug/g				
	ethyl t-butyl ether (ETBE)	<	0.1	ug/g				
	1,1-dichloroethane	<	0.1	ug/g				
	t-butanol (TBA)	<	2.5	ug/g				
	2-butanone (MEK)	<	0.5	ug/g				
	2,2-dichloropropane	<	0.1	ug/g				
	cis-1,2-dichloroethene	<	0.1	ug/g				
	chloroform	<	0.1	ug/g				
	bromochloromethane	<	0.1	ug/g				
	tetrahydrofuran (THF)	<	0.5	ug/g				
	1,1,1-trichloroethane	<	0.1	ug/g				
	1,1-dichloropropene	<	0.1	ug/g				
	t-amyl-methyl ether (TAME)	<	0.1	ug/g				
	carbon tetrachloride	<	0.1	ug/g				
	1,2-dichloroethane	<	0.1	ug/g				
	benzene	<	0.1	ug/g				
	trichloroethene	<	0.1	ug/g				
	1,2-dichloropropane	<	0.1	ug/g ug/g				
	bromodichloromethane	<	0.1					
			2.5	ug/g				
	1,4-dioxane	<		ug/g				
	dibromomethane		0.1	ug/g				
	4-methyl-2-pentanone (MIBK)	<	0.5	ug/g				
	cis-1,3-dichloropropene	<	0.1	ug/g				
	toluene	<	0.1	ug/g				
	trans-1,3-dichloropropene	<	0.1	ug/g				
	2-hexanone	<	0.5	ug/g				
	1,1,2-trichloroethane	<	0.1	ug/g				
	1,3-dichloropropane	<	0.1	ug/g				
	tetrachloroethene	<	0.1	ug/g				
	dibromochloromethane	<	0.1	ug/g				
	1,2-dibromoethane (EDB)	<	0.1	ug/g				
	chlorobenzene	<	0.1	ug/g				
	1,1,1,2-tetrachloroethane	<	0.1	ug/g				
	ethylbenzene	<	0.1	ug/g				
	m&p-xylenes	<	0.1	ug/g				
	o-xylene	<	0.1	ug/g				
	styrene	<	0.1	ug/g				
	bromoform	<	0.1	ug/g				



Method	QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Lir	nits	RPD	RPD Limit
SW5035A8260E	3 MB4261	isopropylbenzene		<	0.1	ug/g					
		1,1,2,2-tetrachloroethane		<	0.1	ug/g					
		1,2,3-trichloropropane		<	0.1	ug/g					
		n-propylbenzene		<	0.1	ug/g					
		bromobenzene		<	0.1	ug/g					
		1,3,5-trimethylbenzene		<	0.1	ug/g					
		2-chlorotoluene		<	0.1	ug/g					
		4-chlorotoluene		<	0.1	ug/g					
		tert-butylbenzene		<	0.1	ug/g					
		1,2,4-trimethylbenzene		<	0.1	ug/g					
		sec-butylbenzene		<	0.1	ug/g					
		1,3-dichlorobenzene		<	0.1	ug/g					
		4-isopropyltoluene		<	0.1	ug/g					
		1,4-dichlorobenzene		<	0.1	ug/g					
		1,2-dichlorobenzene		<	0.1	ug/g					
		n-butylbenzene		<	0.1	ug/g					
		1,2-dibromo-3-chloropropa	ane	<	0.1	ug/g					
		1,2,4-trichlorobenzene		<	0.1	ug/g					
		1,3,5-trichlorobenzene		<	0.1	ug/g					
		hexachlorobutadiene		<	0.1	ug/g					
		naphthalene		<	0.2	ug/g					
		1,2,3-trichlorobenzene		<	0.1	ug/g					
		dibromofluoromethane SL	JR		89	%		78	114		
		toluene-D8 SUR			98	%		88	110		
		4-bromofluorobenzene SL	JR		100	%		86	115		
		a,a,a-trifluorotoluene SUR	ł		85	%		70	130		



Method	QC ID	Parameter	Associated Sample		Result	Units A	Mat Added	%R		Li	mits	RPD	RPD Limi
SW5035A8260B	MLCS4261	dichlorodifluoromethane			0.4	ug/g	1	39	*	70	130		
		chloromethane			0.7	ug/g	1	74		70	130		
		vinyl chloride			0.6	ug/g	1	57	*	70	130		
		bromomethane			0.3	ug/g	1	33	*	70	130		
		chloroethane			0.5	ug/g	1	53	*	70	130		
		trichlorofluoromethane			0.6	ug/g	1	60	*	70	130		
		diethyl ether			0.8	ug/g	1	81		70	130		
		acetone		<	2.5	ug/g	1	105					
		1,1-dichloroethene			0.6	ug/g	1	64	*	70	130		
		methylene chloride			0.8	ug/g	1	82		70	130		
		carbon disulfide			0.5	ug/g	1	46	*	70	130		
		methyl t-butyl ether (MTBI	Ξ)		1.0	ug/g	1	95		70	130		
		trans-1,2-dichloroethene			0.7	ug/g	1	73		70	130		
		isopropyl ether (DIPE)			0.9	ug/g	1	86		70	130		
		ethyl t-butyl ether (ETBE)			0.9	ug/g	1	92		70	130		
		1,1-dichloroethane			0.8	ug/g	1	84		70	130		
		t-butanol (TBA)			4.9	ug/g	5	98		70	130		
		2-butanone (MEK)			1.0	ug/g	1	97		70	130		
		2,2-dichloropropane			0.9	ug/g	1	94		70	130		
		cis-1,2-dichloroethene			0.9	ug/g	1	85		70	130		
		chloroform			0.9	ug/g	1	87		70	130		
		bromochloromethane			0.9	ug/g	1	86		70	130		
		tetrahydrofuran (THF)			0.9	ug/g	1	88		70	130		
		1,1,1-trichloroethane			0.8	ug/g	1	81		70	130		
		1,1-dichloropropene			0.8	ug/g	1	80		70	130		
		t-amyl-methyl ether (TAM	Ξ)		1.0	ug/g	1	97		70	130		
		carbon tetrachloride	,		0.8	ug/g	1	79		70	130		
		1,2-dichloroethane			0.9	ug/g	1	92		70	130		
		benzene			0.8	ug/g	1	81		70	130		
		trichloroethene			0.8	ug/g	1	77		70	130		
		1,2-dichloropropane			0.9	ug/g	1	92		70	130		
		bromodichloromethane			0.9	ug/g	1	88		70	130		
		1,4-dioxane		<	2.5	ug/g	2	95		70	130		
		dibromomethane			0.9	ug/g	1	91		70	130		
		4-methyl-2-pentanone (MI	BK)		0.8	ug/g	1	80		70	130		
		cis-1,3-dichloropropene			0.8	ug/g	1	85		70	130		
		toluene			0.9	ug/g	1	85		70	130		
		trans-1,3-dichloropropene			0.9	ug/g	1	86		70	130		
		2-hexanone			0.8	ug/g	1	77		70	130		
		1,1,2-trichloroethane			0.9	ug/g	1	93		70	130		
		1,3-dichloropropane			1.0	ug/g	1	103		70	130		
		tetrachloroethene			0.9	ug/g	1	85		70	130		
		dibromochloromethane			1.0	ug/g	1	98		70	130		
		1,2-dibromoethane (EDB)			1.0	ug/g	1	105		70	130		
		chlorobenzene			1.0	ug/g	1	98		70	130		
		1,1,1,2-tetrachloroethane			1.0	ug/g	1	100		70	130		
		ethylbenzene			0.9	ug/g	1	85		70	130		
		m&p-xylenes			1.9	ug/g	2	94		70	130		
		o-xylene			1.0	ug/g	-	96		70	130		
		styrene			1.0	ug/g	1	100		70	130		
		bromoform			0.9	ug/g	1	85		70	130		
					0.0	~9/9		00			100		



Method	QC ID	Parameter	Associated Sample	Result	Units A	mt Added	%R	Lir	nits	RPD	RPD Limit
SW5035A8260B	MLCS4261	isopropylbenzene		0.8	ug/g	1	83	70	130		
		1,1,2,2-tetrachloroethane	)	1.1	ug/g	1	108	70	130		
		1,2,3-trichloropropane		1.0	ug/g	1	105	70	130		
		n-propylbenzene		0.9	ug/g	1	93	70	130		
		bromobenzene		1.0	ug/g	1	103	70	130		
		1,3,5-trimethylbenzene		0.9	ug/g	1	91	70	130		
		2-chlorotoluene		1.0	ug/g	1	100	70	130		
		4-chlorotoluene		1.0	ug/g	1	102	70	130		
		tert-butylbenzene		0.9	ug/g	1	90	70	130		
		1,2,4-trimethylbenzene		0.9	ug/g	1	95	70	130		
		sec-butylbenzene		0.9	ug/g	1	86	70	130		
		1,3-dichlorobenzene		1.0	ug/g	1	96	70	130		
		4-isopropyltoluene		0.9	ug/g	1	89	70	130		
		1,4-dichlorobenzene		1.0	ug/g	1	98	70	130		
		1,2-dichlorobenzene		1.0	ug/g	1	100	70	130		
		n-butylbenzene		0.9	ug/g	1	88	70	130		
		1,2-dibromo-3-chloroprop	ane	1.1	ug/g	1	108	70	130		
		1,2,4-trichlorobenzene		0.9	ug/g	1	89	70	130		
		1,3,5-trichlorobenzene		0.9	ug/g	1	90	70	130		
		hexachlorobutadiene		0.9	ug/g	1	94	70	130		
		naphthalene		1.0	ug/g	1	96	70	130		
		1,2,3-trichlorobenzene		0.9	ug/g	1	89	70	130		
		dibromofluoromethane S	UR	95	%			78	114		
		toluene-D8 SUR		99	%			88	110		
		4-bromofluorobenzene S	UR	95	%			86	115		
		a,a,a-trifluorotoluene SUI	२	82	%			70	130		



Method QC ID	Parameter Associated Sample	)	Result	Units A	mt Added	%R		Li	mits	RPD	RPD Limit
SW5035A8260B MLCSD4261	dichlorodifluoromethane		0.4	ug/g	1	38	*	70	130	3	30
	chloromethane		0.7	ug/g	1	69	*	70	130	6	30
	vinyl chloride		0.6	ug/g	1	56	*	70	130	1	30
	bromomethane		0.3	ug/g	1	32	*	70	130	2	30
	chloroethane		0.6	ug/g	1	58	*	70	130	9	30
	trichlorofluoromethane		0.6	ug/g	1	62	*	70	130	4	30
	diethyl ether		0.8	ug/g	1	81		70	130	1	30
	acetone	<	2.5	ug/g	1	104				1	30
	1,1-dichloroethene		0.6	ug/g	1	65	*	70	130	1	30
	methylene chloride		0.8	ug/g	1	83		70	130	1	30
	carbon disulfide		0.5	ug/g	1	45	*	70	130	2	30
	methyl t-butyl ether (MTBE)		1.0	ug/g	1	97		70	130	2	30
	trans-1,2-dichloroethene		0.8	ug/g	1	75		70	130	3	30
	isopropyl ether (DIPE)		0.9	ug/g	1	90		70	130	4	30
	ethyl t-butyl ether (ETBE)		0.9	ug/g	1	95		70	130	2	30
	1,1-dichloroethane		0.9	ug/g	1	87		70	130	3	30
	t-butanol (TBA)		5.6	ug/g	5	111		70	130	13	30
	2-butanone (MEK)		0.9	ug/g	1	94		70	130	3	30
	2,2-dichloropropane		0.9	ug/g	1	93		70	130	1	30
	cis-1,2-dichloroethene		0.9	ug/g	1	88		70	130	3	30
	chloroform		0.9	ug/g	1	89		70	130	3	30
	bromochloromethane		0.9	ug/g	1	86		70	130	0	30
	tetrahydrofuran (THF)		1.0	ug/g	1	95		70	130	8	30
	1,1,1-trichloroethane		0.8	ug/g	1	84		70	130	3	30
	1,1-dichloropropene		0.8	ug/g	1	81		70	130	2	30
	t-amyl-methyl ether (TAME)		1.0	ug/g	1	100		70	130	3	30
	carbon tetrachloride		0.8	ug/g	1	81		70	130	2	30
	1,2-dichloroethane		0.9	ug/g	1	95		70	130	2	30
	benzene		0.8	ug/g	1	83		70	130	2	30
	trichloroethene		0.8	ug/g	1	79		70	130	2	30
	1,2-dichloropropane		0.9	ug/g	1	94		70	130	2	30
	bromodichloromethane		0.9	ug/g	1	90		70	130	2	30
	1,4-dioxane	<	2.5	ug/g	2	93		70	130	2	30
	dibromomethane		0.9	ug/g	1	94		70	130	3	30
	4-methyl-2-pentanone (MIBK)		0.9	ug/g	1	87		70	130	8	30
	cis-1,3-dichloropropene		0.9	ug/g	1	86		70	130	2	30
	toluene		0.9	ug/g	1	88		70	130	3	30
	trans-1,3-dichloropropene		0.9	ug/g	1	87		70	130	1	30
	2-hexanone		0.8	ug/g	1	81		70	130	6	30
	1,1,2-trichloroethane		0.9	ug/g	1	94		70	130	1	30
	1,3-dichloropropane		1.1	ug/g	1	106		70	130	2	30
	tetrachloroethene		0.9	ug/g	1	88		70	130	3	30
	dibromochloromethane		1.0	ug/g	1	100		70	130	2	30
	1,2-dibromoethane (EDB)		1.1	ug/g	1	106		70	130	2	30
	chlorobenzene		1.0	ug/g	1	101		70	130	3	30
	1,1,1,2-tetrachloroethane		1.0	ug/g	1	104		70	130	4	30
	ethylbenzene		0.9	ug/g	1	94		70	130	9	30
	m&p-xylenes		2.0	ug/g	2	98		70	130	4	30
	o-xylene		1.0	ug/g	-	101		70	130	5	30
	styrene		1.0	ug/g	1	104		70	130	3	30
				~ 3' 3	•	. • •					



Method	QC ID	Parameter	Associated Sample	Result	Units Aı	mt Added	%R	Li	mits	RPD	RPD Limi
SW5035A82	60B MLCSD4261	isopropylbenzene		0.9	ug/g	1	86	70	130	3	30
		1,1,2,2-tetrachloroethan	e	1.1	ug/g	1	110	70	130	2	30
		1,2,3-trichloropropane		1.1	ug/g	1	107	70	130	2	30
		n-propylbenzene		1.0	ug/g	1	97	70	130	4	30
		bromobenzene		1.1	ug/g	1	107	70	130	4	30
		1,3,5-trimethylbenzene		0.9	ug/g	1	95	70	130	4	30
		2-chlorotoluene		1.0	ug/g	1	100	70	130	0	30
		4-chlorotoluene		1.1	ug/g	1	110	70	130	7	30
		tert-butylbenzene		0.9	ug/g	1	93	70	130	3	30
		1,2,4-trimethylbenzene		1.0	ug/g	1	98	70	130	4	30
		sec-butylbenzene		0.9	ug/g	1	88	70	130	3	30
		1,3-dichlorobenzene		1.0	ug/g	1	99	70	130	3	30
		4-isopropyltoluene		0.9	ug/g	1	92	70	130	2	30
		1,4-dichlorobenzene		1.0	ug/g	1	100	70	130	3	30
		1,2-dichlorobenzene		1.0	ug/g	1	103	70	130	3	30
		n-butylbenzene		0.9	ug/g	1	90	70	130	2	30
		1,2-dibromo-3-chloropro	pane	1.1	ug/g	1	107	70	130	1	30
		1,2,4-trichlorobenzene		0.9	ug/g	1	92	70	130	3	30
		1,3,5-trichlorobenzene		0.9	ug/g	1	90	70	130	0	30
		hexachlorobutadiene		1.0	ug/g	1	97	70	130	3	30
		naphthalene		1.0	ug/g	1	100	70	130	4	30
		1,2,3-trichlorobenzene		0.9	ug/g	1	91	70	130	2	30
		dibromofluoromethane S	SUR	96	%			78	114		
		toluene-D8 SUR		100	%			88	110		
		4-bromofluorobenzene	SUR	96	%			86	115		
		a,a,a-trifluorotoluene SL	JR	80	%			70	130		



Method QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limi
SW3510C8270D BLK4267	naphthalene		<	0.5	ug/L						
	2-methylnaphthalene		<	0.5	ug/L						
	acenaphthylene		<	0.5	ug/L						
	acenaphthene		<	0.5	ug/L						
	dibenzofuran		<	0.5	ug/L						
	fluorene		<	0.5	ug/L						
	phenanthrene		<	0.5	ug/L						
	anthracene		<	0.5	ug/L						
	fluoranthene		<	0.5	ug/L						
	pyrene		<	0.5	ug/L						
	benzo(a)anthracene		<	0.5	ug/L						
	chrysene		<	0.5	ug/L						
	benzo(b)fluoranthene		<	0.5	ug/L						
	benzo(k)fluoranthene		<	0.5	ug/L						
	benzo(a)pyrene		<	0.2	ug/L						
	indeno(1,2,3-cd)pyrene		<	0.5	ug/L						
	dibenzo(a,h)anthracene		<	0.5	ug/L						
	benzo(g,h,i)perylene		<	0.5	ug/L						
	2-fluorobiphenyl SUR			69	%			43	116		
SW3510C8270D LCS4267	naphthalene			23	ug/L	40	56	40	140		
	2-methylnaphthalene			24	ug/L	40	59	40	140		
	acenaphthylene			26	ug/L	40	64	40	140		
	acenaphthene			25	ug/L						
	dibenzofuran		<	0.5	ug/L						
	fluorene			28	ug/L	40	69	40	140		
	phenanthrene			25	ug/L	40	63	40	140		
	anthracene			27	ug/L	40	66	40	140		
	fluoranthene			29	ug/L	40	72	40	140		
	pyrene			31	ug/L	40	76	40	140		
	benzo(a)anthracene			29	ug/L	40	72	40	140		
	chrysene			29	ug/L	40	72	40	140		
	benzo(b)fluoranthene			28	ug/L	40	71	40	140		
	benzo(k)fluoranthene			28	ug/L	40	70	40	140		
	benzo(a)pyrene			28	ug/L	40	69	40	140		
	indeno(1,2,3-cd)pyrene			24	ug/L	40	61	40	140		
	dibenzo(a,h)anthracene			24	ug/L	40	59	40	140		
	benzo(g,h,i)perylene			23	ug/L	40	59	40	140		
	2-fluorobiphenyl SUR			66	%			43	116		



Method	QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limit
SW3510C82	70D LCSD4267	naphthalene			26	ug/L	40	65	40	140	15	20
		2-methylnaphthalene			27	ug/L	40	66	40	140	11	20
		acenaphthylene			30	ug/L	40	74	40	140	15	20
		acenaphthene			28	ug/L						
		dibenzofuran		<	0.5	ug/L						
		fluorene			30	ug/L	40	75	40	140	8	20
		phenanthrene			28	ug/L	40	71	40	140	11	20
		anthracene			30	ug/L	40	75	40	140	12	20
		fluoranthene			32	ug/L	40	81	40	140	12	20
		pyrene			34	ug/L	40	86	40	140	12	20
		benzo(a)anthracene			32	ug/L	40	79	40	140	8	20
		chrysene			32	ug/L	40	80	40	140	11	20
		benzo(b)fluoranthene			29	ug/L	40	73	40	140	3	20
		benzo(k)fluoranthene			32	ug/L	40	79	40	140	13	20
		benzo(a)pyrene			31	ug/L	40	78	40	140	12	20
		indeno(1,2,3-cd)pyrene			27	ug/L	40	68	40	140	11	20
		dibenzo(a,h)anthracene			27	ug/L	40	67	40	140	12	20
		benzo(g,h,i)perylene			26	ug/L	40	65	40	140	11	20
		2-fluorobiphenyl SUR			68	%			43	116		



Method	QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limit
SW3540C8082	A BLK4265	PCB-1016		<	0.1	ug/g						
		PCB-1221		<	0.1	ug/g						
		PCB-1232		<	0.1	ug/g						
		PCB-1242		<	0.1	ug/g						
		PCB-1248		<	0.1	ug/g						
		PCB-1254		<	0.1	ug/g						
		PCB-1260		<	0.1	ug/g						
		tetrachloro-m-xylene SUR			60	%			30	150		
		decachlorobiphenyl SUR			69	%			30	150		
SW3540C8082	A LCS4265	PCB-1016			0.1	ug/g	0.2	71	40	140		
		PCB-1221		<	0.1	ug/g						
		PCB-1232		<	0.1	ug/g						
		PCB-1242		<	0.1	ug/g						
		PCB-1248		<	0.1	ug/g						
		PCB-1254		<	0.1	ug/g						
		PCB-1260			0.2	ug/g	0.2	79	40	140		
		tetrachloro-m-xylene SUR			46	%			30	150		
		decachlorobiphenyl SUR			71	%			30	150		
SW3540C8082	A LCSD4265	PCB-1016			0.2	ug/g	0.2	86	40	140	19	30
		PCB-1221		<	0.1	ug/g						
		PCB-1232		<	0.1	ug/g						
		PCB-1242		<	0.1	ug/g						
		PCB-1248		<	0.1	ug/g						
		PCB-1254		<	0.1	ug/g						
		PCB-1260			0.2	ug/g	0.2	88	40	140	11	30
		tetrachloro-m-xylene SUR			58	%			30	150		
		decachlorobiphenyl SUR			70	%			30	150		



Method	QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limit
SW3540C8082	2A BLK4274	PCB-1016		<	0.1	ug/g						
		PCB-1221		<	0.1	ug/g						
		PCB-1232		<	0.1	ug/g						
		PCB-1242		<	0.1	ug/g						
		PCB-1248		<	0.1	ug/g						
		PCB-1254		<	0.1	ug/g						
		PCB-1260		<	0.1	ug/g						
		tetrachloro-m-xylene SUR			55	%			30	150		
		decachlorobiphenyl SUR			72	%			30	150		
SW3540C8082	2A LCS4274	PCB-1016			0.1	ug/g	0.2	73	40	140		
		PCB-1221		<	0.1	ug/g						
		PCB-1232		<	0.1	ug/g						
		PCB-1242		<	0.1	ug/g						
		PCB-1248		<	0.1	ug/g						
		PCB-1254		<	0.1	ug/g						
		PCB-1260			0.2	ug/g	0.2	84	40	140		
		tetrachloro-m-xylene SUR			51	%			30	150		
		decachlorobiphenyl SUR			69	%			30	150		
SW3540C8082	2A LCSD4274	PCB-1016			0.2	ug/g	0.2	80	40	140	8	30
		PCB-1221		<	0.1	ug/g						
		PCB-1232		<	0.1	ug/g						
		PCB-1242		<	0.1	ug/g						
		PCB-1248		<	0.1	ug/g						
		PCB-1254		<	0.1	ug/g						
		PCB-1260			0.2	ug/g	0.2	86	40	140	2	30
		tetrachloro-m-xylene SUR			51	%			30	150		
		decachlorobiphenyl SUR			73	%			30	150		



Method QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limi
SW3550B8270D BLK4264	naphthalene		<	0.50	ug/g						
	2-methylnaphthalene		<	0.50	ug/g						
	acenaphthylene		<	0.50	ug/g						
	acenaphthene		<	0.50	ug/g						
	dibenzofuran		<	0.50	ug/g						
	fluorene		<	0.50	ug/g						
	phenanthrene		<	0.50	ug/g						
	anthracene		<	0.50	ug/g						
	fluoranthene		<	0.50	ug/g						
	pyrene		<	0.50	ug/g						
	benzo(a)anthracene		<	0.50	ug/g						
	chrysene		<	0.50	ug/g						
	benzo(b)fluoranthene		<	0.50	ug/g						
	benzo(k)fluoranthene		<	0.50	ug/g						
	benzo(a)pyrene		<	0.50	ug/g						
	indeno(1,2,3-cd)pyrene		<	0.50	ug/g						
	dibenzo(a,h)anthracene		<	0.50	ug/g						
	benzo(g,h,i)perylene		<	0.50	ug/g						
	2-fluorobiphenyl SUR			99	%			43	116		
	o-terphenyl SUR			107	%			33	141		
SW3550B8270D LCS4264	naphthalene			3.4	ug/g	4	84	40	140		
	2-methylnaphthalene			3.6	ug/g	4	90	40	140		
	acenaphthylene			3.6	ug/g	4	91	40	140		
	acenaphthene			3.6	ug/g	4	90	40	140		
	dibenzofuran		<	0.50	ug/g						
	fluorene			3.5	ug/g	4	87	40	140		
	phenanthrene			3.3	ug/g	4	83	40	140		
	anthracene			3.5	ug/g	4	87	40	140		
	fluoranthene			3.5	ug/g	4	87	40	140		
	pyrene			3.7	ug/g	4	93	40	140		
	benzo(a)anthracene			3.7	ug/g	4	91	40	140		
	chrysene			3.8	ug/g	4	95	40	140		
	benzo(b)fluoranthene			3.4	ug/g	4	86	40	140		
	benzo(k)fluoranthene			3.9	ug/g	4	98	40	140		
	benzo(a)pyrene			3.3	ug/g	4	84	40	140		
	indeno(1,2,3-cd)pyrene			3.5	ug/g	4	87	40	140		
	dibenzo(a,h)anthracene			3.4	ug/g	4	84	40	140		
	benzo(g,h,i)perylene			3.4	ug/g	4	84	40	140		
	2-fluorobiphenyl SUR			95	%			43	116		
	o-terphenyl SUR			107	%			33	141		



Method	QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limi
SW3550B82	70D MS4264	naphthalene	21796-008		5.5	ug/g	5.10	108	40	140		
		2-methylnaphthalene	21796-008		5.8	ug/g	5.10	113	40	140		
		acenaphthylene	21796-008		6.1	ug/g	5.10	117	40	140		
		acenaphthene	21796-008		5.4	ug/g	5.10	104	40	140		
		dibenzofuran	21796-008	<	3.2	ug/g						
		fluorene	21796-008		5.8	ug/g	5.10	108	40	140		
		phenanthrene	21796-008		6.4	ug/g	5.10	85	40	140		
		anthracene	21796-008		5.4	ug/g	5.10	97	40	140		
		fluoranthene	21796-008		12	ug/g	5.1	65	40	140		
		pyrene	21796-008		20	ug/g	5.1	120	40	140		
		benzo(a)anthracene	21796-008		8.5	ug/g	5.10	125	40	140		
		chrysene	21796-008		11	ug/g	5.1	124	40	140		
		benzo(b)fluoranthene	21796-008		12	ug/g	5.1	146	40	140		
		benzo(k)fluoranthene	21796-008		8.8	ug/g	5.10	112	40	140		
		benzo(a)pyrene	21796-008		8.8	ug/g	5.10	105	40	140		
		indeno(1,2,3-cd)pyrene	21796-008		5.8	ug/g	5.10	77	40	140		
		dibenzo(a,h)anthracene	21796-008		4.7	ug/g	5.10	81	40	140		
		benzo(g,h,i)perylene	21796-008		6.0	ug/g	5.10	67	40	140		
		2-fluorobiphenyl SUR	21796-008		113	%			43	116		
		o-terphenyl SUR	21796-008		133	%			33	141		



Method	QC ID	Parameter	Associated Sample		Result	Units Amt Add	ed %	R	Limits	RPD	RPD Limit
SW3005A601	10C BLK4260	Silver		<	0.005	mg/L					
		Arsenic		<	0.008	mg/L					
		Barium		<	0.05	mg/L					
		Cadmium		<	0.004	mg/L					
		Chromium		<	0.05	mg/L					
		Lead		<	0.01	mg/L					
		Selenium		<	0.05	mg/L					
SW3005A601	10C DUP4260	Arsenic	21751-005	<	0.008	mg/L					20
		Cadmium	21751-005	<	0.004	mg/L					20
		Chromium	21751-005	<	0.05	mg/L					20
		Lead	21751-005	<	0.01	mg/L					20
SW3005A601	10C LCS4260	Silver			0.27	mg/L 0.25	10	6 80	) 120		
		Arsenic			0.51	mg/L 0.5	10	3 80	) 120		
		Barium			0.52	mg/L 0.5	104	1 80	) 120		
		Cadmium			0.51	mg/L 0.5	10	3 80	) 120		
		Chromium			0.52	mg/L 0.5	10	3 80	) 120		
		Lead			0.50	mg/L 0.5	10	80	) 120		
		Selenium			0.52	mg/L 0.5	104	1 80	) 120		
SW3005A601	10C LCSD4260	Silver			0.26	mg/L 0.25	104	1 80	) 120	2	20
		Arsenic			0.51	mg/L 0.5	10	2 80	) 120	1	20
		Barium			0.51	mg/L 0.5	10	2 80	) 120	2	20
		Cadmium			0.51	mg/L 0.5	10	2 80	) 120	1	20
		Chromium			0.51	mg/L 0.5	10	2 80	) 120	1	20
		Lead			0.50	mg/L 0.5	99	80	) 120	2	20
		Selenium			0.51	mg/L 0.5	10	2 80	) 120	2	20
SW3005A601	10C MS4260	Arsenic	21751-005		0.54	mg/L 0.5	10	7 7(	) 130		
		Cadmium	21751-005		0.51	mg/L 0.5	10	3 70	) 130		
		Chromium	21751-005		0.52	mg/L 0.5	104	1 70	) 130		
		Lead	21751-005		0.49	mg/L 0.5	99	7(	) 130		



Method	QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Li	mits	RPI	כ	RPD Limit
SW3051A601	0C BLK4276	Silver		<	0.25	ug/g							
		Arsenic		<	0.50	ug/g							
		Barium		<	2.5	ug/g							
		Cadmium		<	0.20	ug/g							
		Chromium		<	2.5	ug/g							
		Lead Selenium		< <	0.50 2.5	ug/g ug/g							
SW3051A601	0C CRM4276	Silver			40	ug/g	38		25.1	51.9			
		Arsenic			400	ug/g	400		292	508			
		Barium			26	ug/g	25		0	51.3			
		Cadmium			16	ug/g	15		8.71	22			
		Chromium			13	ug/g	14		2.45	24.7			
		Lead			5000	ug/g	5100			6469			
		Selenium			6.8	ug/g	6.6		0	18.4			
SW3051A601	0C CRMD4276	Silver			41	ug/g	38		25.1	51.9		2	20
		Arsenic			420	ug/g	400		292	508		4	20
		Barium			27	ug/g	25		0	51.3		3	20
		Cadmium			16	ug/g	15		8.71	22		3	20
		Chromium			15	ug/g	14		2.45	24.7		14	20
		Lead			5400	ug/g	5100			6469		7	20
		Selenium			6.9	ug/g	6.6		0	18.4		2	20
SW3051A601	0C DUP4276	Silver	21796-012	<	0.28	ug/g							35
		Arsenic	21796-012		4.6	ug/g					0		35
		Barium	21796-012		190	ug/g					3		35
		Cadmium	21796-012		1.2	ug/g					1		35
		Chromium	21796-012		20	ug/g					1		35
		Lead	21796-012		470	ug/g					6		35
		Selenium	21796-012	<	2.8	ug/g							35
SW7470A	BLK4273	Mercury		<	0.0002	mg/L							
SW7470A	DUP4273	Mercury	21832-013	<	0.0002	mg/L							20
SW7470A	LCS4273	Mercury			0.0019	mg/L	0.002	94	80	120			
SW7470A	LCSD4273	Mercury			0.0019	mg/L	0.002	95	80	120		1	20
SW7470A	MS4273	Mercury	21789-001		0.0018	mg/L	0.002	91	75	125			
SW7470A	MS4273	Mercury	21832-013		0.0018	mg/L	0.002	94	75	125			



-												
Method	QC ID	Parameter	Associated Sample		Result	Units A	Amt Added	%R	Li	mits	RPD	RPD Limit
SW7471B	BLK4279	Mercury		<	0.02	ug/g						
SW7471B	CRM4279	Mercury			1.3	ug/g	1.1		0.49	1.76		
SW7471B	CRMD4279	Mercury			1.4	ug/g	1.1		0.49	1.76	5	20
SW7471B	DUP4279	Mercury	21844-005	<	0.10	ug/g						35
SW7471B	MS4279	Mercury	21796-010		0.44	ug/g	0.261	109	75	125		
SW7471B	MS4279	Mercury	21844-005		0.28	ug/g	0.195	100	75	125		



	QSD-01 Revision 12/23/10	RECORD	CUSTODY	*Date Needed	(10 Business Days)	TAT REQUESTED         Priority (24 hr)*         Expedited (48 hr)*		-+	og ASH	- 52 80	50	2000		- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	->> {/	-SS 20	SS 10-01-10	Sample Fi ID I (Lab Use Only)	Lab	1: 1	Invoice To:	Phone #: ZOZ	Heport La:	Company Address: 776 Main	Company Name:	a	Absolute Resource	Ň
	) Relinquished by:	Relinquished by	Relinquis	- 🗆 HARD C	REPORT	See absolu for sample currer	N 2-	-	' h	SUMP			,	, , ,	لد	Ż	- 2			atten	0 =	242-	)onnel	4	+	associa	Resou	
	d by:	M by:	W Sampler:	☐ HARD COPY REQUIRED	REPORTING INSTRUCTIONS	See absoluteresourceassociates.com for sample acceptance policy and current accreditation lists.	V	-									$\times$	WATER SOLID OTHER	Matrix			22-		reet, we	tssac, L	ates		
		J'H	$\mathbf{b}$	🗆 FA													X	HCI HNO ₃ H ₂ SO ₄	Preserva			G		Westbook ME	- <u>LC</u>			
		2		FAX (FAX#)	RPDF (e-mail address) jõdönnell 🖉													NaOH MeOH OTHER	Preservation Method	PO #	Quote #	Reporting Q Limits: E	Protocoi: R M	Ča:	Project Name: Project #: 1	absoluteres	124 Her Portsm 60	
	Date		6/15/		مُؤُرِلُ address)		¢										6/15/11	(Specify) DATE		-		QAPP GW-1 EPA DW Other_	RCRA SDWA MCP NHDES	tion: (NH)MA ME VT	GUAYIS	absoluteresourceassociates.com	124 Heritage Avenue #10 Portsmouth, NH 03801 603-436-2001	
	e Time		11 1830		donnell	Brownti	1505 V	1445	1510	1025		ī	1251	liso	1155	il SS	1133 JEN	TIME SAMPLER	Sampling			ې ۲-	P F		25	ates.com	∍ #10 801	
(		<i></i> ш°		8		$\left \left(\begin{array}{c} \\ \end{array}\right)\right $	R										X	□ VOC 8260 □ VOC 624 □ VPH MAD		C BTEX		MtBE, only					CHAIN-O AND AN	
	Received by Laboratery: Way Bill#:	Received by:	30		crederell	G	V V V										メズ	<ul> <li>□ VOC 524.3</li> <li>▶ TPH □ I</li> <li>▶ 8270PAH</li> <li>▶ 8082 PCB</li> </ul>	ORO 80	)15 🗆 270ABN	MED	R0 □ EF 625 □ EC	PH MADEP DB 504.1		ngerprint		ALYSIS	
	identy: <i>Dramana</i>		J 570		C. COM													O&G 1664     DPH     TSS     T	BOD	∕lineral ( □ Co	)&G : nduc	SM5520F Iivily □	) Turbidity			ANA	TODY RECORD REQUEST	
	) K	8	ORAGE				4											RCRA Mel Total Meta Dissolved Ammonia	lls-list: Metals	s-list:				. Metals		VSIS REI	CORD T	
	ena le			TEMPE	RECEIV													T-Phosphi     T-Phosphi     Cyanide     Nitrate	orus ( □ Sul	] Phend fide 📋	ols ( Nitra	Bacteria te + Nitrite	P/A 🗆 Ba	P		liest	21796	
	Ante L	Date	Date		RECEIVED ON ICE													Corrosivit	als 🗆	] TCLP \	/0C	🗆 TCLP	SVOC 🗆	TCLP Pestic			96	PAGE
	10 cl 3	Time	Time	ۍ °_	YES INO												-	Grab (G) or	Cor	nposite (	C)							of N

$\square$								×																						
L # -42	QSD-01 Revision 12/23/10	RECORD	CUSTODY	*Date Needed	Standard (10 Business Days)	Priority (24 hr)* Expedited (48 hr)*	TAT REQUESTED	402	18	ol	61	81	71	91	15	71	13	21	Sample ID (Lab Use Only)	Lab		Invoice To:	Phone # 201		TTC M	CREDERE	Company Name:		٥٩٢	
3 ThoRIANIC			<u>`</u>		₩ •			BM JUK	BM-02	CC-5	13M-01	CC-DUP	- Y CC - Y	CC-3	CC-22	(( - 1	SUMP	エルーろ	Field ID		· FA	) ) ]	FZ (7	01	MAIN STREE	RE Assoc.	ē:	a s s o	Ahcoluite Recource	
7 Ley	Relinquished by:	Relinquistied by	Relinquit	HARD	PORT	r samp curre	absolu		-		_	_		-		1	t	2	# CONTAIN	IERS	П		Ņ	VN9	Р	N.		C. a	2	
1	eđ by:	éď by:	ZUPS SAME	COPY	ING I	le acce	ıtereso										X		WATER	Z	IT S		Ń	ONNELL	S	F		tes		
S		A.		HARD COPY REQUIRED	NSTR	sample acceptance policy current accreditation lists	urceas	$\times$	X	X	X	X	X	X,	X	X		$\boldsymbol{\chi}$	SOLID	Matrix			27	1	STD		,			
Solid voc		R		IRED	REPORTING INSTRUCTIONS	for sample acceptance policy and current accreditation lists.	See absoluteresourceassociates.com										X	X	other HCI			ų	$\mathcal{T}$		WESTBROOK			G		
5			ies.		SNO	and	s.com										$\chi$		HNO ₃	reser					K, MF					
$\cap$	١	Z	Í	FAX (FAX#)			SPE												H ₂ SO ₄	Preservation Method	PO #	Q	Reporti Limits:	Pro		Pro	Pro	a		
<b>\$</b>		1		X#)	PDF (e-mail address)														NaOH MeOH	n Me	#	Quote #	Reporting Limits:	Protocol:	ject Lo	Project #:	Project Name	osolute	124 Po	
Ide					nail ad														OTHER (Specify)	thod			QAPP EPA D	RCRA MCP	cation	3 6	ame:	eresou	Herita	
added 61171:1		6.	6		dress)	panyy	SPECIAL INSTRUCTIONS							-			V.	6/15	DATE		1		IΣ		Project Location NH MA ME	CAARD .		ous-430-2001 absoluteresourceassociates.com	124 Heritage Avenue #10 Portsmouth, NH 03801	
11741	Date		Date 15/1			2	SNO			0			0	0		d		11	,	Sampling		Fun	GW-1	SDWA NHDES	MA ME		$\tilde{\mathbf{s}}$	sociat	renue H 038	
		N/			300	tie	]	}	318	09 40	110	)	300	0150	100	0930	0Z0	SiS	TIME	oling			ې 1-		Ę	4		es.co	#10 1	
	Time	$0^{\ddagger}$	र्द	OTHER (spec	obon rel	6	-			F			19E			9		Ø	SAMPLER			מ כ כ כ		NPDES OTHER	Other			Э		
$\frown$	ē	<b>سی</b>	5 5 5 0 5 7 0	ER (sp	211	4											X	X			0C 826								CHAI AND	
	Rec	Rec	Rec		$\bigcirc$			$\left  \right $											U VOC 624				-		002111					
$\setminus$	Received by Laboratory: Way Bill#:	Received by:	leceived by:		ß														□ VOC 524.										N-OF-CUSTODY RECORD ANALYSIS REQUEST	
		<u> </u>	N N		2    anapar			_										$\geq$	¥ZTPH □ ¥8270PAH						' □ TPH F	ingerprin	t -		LYS -C	
ç		11	110		250				X	X	X	X	x	X	x	x		$\frac{\lambda}{\lambda}$	8082 PCE						B				ISI ISI	
	N IS		S											,					□ 0&G 1664	4 🗆 l	Mineral	0&G	SM5520F						R E C C C C C C C C C C C C C C C C C C	
:	Š		2		+				ļ										D pH D									3	N N N N N N N	
	C.		R		Com												X	$\mathbf{\mathbf{x}}$	TSS 🗆						L Metals		Ē		ST	
4			5		٢			$\vdash$									<b>r</b>		□ Total Meta									2	OR.	
	$\langle \rangle$		ĥ																Dissolved	Metal	s-list:						E	-	D	
$\mathbf{X}$										ļ									🗆 Ammonia	□ C	0D 🗆	TKN		] TON			Ē	2		
	ľ			L -	ч П	l												_	T-Phosph							N	-*	3	<b>.</b> -	
				EMF	RECE				-	<u> </u>	-			L					Cyanide							Eluaride	- 19	1	2	
	6			TEMPERATURE	RECEIVED			┝	-	-	<u> </u>						-		□ Nitrate □ □ Corrosivil								-		21796	-
		Date	Date	TUR	NO O			╞										-	TCLP Me										ğ	PAGE
	7/4			m̃ 															Subcontract:		-								σ	$\mathbb{N}$
					Å				-																					ПОЕ
	10-1	Time	Time	1						$\left  \right $	-					$\vdash$														ľ
	G			၊ ဂိ	NO				-										Grab (G) o	r Cor	nposite	(C)								['\`



# Absolute Resource associates

124 Heritage Avenue #10 Portsmouth, NH 03801

Jonathan O'Donnell CREDERE Associates 776 Main Street Westbrook, ME 04092 PO Number: None Job ID: 21907 Date Received: 7/1/11

Project: Guay's 10001087

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

Cliff Chase Partner, Technical Director

Date of Approval: 7/26/2011 Total number of pages: 19

#### **Absolute Resource Associates Certifications**

New Hampshire 1732 Maine NH903 Massachusetts M-NH902

Job ID: 21907

Sample#: 21907-001

Sample ID: CA-1 6-8'

Matrix: Solid Percent Dry: 79.2% Results expressed on a dry weight basis.

Sampled: 6/30/11 14:28		Quant		Instr Dil'n	Prep			lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
acetone	< 2	2	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
2-butanone (MEK)	< 0.3	0.3	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
tetrahydrofuran (THF)	< 0.5	0.5	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.4	0.4	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
2-hexanone	< 0.5	0.5	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	2:21	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	2:21	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	2:21	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	2:21	SW5035A8260B
	••••		- 9 9	•					



Job ID: 21907

Sample#: 21907-001

Sample ID: CA-1 6-8'

Matrix: Solid Percent Dry: 79.2% Results expressed on a dry weight basis.

Sampled: 6/30/11 14:28	-	Quant		Instr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	2:21	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
Surrogate Recovery		Limits	5						
dibromofluoromethane SUR	82	78-114	%	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
toluene-D8 SUR	92	88-110	%	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
4-bromofluorobenzene SUR	94	86-115	%	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B
a,a,a-trifluorotoluene SUR	88	70-130	%	1	LMM 7/6/11	4307	7/9/11	2:21	SW5035A8260B



Job ID: 21907

Sample#: 21907-002

Sample ID: CA-2 14-16'

Matrix: Solid Percent Dry: 78.7% Results expressed on a dry weight basis.

Sampled: 6/30/11 16:40	nt Bry. 70						<b>A</b>	lucia.	
Parameter	Result	Quant Limit	Units	Instr Dil'n Factor	Pre Analyst Dat		Ana Date	lysis Time	Reference
dichlorodifluoromethane	< 0.1	0.1		ractor 1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
chloromethane	< 0.1 < 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
vinyl chloride	< 0.1 < 0.1		ug/g		LMM 7/6/11		7/9/11	2:52	SW5035A8260B
bromomethane	< 0.1 < 0.1	0.1 0.1	ug/g	1 1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
chloroethane	< 0.1 < 0.1	0.1	ug/g		LMM 7/6/11		7/9/11	2:52	SW5035A8260B
	< 0.1 < 0.1	0.1	ug/g	1 1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
trichlorofluoromethane diethyl ether	< 0.1 < 0.1	0.1	ug/g		LMM 7/6/11		7/9/11	2:52	SW5035A8260B
•	< 0.1		ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
acetone	< 0.1	2 0.1	ug/g	1 1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
1,1-dichloroethene methylene chloride	< 0.1 < 0.1	0.1	ug/g ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
carbon disulfide	< 0.1 < 0.1	0.1		1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1 < 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
trans-1,2-dichloroethene	< 0.1 < 0.1	0.1	ug/g ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
	< 0.1 < 0.1	0.1		1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
isopropyl ether (DIPE)	< 0.1 < 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
ethyl t-butyl ether (ETBE) 1,1-dichloroethane	< 0.1 < 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
	< 0.1	2	ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
t-butanol (TBA) 2-butanone (MEK)	< 0.3	0.3	ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
2,2-dichloropropane	< 0.3 < 0.1	0.3	ug/g ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
cis-1,2-dichloroethene	< 0.1 < 0.1	0.1	ug/g ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
chloroform	< 0.1 < 0.1	0.1		1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
bromochloromethane	< 0.1 < 0.1	0.1	ug/g ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
	< 0.1 < 0.4	0.1		1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
tetrahydrofuran (THF) 1,1,1-trichloroethane	< 0.4 < 0.1	0.4	ug/g ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
1,1-dichloropropene	< 0.1 < 0.1	0.1	ug/g ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1 < 0.1	0.1	ug/g ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
1,2-dichloroethane	< 0.1 < 0.1	0.1	ug/g ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
benzene	< 0.1 < 0.1	0.1		1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
trichloroethene	< 0.1 < 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
1,2-dichloropropane	< 0.1 < 0.1	0.1	ug/g ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
bromodichloromethane	< 0.1 < 0.1	0.1	ug/g ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
1,4-dioxane	< 2	2	ug/g ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.1 < 0.4	0.1	ug/g ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
cis-1,3-dichloropropene	< 0.4 < 0.1	0.4		1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
toluene	< 0.1 < 0.1	0.1	ug/g ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
trans-1,3-dichloropropene	< 0.1 < 0.1	0.1		1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
2-hexanone	< 0.1 < 0.4	0.1	ug/g	1	LMM 7/6/11		7/9/11	2:52	SW5035A8260B
1,1,2-trichloroethane	< 0.4 < 0.1		ug/g	1	LMM 7/6/11		7/9/11		SW5035A8260B
	< 0.1 < 0.1	0.1 0.1	ug/g	1	LMM 7/6/11		7/9/11	2:52 2:52	SW5035A8260B SW5035A8260B
1,3-dichloropropane tetrachloroethene	< 0.1 < 0.1		ug/g		LMM 7/6/11		7/9/11		
dibromochloromethane	< 0.1 < 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	2:52 2:52	SW5035A8260B SW5035A8260B
abromocniorometrane	<ul><li>∨ 0.1</li></ul>	0.1	ug/g	1		4307	119/11	2.52	3110000A0200B



Job ID: 21907

Sample#: 21907-002

Sample ID: CA-2 14-16'

Matrix: Solid Percent Dry: 78.7% Results expressed on a dry weight basis.

Sampled: 6/30/11 16:40		Quant		Instr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
Surrogate Recovery		Limits	5						
dibromofluoromethane SUR	81	78-114	%	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
toluene-D8 SUR	90	88-110	%	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
4-bromofluorobenzene SUR	92	86-115	%	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B
a,a,a-trifluorotoluene SUR	97	70-130	%	1	LMM 7/6/11	4307	7/9/11	2:52	SW5035A8260B



Job ID: 21907

Sample#: 21907-003

Sample ID: CA-3 8-10'

Matrix: Solid Percent Dry: 81.6% Results expressed on a dry weight basis.

Sampled: 6/30/11 12:00	D. K	Quant		Instr Dil'n	Prep Analyst Data	Datah		lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
acetone	< 3	3	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
t-butanol (TBA)	< 3	3	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
2-butanone (MEK)	< 0.3	0.3	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
tetrahydrofuran (THF)	< 0.5	0.5	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
1,4-dioxane	< 3	3	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.5	0.5	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
2-hexanone	< 0.5	0.5	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
	0.1	÷.,	~9,9					0.20	2



Job ID: 21907

Sample#: 21907-003

Sample ID: CA-3 8-10'

Matrix: Solid Percent

Percent Dry: 81.6% Results expressed on a dry weight basis.

Sampled: 6/30/11 12:00	it Diy. Of				Bron		٨٣٥	lysis	
Parameter	Result	Quant Limit	Units	Instr Dil'n Factor	Prep Analyst Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B
Surrogate Recovery		Limits							
dibromofluoromethane SUR	80	78-114	%	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
toluene-D8 SUR	90	88-110	%	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
4-bromofluorobenzene SUR	100	86-115	%	1	LMM 7/6/11		7/9/11	3:23	SW5035A8260B
a,a,a-trifluorotoluene SUR	97	70-130	%	1	LMM 7/6/11	4307	7/9/11	3:23	SW5035A8260B



Job ID: 21907

Sample#: 21907-004

Sample ID: CA-DUP-SB Matrix: Solid

Percent Dry: 77% Results expressed on a dry weight basis.

Sampled: 6/30/11 0:00		Quant		Instr Dil'n	Prep		Analysis		
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
acetone	< 3	3	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
t-butanol (TBA)	< 3	3	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
2-butanone (MEK)	< 0.3	0.3	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
tetrahydrofuran (THF)	< 0.5	0.5	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
1,4-dioxane	< 3	3	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.5	0.5	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
2-hexanone	< 0.5	0.5	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	5:58	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	5:58	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/9/11	5:58	SW5035A8260B
			55						



Job ID: 21907

Sample#: 21907-004

Sample ID: CA-DUP-SB Matrix: Solid

Percent Dry: 77% Results expressed on a dry weight basis.

Sampled: 6/30/11 0:00		Quant		Instr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
Surrogate Recovery		Limits	S						
dibromofluoromethane SUR	80	78-114	%	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
toluene-D8 SUR	92	88-110	%	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
4-bromofluorobenzene SUR	88	86-115	%	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B
a,a,a-trifluorotoluene SUR	93	70-130	%	1	LMM 7/6/11	4307	7/9/11	5:58	SW5035A8260B



Job ID: 21907

Sample#: 21907-001

Sample ID: CA-1 6-8'

Matrix: Solid Percent Dry:

Percent Dry: 79.2% Results expressed on a dry weight basis.

Sampled: 6/30/11 14:28		Quant		Instr Dil'n	Prep	Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:03	SW3550B8270D
2-methylnaphthalene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:03	SW3550B8270D
acenaphthylene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:03	SW3550B8270D
acenaphthene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:03	SW3550B8270D
dibenzofuran	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:03	SW3550B8270D
fluorene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:03	SW3550B8270D
phenanthrene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:03	SW3550B8270D
anthracene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:03	SW3550B8270D
fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:03	SW3550B8270D
pyrene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:03	SW3550B8270D
benzo(a)anthracene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:03	SW3550B8270D
chrysene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:03	SW3550B8270D
benzo(b)fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:03	SW3550B8270D
benzo(k)fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:03	SW3550B8270D
benzo(a)pyrene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:03	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:03	SW3550B8270D
dibenzo(a,h)anthracene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:03	SW3550B8270D
benzo(g,h,i)perylene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:03	SW3550B8270D
Surrogate Recovery		Limits	5					
2-fluorobiphenyl SUR	63	43-116	%	1	AJD 7/7/11	4315 7/8/11	17:03	SW3550B8270D
o-terphenyl SUR	66	33-141	%	1	AJD 7/7/11	4315 7/8/11	17:03	SW3550B8270D



Job ID: 21907

Sample#: 21907-002

Sample ID: CA-2 14-16'

Matrix: Solid Percent Dry: 78.7% Results expressed on a dry weight basis.

Sampled: 6/30/11 16:40		Quant		Instr Dil'n	Prep	Ar	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:41	SW3550B8270D
2-methylnaphthalene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:41	SW3550B8270D
acenaphthylene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:41	SW3550B8270D
acenaphthene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:41	SW3550B8270D
dibenzofuran	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:41	SW3550B8270D
fluorene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:41	SW3550B8270D
phenanthrene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:41	SW3550B8270D
anthracene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:41	SW3550B8270D
fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:41	SW3550B8270D
pyrene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:41	SW3550B8270D
benzo(a)anthracene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:41	SW3550B8270D
chrysene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:41	SW3550B8270D
benzo(b)fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:41	SW3550B8270D
benzo(k)fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:41	SW3550B8270D
benzo(a)pyrene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:41	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:41	SW3550B8270D
dibenzo(a,h)anthracene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:41	SW3550B8270D
benzo(g,h,i)perylene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	17:41	SW3550B8270D
Surrogate Recovery		Limits	5					
2-fluorobiphenyl SUR	46	43-116	%	1	AJD 7/7/11	4315 7/8/11	17:41	SW3550B8270D
o-terphenyl SUR	53	33-141	%	1	AJD 7/7/11	4315 7/8/11	17:41	SW3550B8270D



Job ID: 21907

Sample#: 21907-003

Sample ID: CA-3 8-10'

Matrix: Solid

Sampled: 6/30/11 12:00

Percent Dry: 81.6% Results expressed on a dry weight basis.

Sampled: 6/30/11 12:00		Quant		Instr Dil'n	Prep	Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:19	SW3550B8270D
2-methylnaphthalene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:19	SW3550B8270D
acenaphthylene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:19	SW3550B8270D
acenaphthene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:19	SW3550B8270D
dibenzofuran	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:19	SW3550B8270D
fluorene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:19	SW3550B8270D
phenanthrene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:19	SW3550B8270D
anthracene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:19	SW3550B8270D
fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:19	SW3550B8270D
pyrene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:19	SW3550B8270D
benzo(a)anthracene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:19	SW3550B8270D
chrysene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:19	SW3550B8270D
benzo(b)fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:19	SW3550B8270D
benzo(k)fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:19	SW3550B8270D
benzo(a)pyrene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:19	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:19	SW3550B8270D
dibenzo(a,h)anthracene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:19	SW3550B8270D
benzo(g,h,i)perylene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:19	SW3550B8270D
Surrogate Recovery		Limit	S					
2-fluorobiphenyl SUR	81	43-116	%	1	AJD 7/7/11	4315 7/8/11	18:19	SW3550B8270D
o-terphenyl SUR	85	33-141	%	1	AJD 7/7/11	4315 7/8/11	18:19	SW3550B8270D



Job ID: 21907

Sample#: 21907-004

Sample ID: CA-DUP-SB Matrix: Solid

Percent Dry: 77% Results expressed on a dry weight basis.

Sampled: 6/30/11 0:00		Quant	I	nstr Dil'n	Prep	Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:56	SW3550B8270D
2-methylnaphthalene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:56	SW3550B8270D
acenaphthylene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:56	SW3550B8270D
acenaphthene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:56	SW3550B8270D
dibenzofuran	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:56	SW3550B8270D
fluorene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:56	SW3550B8270D
phenanthrene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:56	SW3550B8270D
anthracene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:56	SW3550B8270D
fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:56	SW3550B8270D
pyrene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:56	SW3550B8270D
benzo(a)anthracene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:56	SW3550B8270D
chrysene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:56	SW3550B8270D
benzo(b)fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:56	SW3550B8270D
benzo(k)fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:56	SW3550B8270D
benzo(a)pyrene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:56	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:56	SW3550B8270D
dibenzo(a,h)anthracene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:56	SW3550B8270D
benzo(g,h,i)perylene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	18:56	SW3550B8270D
Surrogate Recovery		Limits	5					
2-fluorobiphenyl SUR	97	43-116	%	1	AJD 7/7/11	4315 7/8/11	18:56	SW3550B8270D
o-terphenyl SUR	108	33-141	%	1	AJD 7/7/11	4315 7/8/11	18:56	SW3550B8270D



Job ID: 21907

Sample#: 21907-001

```
Sample ID: CA-1 6-8'
```

Matrix: Solid Percent Dry: 79.2% Results expressed on a dry weight basis.

Sampled: 6/30/11 14:28		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
PCB-1016	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345	7/20/11	19:39	SW3540C8082A
PCB-1221	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345	7/20/11	19:39	SW3540C8082A
PCB-1232	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345	7/20/11	19:39	SW3540C8082A
PCB-1242	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345	7/20/11	19:39	SW3540C8082A
PCB-1248	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345	7/20/11	19:39	SW3540C8082A
PCB-1254	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345	7/20/11	19:39	SW3540C8082A
PCB-1260	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345	7/20/11	19:39	SW3540C8082A
Surrogate Recovery		Limit	s						
tetrachloro-m-xylene SUR	80	30-150	%	1	JLZ 7/13/11	4345	7/20/11	19:39	SW3540C8082A
decachlorobiphenyl SUR	129	30-150	%	1	JLZ 7/13/11	4345	7/20/11	19:39	SW3540C8082A

Sample#: 21907-002

Sample ID: CA-2 14-16'

Matrix: Solid Percent Dry: 78.7% Results expressed on a dry weight basis.

Sampled: 6/30/11 16:40		Quant		Instr Dil'n	Prep	A	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
PCB-1016	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345 7/20/	1 20:09	SW3540C8082A
PCB-1221	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345 7/20/	1 20:09	SW3540C8082A
PCB-1232	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345 7/20/	1 20:09	SW3540C8082A
PCB-1242	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345 7/20/	1 20:09	SW3540C8082A
PCB-1248	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345 7/20/	1 20:09	SW3540C8082A
PCB-1254	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345 7/20/	1 20:09	SW3540C8082A
PCB-1260	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345 7/20/	1 20:09	SW3540C8082A
Surrogate Recovery		Limits	5					
tetrachloro-m-xylene SUR	70	30-150	%	1	JLZ 7/13/11	4345 7/20/	1 20:09	SW3540C8082A
decachlorobiphenyl SUR	132	30-150	%	1	JLZ 7/13/11	4345 7/20/	1 20:09	SW3540C8082A



Job ID: 21907

Sample#: 21907-003

#### Sample ID: CA-3 8-10'

Matrix: Solid Percent Dry: 81.6% Results expressed on a dry weight basis.

Sampled: 6/30/11 12:00		Quant		Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch D	Date Time	Reference
PCB-1016	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345 7/2	20/11 20:40	SW3540C8082A
PCB-1221	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345 7/2	20/11 20:40	SW3540C8082A
PCB-1232	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345 7/2	20/11 20:40	SW3540C8082A
PCB-1242	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345 7/2	20/11 20:40	SW3540C8082A
PCB-1248	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345 7/2	20/11 20:40	SW3540C8082A
PCB-1254	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345 7/2	20/11 20:40	SW3540C8082A
PCB-1260	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345 7/2	20/11 20:40	SW3540C8082A
Surrogate Recovery		Limits	S					
tetrachloro-m-xylene SUR	77	30-150	%	1	JLZ 7/13/11	4345 7/2	20/11 20:40	SW3540C8082A
decachlorobiphenyl SUR	118	30-150	%	1	JLZ 7/13/11	4345 7/2	20/11 20:40	SW3540C8082A

#### Sample#: 21907-004

Sample ID: CA-DUP-SB

Matrix: Solid Percent Dry: 77% Results expressed on a dry weight basis.

Sampled: 6/30/11 0:00		Quant		Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch D	ate Time	Reference
PCB-1016	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345 7/2	0/11 21:11	SW3540C8082A
PCB-1221	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345 7/2	0/11 21:11	SW3540C8082A
PCB-1232	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345 7/2	0/11 21:11	SW3540C8082A
PCB-1242	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345 7/2	0/11 21:11	SW3540C8082A
PCB-1248	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345 7/2	0/11 21:11	SW3540C8082A
PCB-1254	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345 7/2	0/11 21:11	SW3540C8082A
PCB-1260	< 0.04	0.04	ug/g	1	JLZ 7/13/11	4345 7/2	0/11 21:11	SW3540C8082A
Surrogate Recovery		Limits	5					
tetrachloro-m-xylene SUR	67	30-150	%	1	JLZ 7/13/11	4345 7/2	0/11 21:11	SW3540C8082A
decachlorobiphenyl SUR	113	30-150	%	1	JLZ 7/13/11	4345 7/2	0/11 21:11	SW3540C8082A



Job ID: 21907

Sample#: 21907-001

Sample ID: CA-1 6-8'

Matrix: Solid Percent Dry: 79.2% Results expressed on a dry weight basis.

Sampled: 6/30/11 14:28		Quant		Instr Dil'n	Prep		Anal	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36	< 240	240	ug/g	1	JLZ 7/7/11	4312	7/8/11	22:03	SW3550B8100m
Surrogate Recovery		Limits	i						
2-fluorobiphenyl SUR	66	40-140	%	1	JLZ 7/7/11	4312	7/8/11	22:03	SW3550B8100m
o-terphenyl SUR	82	40-140	%	1	JLZ 7/7/11	4312	7/8/11	22:03	SW3550B8100m

Sample#: 21907-002 Sample ID: CA-2 14-16' Matrix: Solid Percen	t Dry: 78	.7% Resu	lts expre	essed on	a dry weight ba	asis.			
Sampled: 6/30/11 16:40		Quant	I	nstr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36	< 250	250	ug/g	1	JLZ 7/7/11	4312	7/8/11	22:20	SW3550B8100m
Surrogate Recovery		Limits	5						
2-fluorobiphenyl SUR	46	40-140	%	1	JLZ 7/7/11	4312	7/8/11	22:20	SW3550B8100m
o-terphenyl SUR	60	40-140	%	1	JLZ 7/7/11	4312	7/8/11	22:20	SW3550B8100m

Sample#:	21907-003
----------	-----------

Sample ID: CA-3 8-10'

Matrix: Solid Percent Dry: 81.6% Results expressed on a dry weight basis.

Sampled: 6/30/11 12:00		Quant		Instr Dil'n	Prep	A	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Dat	e Time	Reference
TPH C10-C36	< 240	240	ug/g	1	JLZ 7/7/11	4312 7/8/1	1 22:36	SW3550B8100m
Surrogate Recovery		Limits	5					
2-fluorobiphenyl SUR	79	40-140	%	1	JLZ 7/7/11	4312 7/8/1	1 22:36	SW3550B8100m
o-terphenyl SUR	99	40-140	%	1	JLZ 7/7/11	4312 7/8/1	1 22:36	SW3550B8100m

Sample#: 21907-004 Sample ID: CA-DUP-SB Matrix: Solid	Percent Dry: 77% F	Results expres	ssed on a	dry weight basis	5.			
Sampled: 6/30/11 0:00	Qu	uant	Instr Dil'n	Prep		Analy	/sis	
Parameter	Result L	imit Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36	< 250 2	250 ug/g	1	JLZ 7/7/11	4312	7/8/11	22:52	SW3550B8100m
Surrogate Recovery		Limits						
2-fluorobiphenyl SUR	<b>97</b> 40	)-140 %	1	JLZ 7/7/11	4312	7/8/11	22:52	SW3550B8100m
o-terphenyl SUR	<b>125</b> 40	)-140 %	1	JLZ 7/7/11	4312	7/8/11	22:52	SW3550B8100m



Job ID: 21907

Sample#: 21907-001

```
Sample ID: CA-1 6-8'
```

Matrix: Solid Percent Dry: 79.2% Results expressed on a dry weight basis.

Sampled: 6/30/11 14:28		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	2.8	0.4	ug/g	1	BJS 7/18/11	4363	7/18/11	18:30	SW3051A6010C
Barium	54	2	ug/g	1	BJS 7/18/11	4363	7/18/11	18:30	SW3051A6010C
Cadmium	< 0.2	0.2	ug/g	1	BJS 7/18/11	4363	7/18/11	18:30	SW3051A6010C
Chromium	15	2	ug/g	1	BJS 7/18/11	4363	7/18/11	18:30	SW3051A6010C
Lead	12	0.4	ug/g	1	BJS 7/18/11	4363	7/18/11	18:30	SW3051A6010C
Mercury	< 0.08	0.08	ug/g	1	BJS 7/6/11	4309	7/7/11	10:52	SW7471B
Selenium	< 2	2	ug/g	1	BJS 7/18/11	4363	7/18/11	18:30	SW3051A6010C
Silver	< 0.3	0.3	ug/g	1	BJS 7/18/11	4363	7/18/11	18:30	SW3051A6010C

#### Sample#: 21907-002

Sample ID: CA-2 14-16' Matrix: Solid

Percent Dry: 78.7% Results expressed on a dry weight basis.

Sampled: 6/30/11 16:40		Quant		Instr Dil'n	Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
Arsenic	5.1	0.6	ug/g	1	BJS 7/18/11	4363 7/18/11	18:38	SW3051A6010C
Barium	150	3	ug/g	1	BJS 7/18/11	4363 7/18/11	18:38	SW3051A6010C
Cadmium	< 0.2	0.2	ug/g	1	BJS 7/18/11	4363 7/18/11	18:38	SW3051A6010C
Chromium	31	3	ug/g	1	BJS 7/18/11	4363 7/18/11	18:38	SW3051A6010C
Lead	17	0.6	ug/g	1	BJS 7/18/11	4363 7/18/11	18:38	SW3051A6010C
Mercury	< 0.10	0.10	ug/g	1	BJS 7/6/11	4309 7/7/11	10:54	SW7471B
Selenium	< 3	3	ug/g	1	BJS 7/18/11	4363 7/18/11	18:38	SW3051A6010C
Silver	< 0.4	0.4	ug/g	1	BJS 7/18/11	4363 7/18/11	18:38	SW3051A6010C

#### Sample#: 21907-003

Matrix: Solid

Percent Dry: 81.6% Results expressed on a dry weight basis.

Sampled: 6/30/11 12:00		Quant	1	Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date Time	Reference
Arsenic	3.0	0.6	ug/g	1	BJS 7/18/11	4363 7/	/18/11 18:46	SW3051A6010C
Barium	49	3	ug/g	1	BJS 7/18/11	4363 7/	/18/11 18:46	SW3051A6010C
Cadmium	< 0.2	0.2	ug/g	1	BJS 7/18/11	4363 7/	/18/11 18:46	SW3051A6010C
Chromium	14	3	ug/g	1	BJS 7/18/11	4363 7/	/18/11 18:46	SW3051A6010C
Lead	10	0.6	ug/g	1	BJS 7/18/11	4363 7/	/18/11 18:46	SW3051A6010C
Mercury	< 0.07	0.07	ug/g	1	BJS 7/6/11	4309 7/	/7/11 10:56	SW7471B
Selenium	< 3	3	ug/g	1	BJS 7/18/11	4363 7/	/18/11 18:46	SW3051A6010C
Silver	< 0.4	0.4	ug/g	1	BJS 7/18/11	4363 7/	/18/11 18:46	SW3051A6010C



Sample ID: CA-3 8-10'

Job ID: 21907

Sample#: 21907-004

Sample ID: CA-DUP-SB

Matrix: Solid Percent Dry: 77% Results expressed on a dry weight basis.

Sampled: 6/30/11 0:00		Quant		Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch D	ate Time	Reference
Arsenic	2.2	0.6	ug/g	1	BJS 7/18/11	4363 7/1	3/11 18:54	SW3051A6010C
Barium	47	3	ug/g	1	BJS 7/18/11	4363 7/1	3/11 18:54	SW3051A6010C
Cadmium	< 0.3	0.3	ug/g	1	BJS 7/18/11	4363 7/1	3/11 18:54	SW3051A6010C
Chromium	13	3	ug/g	1	BJS 7/18/11	4363 7/1	3/11 18:54	SW3051A6010C
Lead	6.9	0.6	ug/g	1	BJS 7/18/11	4363 7/1	3/11 18:54	SW3051A6010C
Mercury	< 0.08	0.08	ug/g	1	BJS 7/6/11	4309 7/7	11 11:03	SW7471B
Selenium	< 3	3	ug/g	1	BJS 7/18/11	4363 7/1	3/11 18:54	SW3051A6010C
Silver	< 0.4	0.4	ug/g	1	BJS 7/18/11	4363 7/1	3/11 18:54	SW3051A6010C



				**Date Needed	(10 Business Days)	TAT REQUESTED     Priority (24 hr)**     Expedited (48 hr)**			*		t of catoless	1 03 CA-3	. CA-2	20067-01 524-1	Sample Field ID ID (Lab Use Only)	Lab		Invoice To:	Phone #:		THE MAIN ST., WESTEROK, ME	Company Name:			
	Relinquished by:	Relinquished by:	Relinquist		REPORT	* See wy sample and cu	- ' 				23 V	3-10 1	1 12-161	2 18-9	# CONTAIN					1Donnell	WESTON	A	UILC. 000-4	Resource La 124 Heritage Avenue	
	ed by:	∮ď by:	ed by Sample	HARD COPY REQUIRED	REPORTING INSTRUCTIONS	See www.reslabs.com for sample acceptance policy and current accreditation lists.					Ç		- î	X	WATER SOLID	Matrix				Ľ.	OOK,M	SOCIA		e Labo	
		~ ~	NV Ca		IUCTIONS	om for e policy litation lists.									other hCi hNO ₃						17	ATES	1 ax. 000-	Oratories, LL Portsmouth, NH 038	
				□ FAX (FAX#)	PDF (e-	BECIAL					1			¥	H ₂ SO ₄ NaOH MeOH	<b>Preservation Method</b>	PO #	Quote #_	Reporting Limits:	Protocol:	Project Location:	Project Name:		Laboratories, LLC nue • Portsmouth, NH 03801	
			4		APDF (e-mail address)_	BROWN FIELDS.					+-			12	OTHER (Specify)	sthod			g QAPP EPA DW	RCRA MCP	ocation:	·····································		<u> </u>	
	Date	Date	Date		) jodoane	ions					7	1200	0491 , I	74/11 1428	TIME	Sampling		- UH GREE/ODD	GW-1 S-1 Other	0°-	iocci08天 oject Location: 山山 MA ME VT				
	Time	Time	1021	□ OTHER (specify)_							£	- - X		X	SAMPLER*		Ľ.,			1	Other			AC	
/way Bill#:	Received by Labo	Received by:	Received by:	pecify)	(a) Cired	SoxHC		 							VOC 624     VPH MADI     VOC 524.2	EP 🗆 ! 🗆 V	MEGRO /OC 524	) 🗆 ( 2 NH	GRO 8015 List	;			:	CHAIN-OF AND ANA	
U than	by Laborato	by:	by:		edevalle.			 _			ズズズ	× × ×	XXX	XXX	■ TPH □ D 8270PAH 8082 PCB	□ 82 □ 8(	70ABN 081 Pes	□ 62 ticides	5 🗆 ED	B 504.1		gerprint		CUSTC LYSIS R	
	· . /				ういう	For PC				 	·		3.5		O&G 1664     O#H     DH     TSS     T	BOD DS C	Cor TS C	nductiv I TVS	rity □ □ Alkal	inity			ANAL	ODY RECORD REQUEST	
1 63	)					55					<u>へ</u>	<u>へ</u>	×	X	CRA Meta Total Meta Dissolved Ammonia	s-list: Metals	-list:				IVIERAIS		SIS RE(	r T	
				TEMPE	RECEIVED										<ul> <li>Cyanide</li> <li>Nitrate</li> </ul>	rus 🗆 🗆 Sulf	] Pheno ide 🗆	ls □ Nitrate	Bacteria + Nitrite	P/A □ Ba □ Ortho	Р		REQUEST	21907	
(0.94)	Date	Date	Date	TEMPERATURE	VED ON ICE										Corrosivity	r ⊡ R Ils ⊡	leactive ( TCLP V	CN E	□ Reactiv □ TCLP S	e S- 🗆 I SVOC 🗆	gnitibility/FP TCLP Pestici			70	PAGE
1112	Tine	Time	Time		FYES D			 -						4											OF
t	<u>`</u>			ဂိ	NO					-	5			や	Grab (G) or	Com	posite (C	)							J.

 $\left( \right)$ 



## Absolute Resource associates

124 Heritage Avenue #10 Portsmouth, NH 03801

Jonathan O'Donnell CREDERE Associates 776 Main Street Westbrook, ME 04092 PO Number: None Job ID: 22019 Date Received: 7/18/11

Project: Guay's 10001087

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

lluer (for)

Sue Sylvester Principal, General Manager

Date of Approval: 7/27/2011 Total number of pages: 28

#### **Absolute Resource Associates Certifications**

New Hampshire 1732 Maine NH903 Massachusetts M-NH902

#### Project ID: Guay's 10001087 Lab ID: 22019

### Sample Association Table

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
MW-4	Water	7/14/2011 11:12	22019-001	
				PAHs in water by 8270
				Water Digestion for ICP Analysis
				Silver in water by 6010
				Arsenic in water by 6010
				Barium in water by 6010
				Cadmium in water by 6010
				Chromium in water by 6010
				Mercury in water by 7470
				Lead in water by 6010
				Selenium in water by 6010
				VOCs in water by 8260 Petro & Haz Waste
CA-2	Water	7/14/2011 12:15	22019-002	
				PAHs in water by 8270
				Water Digestion for ICP Analysis
				Silver in water by 6010
				Arsenic in water by 6010
				Barium in water by 6010
				Cadmium in water by 6010
				Chromium in water by 6010
				Mercury in water by 7470
				Lead in water by 6010
				Selenium in water by 6010
CA-1	Water	7/14/2011 12:48	22019-003	VOCs in water by 8260 Petro & Haz Waste
CA-1	vvaler	7/14/2011 12.40	22019-003	PAHs in water by 8270
				Water Digestion for ICP Analysis
				Silver in water by 6010
				Arsenic in water by 6010
				Barium in water by 6010
				Cadmium in water by 6010
				Chromium in water by 6010
				Mercury in water by 7470
				Lead in water by 6010
				Selenium in water by 6010
				VOCs in water by 8260 Petro & Haz Waste
DUP-GW-1	Water	7/14/2011 0:00	22019-004	
				PAHs in water by 8270
				Water Digestion for ICP Analysis
				Silver in water by 6010
				Arsenic in water by 6010
				Barium in water by 6010
				Cadmium in water by 6010
				Chromium in water by 6010
				Mercury in water by 7470
				Lead in water by 6010
				Selenium in water by 6010
				VOCs in water by 8260 Petro & Haz Waste



Job ID: 22019

Sample#: 22019-001

Sample ID: MW-4

Matrix: Water

Sampled: 7/14/11 11:12		0					•		
	Desult	Quant		Instr Dil'n	Analyst	Prep	Anal Batab Data	-	Deferrer
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time	Reference
dichlorodifluoromethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
chloromethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
vinyl chloride	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
bromomethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
chloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
trichlorofluoromethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
diethyl ether	< 5	5	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
acetone	< 50	50	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
1,1-dichloroethene	< 1	1	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
methylene chloride	< 5	5	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
carbon disulfide	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
methyl t-butyl ether (MTBE)	2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
trans-1,2-dichloroethene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
isopropyl ether (DIPE)	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
ethyl t-butyl ether (ETBE)	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
1,1-dichloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
t-butanol (TBA)	< 30	30	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
2-butanone (MEK)	< 10	10	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
2,2-dichloropropane	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
cis-1,2-dichloroethene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
chloroform	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
bromochloromethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
tetrahydrofuran (THF)	< 10	10	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
1,1,1-trichloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
1,1-dichloropropene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
t-amyl-methyl ether (TAME)	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
carbon tetrachloride	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
trichloroethene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
1,2-dichloropropane	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
bromodichloromethane	< 0.6	0.6	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
1,4-dioxane	< 50	50	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
dibromomethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
4-methyl-2-pentanone (MIBK)	< 10	10	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
cis-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
toluene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
trans-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
2-hexanone	< 10	10	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
1,1,2-trichloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
1,3-dichloropropane	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
tetrachloroethene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
dibromochloromethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
	-	-	<del>3</del> / <b>-</b>	•					



Job ID: 22019

Sample#: 22019-001

Sample ID: MW-4

Sampled: 7/14/11 11:12		Quant		Instr Dil'n		Prep	Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time	Reference
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
chlorobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
1,1,1,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
styrene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
bromoform	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
isopropylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
1,1,2,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
1,2,3-trichloropropane	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
n-propylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
bromobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
2-chlorotoluene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
4-chlorotoluene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
tert-butylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
sec-butylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
1,3-dichlorobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
4-isopropyltoluene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
1,4-dichlorobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
1,2-dichlorobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
n-butylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
1,2,4-trichlorobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
1,3,5-trichlorobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
hexachlorobutadiene	< 0.5	0.5	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
1,2,3-trichlorobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
Surrogate Recovery		Limits	S						
dibromofluoromethane SUR	92	78-114	%	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
toluene-D8 SUR	99	88-110	%	1	LMM		1101505 7/22/11	20:00	SW5030B8260B
4-bromofluorobenzene SUR	89	86-115	%	1	LMM		1101505 7/22/11	20:00	SW5030B8260B



Job ID: 22019

Sample#: 22019-002

Sample ID: CA-2

Sampled: 7/14/11 12:15		Quant		Instr Dil'n		Prep		lysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time	Reference
dichlorodifluoromethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
chloromethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
vinyl chloride	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
bromomethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
chloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
trichlorofluoromethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
diethyl ether	< 5	5	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
acetone	< 50	50	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
1,1-dichloroethene	< 1	1	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
methylene chloride	< 5	5	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
carbon disulfide	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
methyl t-butyl ether (MTBE)	5	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
trans-1,2-dichloroethene	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
isopropyl ether (DIPE)	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
ethyl t-butyl ether (ETBE)	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
1,1-dichloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
t-butanol (TBA)	< 30	30	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
2-butanone (MEK)	< 10	10	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
2,2-dichloropropane	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
cis-1,2-dichloroethene	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
chloroform	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
bromochloromethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
tetrahydrofuran (THF)	< 10	10	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
1,1,1-trichloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
1,1-dichloropropene	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
t-amyl-methyl ether (TAME)	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
carbon tetrachloride	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
trichloroethene	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
1,2-dichloropropane	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
bromodichloromethane	< 0.6	0.6	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
1,4-dioxane	< 50	50	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
dibromomethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
4-methyl-2-pentanone (MIBK)	< 10	10	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
cis-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
toluene	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
trans-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
2-hexanone	< 10	10	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
1,1,2-trichloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
1,3-dichloropropane	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
tetrachloroethene	4	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
dibromochloromethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	16:52	SW5030B8260B
			-						



Job ID: 22019

Sample#: 22019-002

Sample ID: CA-2

Sampled: 7/14/11 12:15		Quant		Instr Dil'n		Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time	Reference
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
chlorobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
1,1,1,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
styrene	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
bromoform	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
isopropylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
1,1,2,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
1,2,3-trichloropropane	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
n-propylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
bromobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
2-chlorotoluene	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
4-chlorotoluene	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
tert-butylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
sec-butylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
1,3-dichlorobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
4-isopropyltoluene	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
1,4-dichlorobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
1,2-dichlorobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
n-butylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
1,2,4-trichlorobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
1,3,5-trichlorobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
hexachlorobutadiene	< 0.5	0.5	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
1,2,3-trichlorobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
Surrogate Recovery		Limits	S						
dibromofluoromethane SUR	96	78-114	%	1	LMM		1101505 7/22/1		SW5030B8260B
toluene-D8 SUR	100	88-110	%	1	LMM		1101505 7/22/1	16:52	SW5030B8260B
4-bromofluorobenzene SUR	90	86-115	%	1	LMM		1101505 7/22/1	16:52	SW5030B8260B



Job ID: 22019

Sample#: 22019-003

Sample ID: CA-1

Matrix: Water

$\mathbf{P}_{\mathbf{A}} = \mathbf{P}_{\mathbf{A}} = $						_	_	_	
Sampled: 7/14/11 12:48		Quant		Instr Dil'n	A	Prep		lysis	- <i>i</i>
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time	Reference
dichlorodifluoromethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
chloromethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
vinyl chloride	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
bromomethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
chloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
trichlorofluoromethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
diethyl ether	< 5	5	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
acetone	< 50	50	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
1,1-dichloroethene	< 1	1	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
methylene chloride	< 5	5	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
carbon disulfide	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
methyl t-butyl ether (MTBE)	16	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
trans-1,2-dichloroethene	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
isopropyl ether (DIPE)	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
ethyl t-butyl ether (ETBE)	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
1,1-dichloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
t-butanol (TBA)	< 30	30	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
2-butanone (MEK)	< 10	10	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
2,2-dichloropropane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
cis-1,2-dichloroethene	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
chloroform	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
bromochloromethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
tetrahydrofuran (THF)	< 10	10	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
1,1,1-trichloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
1,1-dichloropropene	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
t-amyl-methyl ether (TAME)	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
carbon tetrachloride	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
trichloroethene	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
1,2-dichloropropane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
bromodichloromethane	< 0.6	0.6	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
1,4-dioxane	< 50	50	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
dibromomethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
4-methyl-2-pentanone (MIBK)	< 10	10	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
cis-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
toluene	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
trans-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
2-hexanone	< 10	10	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
1,1,2-trichloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
1,3-dichloropropane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
tetrachloroethene	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B
dibromochloromethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:23	SW5030B8260B



Job ID: 22019

Sample#: 22019-003

Sample ID: CA-1

Sampled: 7/14/11 12:48		Quant		Instr Dil'n		Prep	Ar	alysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time	Reference
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
chlorobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
1,1,1,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
styrene	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
bromoform	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
isopropylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
1,1,2,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
1,2,3-trichloropropane	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
n-propylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
bromobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
2-chlorotoluene	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
4-chlorotoluene	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
tert-butylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
sec-butylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
1,3-dichlorobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
4-isopropyltoluene	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
1,4-dichlorobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
1,2-dichlorobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
n-butylbenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
1,2,4-trichlorobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
1,3,5-trichlorobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
hexachlorobutadiene	< 0.5	0.5	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
1,2,3-trichlorobenzene	< 2	2	ug/L	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
Surrogate Recovery		Limits	S						
dibromofluoromethane SUR	98	78-114	%	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
toluene-D8 SUR	99	88-110	%	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B
4-bromofluorobenzene SUR	93	86-115	%	1	LMM		1101505 7/22/1	1 17:23	SW5030B8260B



Job ID: 22019

Sample#: 22019-004

Sample ID: DUP-GW-1

Sampled: 7/14/11 0:00		Quant		Instr Dil'n		Prep		lysis	_
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time	Reference
dichlorodifluoromethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
chloromethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
vinyl chloride	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
bromomethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
chloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
trichlorofluoromethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
diethyl ether	< 5	5	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
acetone	< 50	50	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
1,1-dichloroethene	< 1	1	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
methylene chloride	< 5	5	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
carbon disulfide	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
methyl t-butyl ether (MTBE)	5	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
trans-1,2-dichloroethene	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
isopropyl ether (DIPE)	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
ethyl t-butyl ether (ETBE)	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
1,1-dichloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
t-butanol (TBA)	< 30	30	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
2-butanone (MEK)	< 10	10	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
2,2-dichloropropane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
cis-1,2-dichloroethene	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
chloroform	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
bromochloromethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
tetrahydrofuran (THF)	< 10	10	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
1,1,1-trichloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
1,1-dichloropropene	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
t-amyl-methyl ether (TAME)	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
carbon tetrachloride	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
trichloroethene	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
1,2-dichloropropane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
bromodichloromethane	< 0.6	0.6	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
1,4-dioxane	< 50	50	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
dibromomethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
4-methyl-2-pentanone (MIBK)	< 10	10	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
cis-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
toluene	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
trans-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
2-hexanone	< 10	10	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
1,1,2-trichloroethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
1,3-dichloropropane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
tetrachloroethene	4	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
dibromochloromethane	< 2	2	ug/L	1	LMM		1101505 7/22/11	17:54	SW5030B8260B
			5						121.2



Job ID: 22019

Sample#: 22019-004

Sample ID: DUP-GW-1

Sampled: 7/14/11 0:00		0								
Parameter	Result	Quant Limit	Units	Instr Dil'n Factor	Analyst	Prep Date	Batch	Anal Date	ysis Time	Reference
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM	Date	1101505		17:54	SW5030B8260B
chlorobenzene	< 2	2	ug/L	1	LMM		1101505		17:54	SW5030B8260B
1,1,1,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1101505		17:54	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		1101505		17:54	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		1101505		17:54	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		1101505		17:54	SW5030B8260B
styrene	< 2	2	ug/L	1	LMM		1101505		17:54	SW5030B8260B
bromoform	< 2	2	ug/L	1	LMM		1101505		17:54	SW5030B8260B
isopropylbenzene	< 2	2	ug/L	1	LMM		1101505		17:54	SW5030B8260B
1,1,2,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1101505		17:54	SW5030B8260B
1,2,3-trichloropropane	< 2	2	ug/L	1	LMM		1101505		17:54	SW5030B8260B
n-propylbenzene	< 2	2	ug/L	1	LMM		1101505		17:54	SW5030B8260B
bromobenzene	< 2	2	ug/L	1	LMM		1101505		17:54	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		1101505	7/22/11	17:54	SW5030B8260B
2-chlorotoluene	< 2	2	ug/L	1	LMM		1101505	7/22/11	17:54	SW5030B8260B
4-chlorotoluene	< 2	2	ug/L	1	LMM		1101505	7/22/11	17:54	SW5030B8260B
tert-butylbenzene	< 2	2	ug/L	1	LMM		1101505	7/22/11	17:54	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		1101505	7/22/11	17:54	SW5030B8260B
sec-butylbenzene	< 2	2	ug/L	1	LMM		1101505	7/22/11	17:54	SW5030B8260B
1,3-dichlorobenzene	< 2	2	ug/L	1	LMM		1101505	7/22/11	17:54	SW5030B8260B
4-isopropyltoluene	< 2	2	ug/L	1	LMM		1101505	7/22/11	17:54	SW5030B8260B
1,4-dichlorobenzene	< 2	2	ug/L	1	LMM		1101505	7/22/11	17:54	SW5030B8260B
1,2-dichlorobenzene	< 2	2	ug/L	1	LMM		1101505	7/22/11	17:54	SW5030B8260B
n-butylbenzene	< 2	2	ug/L	1	LMM		1101505	7/22/11	17:54	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	< 2	2	ug/L	1	LMM		1101505	7/22/11	17:54	SW5030B8260B
1,2,4-trichlorobenzene	< 2	2	ug/L	1	LMM		1101505	7/22/11	17:54	SW5030B8260B
1,3,5-trichlorobenzene	< 2	2	ug/L	1	LMM		1101505	7/22/11	17:54	SW5030B8260B
hexachlorobutadiene	< 0.5	0.5	ug/L	1	LMM		1101505	7/22/11	17:54	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		1101505	7/22/11	17:54	SW5030B8260B
1,2,3-trichlorobenzene	< 2	2	ug/L	1	LMM		1101505	7/22/11	17:54	SW5030B8260B
Surrogate Recovery		Limits								
dibromofluoromethane SUR	98	78-114	%	1	LMM		1101505	7/22/11	17:54	SW5030B8260B
toluene-D8 SUR	99	88-110	%	1	LMM		1101505	7/22/11	17:54	SW5030B8260B
4-bromofluorobenzene SUR	88	86-115	%	1	LMM		1101505	7/22/11	17:54	SW5030B8260B



Job ID: 22019

Sample#: 22019-001

Sample ID: MW-4

Sampled: 7/14/11 11:12		Quant		Instr Dil'n	Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	13:28	SW3510C8270D
2-methylnaphthalene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	13:28	SW3510C8270D
acenaphthylene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	13:28	SW3510C8270D
acenaphthene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	13:28	SW3510C8270D
dibenzofuran	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	13:28	SW3510C8270D
fluorene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	13:28	SW3510C8270D
phenanthrene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	13:28	SW3510C8270D
anthracene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	13:28	SW3510C8270D
fluoranthene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	13:28	SW3510C8270D
pyrene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	13:28	SW3510C8270D
benzo(a)anthracene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	13:28	SW3510C8270D
chrysene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	13:28	SW3510C8270D
benzo(b)fluoranthene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	13:28	SW3510C8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	13:28	SW3510C8270D
benzo(a)pyrene	< 0.2	0.2	ug/L	1	AJD 7/20/11	4368 7/21/11	13:28	SW3510C8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	13:28	SW3510C8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	13:28	SW3510C8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	13:28	SW3510C8270D
Surrogate Recovery		Limits	S					
2-fluorobiphenyl SUR	64	43-116	%	1	AJD 7/20/11	4368 7/21/11	13:28	SW3510C8270D
o-terphenyl SUR	71	33-141	%	1	AJD 7/20/11	4368 7/21/11	13:28	SW3510C8270D



Job ID: 22019

Sample#: 22019-002

Sample ID: CA-2

Sampled: 7/14/11 12:15		Quant		Instr Dil'n	Prep	Anal	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	14:06	SW3510C8270D
2-methylnaphthalene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	14:06	SW3510C8270D
acenaphthylene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	14:06	SW3510C8270D
acenaphthene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	14:06	SW3510C8270D
dibenzofuran	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	14:06	SW3510C8270D
fluorene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	14:06	SW3510C8270D
phenanthrene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	14:06	SW3510C8270D
anthracene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	14:06	SW3510C8270D
fluoranthene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	14:06	SW3510C8270D
pyrene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	14:06	SW3510C8270D
benzo(a)anthracene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	14:06	SW3510C8270D
chrysene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	14:06	SW3510C8270D
benzo(b)fluoranthene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	14:06	SW3510C8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	14:06	SW3510C8270D
benzo(a)pyrene	< 0.2	0.2	ug/L	1	AJD 7/20/11	4368 7/21/11	14:06	SW3510C8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	14:06	SW3510C8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	14:06	SW3510C8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/11	14:06	SW3510C8270D
Surrogate Recovery		Limits	S					
2-fluorobiphenyl SUR	70	43-116	%	1	AJD 7/20/11	4368 7/21/11	14:06	SW3510C8270D
o-terphenyl SUR	75	33-141	%	1	AJD 7/20/11	4368 7/21/11	14:06	SW3510C8270D



Job ID: 22019

Sample#: 22019-003

Sample ID: CA-1

Sampled: 7/14/11 12:48		Quant	1	Instr Dil'n	Prep	Ar	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/1	1 14:44	SW3510C8270D
2-methylnaphthalene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/1	1 14:44	SW3510C8270D
acenaphthylene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/1	1 14:44	SW3510C8270D
acenaphthene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/1	1 14:44	SW3510C8270D
dibenzofuran	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/1	1 14:44	SW3510C8270D
fluorene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/1	1 14:44	SW3510C8270D
phenanthrene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/1	1 14:44	SW3510C8270D
anthracene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/1	1 14:44	SW3510C8270D
fluoranthene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/1	1 14:44	SW3510C8270D
pyrene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/1	1 14:44	SW3510C8270D
benzo(a)anthracene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/1	1 14:44	SW3510C8270D
chrysene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/1	1 14:44	SW3510C8270D
benzo(b)fluoranthene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/1	1 14:44	SW3510C8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/1	1 14:44	SW3510C8270D
benzo(a)pyrene	< 0.2	0.2	ug/L	1	AJD 7/20/11	4368 7/21/1	1 14:44	SW3510C8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/1	1 14:44	SW3510C8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/1	1 14:44	SW3510C8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/1	1 14:44	SW3510C8270D
Surrogate Recovery		Limits	S					
2-fluorobiphenyl SUR	64	43-116	%	1	AJD 7/20/11	4368 7/21/1	1 14:44	SW3510C8270D
o-terphenyl SUR	72	33-141	%	1	AJD 7/20/11	4368 7/21/1	1 14:44	SW3510C8270D



Job ID: 22019

Sample#: 22019-004

Sample ID: DUP-GW-1

Sampled: 7/14/11 0:00		Quant		Instr Dil'n	Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/17	15:22	SW3510C8270D
2-methylnaphthalene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/17	15:22	SW3510C8270D
acenaphthylene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/17	15:22	SW3510C8270D
acenaphthene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/17	15:22	SW3510C8270D
dibenzofuran	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/17	15:22	SW3510C8270D
fluorene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/17	15:22	SW3510C8270D
phenanthrene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/17	15:22	SW3510C8270D
anthracene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/17	15:22	SW3510C8270D
fluoranthene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/17	15:22	SW3510C8270D
pyrene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/17	15:22	SW3510C8270D
benzo(a)anthracene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/17	15:22	SW3510C8270D
chrysene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/17	15:22	SW3510C8270D
benzo(b)fluoranthene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/17	15:22	SW3510C8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/17	15:22	SW3510C8270D
benzo(a)pyrene	< 0.2	0.2	ug/L	1	AJD 7/20/11	4368 7/21/17	15:22	SW3510C8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/17	15:22	SW3510C8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/17	15:22	SW3510C8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/L	1	AJD 7/20/11	4368 7/21/17	15:22	SW3510C8270D
Surrogate Recovery		Limits	5					
2-fluorobiphenyl SUR	68	43-116	%	1	AJD 7/20/11	4368 7/21/17	15:22	SW3510C8270D
o-terphenyl SUR	75	33-141	%	1	AJD 7/20/11	4368 7/21/17	15:22	SW3510C8270D



Job ID: 22019

Sample#: 22019-001

Sample ID: MW-4

Matrix: Water

Sampled: 7/14/11 11:12		Quant		Instr Dil'n	Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
Arsenic	< 0.008	0.008	mg/L	1	BJS 7/20/11	4369 7/20/1	l 14:09	SW3005A6010C
Barium	< 0.05	0.05	mg/L	1	BJS 7/20/11	4369 7/20/1	l 14:09	SW3005A6010C
Cadmium	< 0.004	0.004	mg/L	1	BJS 7/20/11	4369 7/20/1	l 14:09	SW3005A6010C
Chromium	< 0.05	0.05	mg/L	1	BJS 7/20/11	4369 7/20/1	l 14:09	SW3005A6010C
Lead	< 0.008	0.008	mg/L	1	BJS 7/20/11	4369 7/20/1	l 14:09	SW3005A6010C
Mercury	< 0.0002	0.0002	mg/L	1	BJS 7/19/11	4364 7/20/1	l 11:05	SW7470A
Selenium	< 0.05	0.05	mg/L	1	BJS 7/20/11	4369 7/20/1	l 14:09	SW3005A6010C
Silver	< 0.007	0.007	mg/L	1	BJS 7/20/11	4369 7/20/1	l 14:09	SW3005A6010C

#### Sample#: 22019-002

Sample ID: CA-2

Matrix: Water

Sampled: 7/14/11 12:15		Quant		Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Da	ate Time	Reference
Arsenic	< 0.008	0.008	mg/L	1	BJS 7/20/11	4369 7/20	)/11 14:14	SW3005A6010C
Barium	0.06	0.05	mg/L	1	BJS 7/20/11	4369 7/20	)/11 14:14	SW3005A6010C
Cadmium	< 0.004	0.004	mg/L	1	BJS 7/20/11	4369 7/20	)/11 14:14	SW3005A6010C
Chromium	< 0.05	0.05	mg/L	1	BJS 7/20/11	4369 7/20	)/11 14:14	SW3005A6010C
Lead	< 0.008	0.008	mg/L	1	BJS 7/20/11	4369 7/20	)/11 14:14	SW3005A6010C
Mercury	< 0.0002	0.0002	mg/L	1	BJS 7/19/11	4364 7/20	0/11 11:07	SW7470A
Selenium	< 0.05	0.05	mg/L	1	BJS 7/20/11	4369 7/20	)/11 14:14	SW3005A6010C
Silver	< 0.007	0.007	mg/L	1	BJS 7/20/11	4369 7/20	)/11 14:14	SW3005A6010C

#### Sample#: 22019-003

Sample ID: CA-1

Sampled: 7/14/11 12:48		Quant		Instr Dil'n	Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
Arsenic	< 0.008	0.008	mg/L	1	BJS 7/20/11	4369 7/20/11	14:20	SW3005A6010C
Barium	0.07	0.05	mg/L	1	BJS 7/20/11	4369 7/20/11	14:20	SW3005A6010C
Cadmium	< 0.004	0.004	mg/L	1	BJS 7/20/11	4369 7/20/11	14:20	SW3005A6010C
Chromium	< 0.05	0.05	mg/L	1	BJS 7/20/11	4369 7/20/11	14:20	SW3005A6010C
Lead	0.010	0.008	mg/L	1	BJS 7/20/11	4369 7/20/11	14:20	SW3005A6010C
Mercury	< 0.0002	0.0002	mg/L	1	BJS 7/19/11	4364 7/20/11	11:09	SW7470A
Selenium	< 0.05	0.05	mg/L	1	BJS 7/20/11	4369 7/20/11	14:20	SW3005A6010C
Silver	< 0.007	0.007	mg/L	1	BJS 7/20/11	4369 7/20/11	14:20	SW3005A6010C



Job ID: 22019

Sample#: 22019-004

Sample ID: DUP-GW-1

Sampled: 7/14/11 0:00		Quant		Instr Dil'n	Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
Arsenic	< 0.008	0.008	mg/L	1	BJS 7/20/11	4369 7/20/1	14:27	SW3005A6010C
Barium	0.05	0.05	mg/L	1	BJS 7/20/11	4369 7/20/1	14:27	SW3005A6010C
Cadmium	< 0.004	0.004	mg/L	1	BJS 7/20/11	4369 7/20/1	14:27	SW3005A6010C
Chromium	< 0.05	0.05	mg/L	1	BJS 7/20/11	4369 7/20/1	14:27	SW3005A6010C
Lead	< 0.008	0.008	mg/L	1	BJS 7/20/11	4369 7/20/1	14:27	SW3005A6010C
Mercury	< 0.0002	0.0002	mg/L	1	BJS 7/19/11	4364 7/20/1	11:14	SW7470A
Selenium	< 0.05	0.05	mg/L	1	BJS 7/20/11	4369 7/20/1	14:27	SW3005A6010C
Silver	< 0.007	0.007	mg/L	1	BJS 7/20/11	4369 7/20/1	14:27	SW3005A6010C



# **Quality Control Report**



124 Heritage Avenue Unit 10 Portsmouth, NH 03801 www.absoluteresourceassociates.com

## Absolute Resource

issociates

#### Case Narrative Lab # 22019

#### Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 2 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

#### Calibration

No exceptions noted.

#### **Method Blank**

No exceptions noted.

#### **Surrogate Recoveries**

No exceptions noted.

#### Laboratory Control Sample Results

VOC: The LCS/D1101505 did not meet the acceptance criteria for bromomethane. This compound showed high recovery. There is no impact to the data as this analyte was not detected in the associated samples.

#### Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Not requested for this project.

#### Other

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

#### - QC Report -

Method	QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Limits	RPD	RPD Limit
W5030B8260B	BLK1101505	dichlorodifluoromethane		<	2	ug/L				
		chloromethane		<	2	ug/L				
		vinyl chloride		<	2	ug/L				
		bromomethane		<	2	ug/L				
		chloroethane		<	2	ug/L				
		trichlorofluoromethane		<	2	ug/L				
		diethyl ether		<	10	ug/L				
		acetone		<	50	ug/L				
		1,1-dichloroethene		<	1	ug/L				
		methylene chloride		<	5	ug/L				
		carbon disulfide		<	2	ug/L				
		methyl t-butyl ether (MTB	E)	<	2	ug/L				
		trans-1,2-dichloroethene		<	2	ug/L				
		isopropyl ether (DIPE)		<	2	ug/L				
		ethyl t-butyl ether (ETBE)		<	2	ug/L				
		1,1-dichloroethane		<	2	ug/L				
		t-butanol (TBA)		<	30	ug/L				
		2-butanone (MEK)		<	10	ug/L				
		2,2-dichloropropane		<	2	ug/L				
		cis-1,2-dichloroethene		<	2	ug/L				
		chloroform		<	2	ug/L				
		bromochloromethane		<	2	ug/L				
		tetrahydrofuran (THF)		<	10	ug/L				
		1,1,1-trichloroethane		<	2	ug/L				
		1,1-dichloropropene		<	2	ug/L				
		t-amyl-methyl ether (TAM	E)	<	2	ug/L				
		carbon tetrachloride		<	2	ug/L				
		1,2-dichloroethane		<	2	ug/L				
		benzene		<	2	ug/L				
		trichloroethene		<	2	ug/L				
		1,2-dichloropropane		<	2	ug/L				
		bromodichloromethane		<	0.6	ug/L				
		1,4-dioxane		<	50	ug/L				
		dibromomethane		<	2	ug/L				
		4-methyl-2-pentanone (MI	BK)	<	10	ug/L				
		cis-1,3-dichloropropene		<	2	ug/L				
		toluene		<	2	ug/L				
		trans-1,3-dichloropropene		<	2	ug/L				
		2-hexanone		<	10	ug/L				
		1,1,2-trichloroethane		<	2	ug/L				
		1,3-dichloropropane		<	2	ug/L				
		tetrachloroethene		<	2	ug/L				
		dibromochloromethane		<	2	ug/L				
		1,2-dibromoethane (EDB)		<	2	ug/L				
		chlorobenzene		<	2	ug/L				
		1,1,1,2-tetrachloroethane		< <	2	ug/L				
		ethylbenzene			2	ug/L				
		m&p-xylenes		<	2	ug/L				
		o-xylene styrene		<	2 2	ug/L ug/L				
				<						



Method	QC ID	Parameter Associ	ated Sample		Result	Units Amt Added	%R	Lir	nits	RPD	RPD Limit
SW5030B8260	B BLK1101505	bromoform		<	2	ug/L					
		isopropylbenzene		<	2	ug/L					
		1,1,2,2-tetrachloroethane		<	2	ug/L					
		1,2,3-trichloropropane		<	2	ug/L					
		n-propylbenzene		<	2	ug/L					
		bromobenzene		<	2	ug/L					
		1,3,5-trimethylbenzene		<	2	ug/L					
		2-chlorotoluene		<	2	ug/L					
		4-chlorotoluene		<	2	ug/L					
		tert-butylbenzene		<	2	ug/L					
		1,2,4-trimethylbenzene		<	2	ug/L					
		sec-butylbenzene		<	2	ug/L					
		1,3-dichlorobenzene		<	2	ug/L					
		4-isopropyltoluene		<	2	ug/L					
		1,4-dichlorobenzene		<	2	ug/L					
		1,2-dichlorobenzene		<	2	ug/L					
		n-butylbenzene		<	2	ug/L					
		1,2-dibromo-3-chloropropane		<	2	ug/L					
		1,2,4-trichlorobenzene		<	2	ug/L					
		1,3,5-trichlorobenzene		<	2	ug/L					
		hexachlorobutadiene		<	0.5	ug/L					
		naphthalene		<	5	ug/L					
		1,2,3-trichlorobenzene		<	2	ug/L					
		dibromofluoromethane SUR			95	%		78	114		
		toluene-D8 SUR			99	%		88	110		
		4-bromofluorobenzene SUR			93	%		86	115		



Method	QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limi
SW5030B8260B	3 LCS1101505	dichlorodifluoromethane			18	ug/L	20	90	70	130		
		chloromethane			20	ug/L	20	102	70	130		
		vinyl chloride			21	ug/L	20	106	70	130		
		bromomethane			32	ug/L	20	158	* 70	130		
		chloroethane			21	ug/L	20	105	70	130		
		trichlorofluoromethane			20	ug/L	20	99	70	130		
		diethyl ether			22	ug/L	20	109	70	130		
		acetone		<	50	ug/L	20	95				
		1,1-dichloroethene			17	ug/L	20	86	70	130		
		methylene chloride			20	ug/L	20	100	70	130		
		carbon disulfide			19	ug/L	20	95	70	130		
		methyl t-butyl ether (MTB	E)		20	ug/L	20	102	70	130		
		trans-1,2-dichloroethene			19	ug/L	20	93	70	130		
		isopropyl ether (DIPE)			21	ug/L	20	104	70	130		
		ethyl t-butyl ether (ETBE)			20	ug/L	20	102	70	130		
		1,1-dichloroethane			19	ug/L	20	96	70	130		
		t-butanol (TBA)			100	ug/L	100	104	70	130		
		2-butanone (MEK)			18	ug/L	20	92	70	130		
		2,2-dichloropropane			15	ug/L	20	74	70	130		
		cis-1,2-dichloroethene			20	ug/L	20	100	70	130		
		chloroform			20	ug/L	20	101	70	130		
		bromochloromethane			21	ug/L	20	105	70	130		
		tetrahydrofuran (THF)			20	ug/L	20	98	70	130		
		1,1,1-trichloroethane			18	ug/L	20	88	70	130		
		1,1-dichloropropene			21	ug/L	20	103	70	130		
		t-amyl-methyl ether (TAM	E)		19	ug/L	20	97	70	130		
		carbon tetrachloride			14	ug/L	20	72	70	130		
		1,2-dichloroethane			21	ug/L	20	107	70	130		
		benzene			21	ug/L	20	107	70	130		
		trichloroethene			20	ug/L	20	99	70	130		
		1,2-dichloropropane			20	ug/L	20	101	70	130		
		bromodichloromethane			17	ug/L	20	87	70	130		
		1,4-dioxane		<	50	ug/L	40	98	70	130		
		dibromomethane			21	ug/L	20	103	70	130		
		4-methyl-2-pentanone (MI	BK)		18	ug/L	20	92	70	130		
		cis-1,3-dichloropropene			17	ug/L	20	87	70	130		
		toluene			22	ug/L	20	108	70	130		
		trans-1,3-dichloropropene			18	ug/L	20	88	70	130		
		2-hexanone			17	ug/L	20	83	70	130		
		1,1,2-trichloroethane			21	ug/L	20	104	70	130		
		1,3-dichloropropane			21	ug/L	20	107	70	130		
		tetrachloroethene			22	ug/L	20	110	70	130		
		dibromochloromethane			14	ug/L	20	71	70	130		
		1,2-dibromoethane (EDB)			19	ug/L	20	95	70	130		
		chlorobenzene			22	ug/L	20	108	70	130		
		1,1,1,2-tetrachloroethane			16	ug/L	20	79	70	130		
		ethylbenzene			22	ug/L	20	110	70	130		
		m&p-xylenes			46	ug/L	40	115	70	130		
		o-xylene			23	ug/L	40 20	116	70	130		
					23 22	ug/L ug/L	20 20	110	70 70	130 130		
		styrene			16			81	70 70	130 130		
		bromoform			10	ug/L	20	01	70	130		



Method	QC ID	Parameter	Associated Sample	Result	Units A	mt Added	%R	Li	nits	RPD	RPD Limit
SW5030B8260B	3 LCS1101505	isopropylbenzene		20	ug/L	20	98	70	130		
		1,1,2,2-tetrachloroethane		22	ug/L	20	109	70	130		
		1,2,3-trichloropropane		22	ug/L	20	108	70	130		
		n-propylbenzene		21	ug/L	20	106	70	130		
		bromobenzene		23	ug/L	20	113	70	130		
		1,3,5-trimethylbenzene		23	ug/L	20	113	70	130		
		2-chlorotoluene		22	ug/L	20	108	70	130		
		4-chlorotoluene		22	ug/L	20	111	70	130		
		tert-butylbenzene		22	ug/L	20	112	70	130		
		1,2,4-trimethylbenzene		23	ug/L	20	114	70	130		
		sec-butylbenzene		22	ug/L	20	110	70	130		
		1,3-dichlorobenzene		23	ug/L	20	114	70	130		
		4-isopropyltoluene		21	ug/L	20	105	70	130		
		1,4-dichlorobenzene		22	ug/L	20	111	70	130		
		1,2-dichlorobenzene		23	ug/L	20	117	70	130		
		n-butylbenzene		20	ug/L	20	101	70	130		
		1,2-dibromo-3-chloroprop	ane	14	ug/L	20	71	70	130		
		1,2,4-trichlorobenzene		19	ug/L	20	93	70	130		
		1,3,5-trichlorobenzene		21	ug/L	20	104	70	130		
		hexachlorobutadiene		19	ug/L	20	96	70	130		
		naphthalene		21	ug/L	20	104	70	130		
		1,2,3-trichlorobenzene		21	ug/L	20	103	70	130		
		dibromofluoromethane SL	JR	101	%			78	114		
	toluene-D8 SUR		102	%			88	110			
		4-bromofluorobenzene SU	JR	100	%			86	115		



Method	QC ID	Parameter	Associated Sample	I	Result	Units A	Amt Added	%R	Li	mits	RPD	RPD Limit
SW5030B8260B	LCSD1101505	dichlorodifluoromethane			17	ug/L	20	87	70	130	3	20
		chloromethane			20	ug/L	20	101	70	130	1	20
		vinyl chloride			20	ug/L	20	102	70	130	3	20
		bromomethane			34	ug/L	20	169	* 70	130	7	20
		chloroethane			21	ug/L	20	107	70	130	2	20
		trichlorofluoromethane			19	ug/L	20	95	70	130	3	20
		diethyl ether			21	ug/L	20	105	70	130	3	20
		acetone		<	50	ug/L	20	93			1	20
		1,1-dichloroethene			17	ug/L	20	86	70	130	0	20
		methylene chloride			20	ug/L	20	98	70	130	2	20
		carbon disulfide			19	ug/L	20	95	70	130	0	20
		methyl t-butyl ether (MTBE)	1		20	ug/L	20	99	70	130	3	20
		trans-1,2-dichloroethene			18	ug/L	20	92	70	130	0	20
		isopropyl ether (DIPE)			20	ug/L	20	100	70	130	4	20
		ethyl t-butyl ether (ETBE)			20	ug/L	20	99	70	130	4	20
		1,1-dichloroethane			19	ug/L	20	94	70	130	2	20
		t-butanol (TBA)			100	ug/L	100	102	70	130	2	20
		2-butanone (MEK)			18	ug/L	20	89	70	130	4	20
		2,2-dichloropropane			14	ug/L	20	71	70	130	4	20
		cis-1,2-dichloroethene			20	ug/L	20	100	70	130	0	20
		chloroform			20	ug/L	20	100	70	130	0	20
		bromochloromethane			20	ug/L	20	101	70	130	2	20
		tetrahydrofuran (THF)			20	-	20	98	70	130	2	20
					20 18	ug/L		90 89		130	1	20 20
		1,1,1-trichloroethane				ug/L	20 20		70 70		•	
		1,1-dichloropropene			21	ug/L	20	104	70	130	0	20
		t-amyl-methyl ether (TAME)			19	ug/L	20	95 77	70	130	2	20
		carbon tetrachloride			15	ug/L	20	77	70	130	7	20
		1,2-dichloroethane			21	ug/L	20	105	70	130	1	20
		benzene			21	ug/L	20	105	70	130	1	20
		trichloroethene			19	ug/L	20	97	70	130	2	20
		1,2-dichloropropane			20	ug/L	20	100	70	130	2	20
		bromodichloromethane			17	ug/L	20	87	70	130	0	20
		1,4-dioxane		<	50	ug/L	40	101	70	130	3	20
		dibromomethane			20	ug/L	20	102	70	130	1	20
		4-methyl-2-pentanone (MIBI	К)		19	ug/L	20	93	70	130	1	20
		cis-1,3-dichloropropene			18	ug/L	20	88	70	130	1	20
		toluene			21	ug/L	20	107	70	130	2	20
		trans-1,3-dichloropropene			18	ug/L	20	90	70	130	1	20
		2-hexanone			16	ug/L	20	81	70	130	2	20
		1,1,2-trichloroethane			21	ug/L	20	103	70	130	1	20
		1,3-dichloropropane			22	ug/L	20	108	70	130	0	20
		tetrachloroethene			22	ug/L	20	110	70	130	1	20
		dibromochloromethane			15	ug/L	20	73	70	130	2	20
		1,2-dibromoethane (EDB)			19	ug/L	20	93	70	130	3	20
		chlorobenzene			21	ug/L	20	107	70	130	0	20
		1,1,1,2-tetrachloroethane			17	ug/L	20	83	70	130	6	20
		ethylbenzene			22	ug/L	20	110	70	130	1	20
		m&p-xylenes			46	ug/L	40	115	70	130	0	20
		o-xylene			23	ug/L	20	117	70	130	0	20
		aturana			22	ug/L	20	110	70	130	0	20
		styrene			22	ug/L	20	110	10	100	0	20



Method	QC ID	Parameter	Associated Sample	Result	Units A	mt Added	%R	Liı	mits	RPD	RPD Limi
SW5030B826	60B LCSD1101505	isopropylbenzene		20	ug/L	20	98	70	130	1	20
		1,1,2,2-tetrachloroethane		21	ug/L	20	106	70	130	2	20
		1,2,3-trichloropropane		21	ug/L	20	106	70	130	2	20
	n-propylbenzene		21	ug/L	20	106	70	130	0	20	
	bromobenzene		22	ug/L	20	111	70	130	2	20	
	1,3,5-trimethylbenzene		23	ug/L	20	113	70	130	0	20	
		2-chlorotoluene		21	ug/L	20	107	70	130	1	20
		4-chlorotoluene		22	ug/L	20	112	70	130	0	20
	tert-butylbenzene		22	ug/L	20	111	70	130	0	20	
		1,2,4-trimethylbenzene		22	ug/L	20	112	70	130	2	20
		sec-butylbenzene		22	ug/L	20	110	70	130	0	20
	1,3-dichlorobenzene		22	ug/L	20	112	70	130	2	20	
		4-isopropyltoluene		21	ug/L	20	105	70	130	0	20
		1,4-dichlorobenzene		22	ug/L	20	110	70	130	1	20
		1,2-dichlorobenzene		23	ug/L	20	115	70	130	2	20
		n-butylbenzene		20	ug/L	20	102	70	130	1	20
		1,2-dibromo-3-chloropropa	ne	15	ug/L	20	73	70	130	3	20
		1,2,4-trichlorobenzene		18	ug/L	20	90	70	130	3	20
		1,3,5-trichlorobenzene		21	ug/L	20	104	70	130	0	20
		hexachlorobutadiene		20	ug/L	20	99	70	130	3	20
		naphthalene		21	ug/L	20	103	70	130	1	20
		1,2,3-trichlorobenzene		20	ug/L	20	100	70	130	3	20
		dibromofluoromethane SUI	२	102	%			78	114		
		toluene-D8 SUR		100	%			88	110		
		4-bromofluorobenzene SU	3	103	%			86	115		



Method QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limit
SW3510C8270D BLK4368	naphthalene		<	0.5	ug/L						
	2-methylnaphthalene		<	0.5	ug/L						
	acenaphthylene		<	0.5	ug/L						
	acenaphthene		<	0.5	ug/L						
	dibenzofuran		<	0.5	ug/L						
	fluorene		<	0.5	ug/L						
	phenanthrene		<	0.5	ug/L						
	anthracene		<	0.5	ug/L						
	fluoranthene		<	0.5	ug/L						
	pyrene		<	0.5	ug/L						
	benzo(a)anthracene		<	0.5	ug/L						
	chrysene		<	0.5	ug/L						
	benzo(b)fluoranthene		<	0.5	ug/L						
	benzo(k)fluoranthene		<	0.5	ug/L						
	benzo(a)pyrene		<	0.2	ug/L						
	indeno(1,2,3-cd)pyrene		<	0.5	ug/L						
	dibenzo(a,h)anthracene		<	0.5	ug/L						
	benzo(g,h,i)perylene		<	0.5	ug/L						
	2-fluorobiphenyl SUR			45	%			43	116		
SW3510C8270D LCS4368	naphthalene			22	ug/L	40	55	40	140		
	2-methylnaphthalene			23	ug/L	40	57	40	140		
	acenaphthylene			25	ug/L	40	63	40	140		
	acenaphthene			26	ug/L	40	64	40	140		
	dibenzofuran			27	ug/L	40	67	40	140		20
	fluorene			28	ug/L	40	69	40	140		
	phenanthrene			28	ug/L	40	70	40	140		
	anthracene			26	ug/L	40	64	40	140		
	fluoranthene			30	ug/L	40	75	40	140		
	pyrene			28	ug/L	40	71	40	140		
	benzo(a)anthracene			33	ug/L	40	82	40	140		
	chrysene			32	ug/L	40	80	40	140		
	benzo(b)fluoranthene			32	ug/L	40	79	40	140		
	benzo(k)fluoranthene			28	ug/L	40	71	40	140		
	benzo(a)pyrene			31	ug/L	40	78	40	140		
	indeno(1,2,3-cd)pyrene			29	ug/L	40	73	40	140		
	dibenzo(a,h)anthracene			29	ug/L	40	72	40	140		
	benzo(g,h,i)perylene			29	ug/L	40	72	40	140		
	2-fluorobiphenyl SUR			60	%			43	116		



Method	QC ID	Parameter	Associated Sample	Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limit
SW3510C8270D LCSD4368		naphthalene		23	ug/L	40	58	40	140	6	20
		2-methylnaphthalene		23	ug/L	40	57	40	140	1	20
		acenaphthylene		26	ug/L	40	65	40	140	2	20
		acenaphthene		26	ug/L	40	66	40	140	2	20
		dibenzofuran		27	ug/L	40	68	40	140	1	20
		fluorene		28	ug/L	40	69	40	140	0	20
		phenanthrene		27	ug/L	40	68	40	140	4	20
		anthracene		25	ug/L	40	62	40	140	3	20
		fluoranthene		29	ug/L	40	73	40	140	3	20
		pyrene		28	ug/L	40	70	40	140	2	20
		benzo(a)anthracene		31	ug/L	40	78	40	140	4	20
		chrysene		30	ug/L	40	76	40	140	5	20
		benzo(b)fluoranthene		28	ug/L	40	71	40	140	11	20
		benzo(k)fluoranthene		30	ug/L	40	75	40	140	6	20
		benzo(a)pyrene		30	ug/L	40	76	40	140	3	20
		indeno(1,2,3-cd)pyrene		28	ug/L	40	70	40	140	4	20
		dibenzo(a,h)anthracene		28	ug/L	40	70	40	140	4	20
		benzo(g,h,i)perylene		28	ug/L	40	71	40	140	2	20
		2-fluorobiphenyl SUR		67	%			43	116		



Method	QC ID	Parameter	Associated Sample		Result	Units A	Amt Added	%R	Li	mits	RPD	RPD Limit
SW3005A6010	C BLK4369	Silver		<	0.005	mg/L						
		Arsenic		<	0.008	mg/L						
		Barium		<	0.05	mg/L						
		Cadmium		<	0.004	mg/L						
		Chromium		<	0.05	mg/L						
		Lead		<	0.01	mg/L						
		Selenium		<	0.05	mg/L						
SW3005A6010	)C LCS4369	Silver			0.25	mg/L	0.25	100	85	115		
		Arsenic			0.50	mg/L	0.5	100	85	115		
		Barium			0.48	mg/L	0.5	97	85	115		
		Cadmium			0.50	mg/L	0.5	100	85	115		
		Chromium			0.50	mg/L	0.5	100	85	115		
		Lead			0.49	mg/L	0.5	98	85	115		
		Selenium			0.50	mg/L	0.5	101	85	115		
SW3005A6010	C LCSD4369	Silver			0.25	mg/L	0.25	101	85	115	1	20
		Arsenic			0.50	mg/L	0.5	100	85	115	0	20
		Barium			0.49	mg/L	0.5	98	85	115	1	20
		Cadmium			0.50	mg/L	0.5	101	85	115	1	20
		Chromium			0.50	mg/L	0.5	101	85	115	1	20
		Lead			0.50	mg/L	0.5	100	85	115	2	20
		Selenium			0.50	mg/L	0.5	101	85	115	0	20
SW7470A	BLK4364	Mercury		<	0.0002	mg/L						
SW7470A	DUP4364	Mercury	22019-003	<	0.0002	mg/L						20
SW7470A	LCS4364	Mercury			0.0025	mg/L	0.002	100	80	120		
SW7470A	LCSD4364	Mercury			0.0025	mg/L	0.002	99	80	120	1	20
SW7470A	MS4364	Mercury	22019-003		0.0024	mg/L	0.002	94	75	125		



PDY PD 2/23/10	TAT REQUESTED         Priority (24 hr)*         Expedited (48 hr)*         Expedited (48 hr)*         Standard         Standard         (10 Business Days)	A ON DUP-GW-1	DCIG-CI MW-4	Lab Sample Field ID ID (Lab Use Only)	-11	Phone # 7 7 7	Company Name: CREDERE Company Address: 776 Main S.	Absolute Resource
	See absoluteresourceassociates.com for sample acceptance policy and current accreditation lists.		- X - X - X	# CONTAINERS WATER SOLID OTHER	Ratten	27-7775	ASSOCIATES F. Westbrook, ME	esource o c i a t e s
□ FAX (FAX#)	SPECIAL INSTRUCTIONS Brown Tields	× ↓ ↓		HCI HNO ₃ H ₂ SO ₄ NaOH MeOH OTHER (Specify) <b>S</b> DATE	Limits: EPA DW Other Quote # □ Fund F PO #	NCP NHDES	Project Name:	124 Heritage Avenue #10 Portsmouth, NH 03801 603-436-2001 absoluteresourceassociates.com
D OTHER (specify)	nnelle	V X X	ILIC JUX	SAMPLER	C REE/ODD VIC 8260 NHDES	UVC 8260 M	ADEP	
	credere			□ VPH MADEP □ □ VOC 524.2 □ V □ TPH □ DRO 80	] MEGRO 🔲 GRO VOC 524.2 NH List D15 🔲 MEDRO [	8015  Gases-List:  EPH MADEP		CHAIN-OF-CU AND ANALYS
d by: d by: d by: ad by Laboratory:	16-Can	XX		★ 8270PAH       82         □       8082       PCB       8         □       0&G       1664       M         □       pH       □       BOD         □       TSS       □       TDS       □	i081 Pesticides Mineral 0&G SM55	) 608 Pest/PCB 20F Turbidity		SUSTODY RECONSIS REQUEST
		XX	XX	RCRA Metals Total Metals-list: Dissolved Metals Ammonia Cri T-Phosphorus	s-list: ODTKNT PhenolsBac	N 🗆 TON cleria P/A 🗆 Bac		DRD
TEMPERATURE				Cyanide Sul Nitrate Nitrit Corrosivity TCLP Metals Subcontract: TC	te Chloride Reactive CN R	) Sulfate 🔲 Bro leactive S- 📄 Iq CLP SVOC 🔲	omide 🔲 Fluoride gnitibility/FP TCLP Pesticide	PAGE /
Time Time	YES DNO	e	- K	Grab (G) or Con	mposile (C)			OF



( 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

				<u>Non-Asb</u>	Asbestos	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Туре
G-R2-3-A 131102738-0001	- Roofing	Black Fibrous Homogeneous	80%	Cellulose	20% Non-fibrous (other)	None Detected
G-R2-3-B 131102738-0002	- Roofing	Black Fibrous Homogeneous	80%	Cellulose	20% Non-fibrous (other)	None Detected
G-R2-3-C 131102738-0003	- Roofing	Black Fibrous Homogeneous	80%	Cellulose	20% Non-fibrous (other)	None Detected
G-R2-2-A 131102738-0004	- Roofing	Black Non-Fibrous Homogeneous	15%	Cellulose	80% Non-fibrous (other)	5% Chrysotile
G-R2-2-B 131102738-0005	- Roofing					Stop Positive (Not Analyzed)
G-R2-2-C 131102738-0006	- Roofing					Stop Positive (Not Analyzed)
G-R2-1-A 131102738-0007	- Roofing	Black Fibrous Heterogeneous	25%	Cellulose	70% Non-fibrous (other)	5% Chrysotile

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



C 7	lonathan O'Donnell Credere Associates, I 76 Main Street Vestbrook, ME 04092		Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738	
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

			U			
			<u>bestos</u>	Asbestos		
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Туре
G-R2-1-B 131102738-0008	- Roofing					Stop Positive (Not Analyzed)
G-R2-1-C 131102738-0009	- Roofing					Stop Positive (Not Analyzed)
G-R1-3-A 131102738-0010	- Roofing	Black Fibrous Heterogeneous	40%	Cellulose	60% Non-fibrous (other)	None Detected
G-R1-3-B 131102738-0011	- Roofing	Black Fibrous Heterogeneous	40%	Cellulose	60% Non-fibrous (other)	None Detected
G-R1-3-C 131102738-0012	- Roofing	Black Fibrous Heterogeneous	40%	Cellulose	60% Non-fibrous (other)	None Detected
G-R1-2-A 131102738-0013	- Roofing	Red/Black Fibrous Heterogeneous	40%	Cellulose	60% Non-fibrous (other)	None Detected
G-R1-2-B 131102738-0014	- Roofing	Red/Black Fibrous Heterogeneous	40%	Cellulose	60% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



C 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

#### Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using **Polarized Light Microscopy**

				<u>Non-Asb</u>	estos	<u>Asbestos</u>
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
G-R1-2-C 131102738-0015	- Roofing	Red/Black Fibrous Heterogeneous	40%	Cellulose	60% Non-fibrous (other)	None Detected
G-R1-1-A 131102738-0016	- Roofing	White/Black Fibrous Heterogeneous	40%	Cellulose	60% Non-fibrous (other)	None Detected
G-R1-1-B 131102738-0017	- Roofing	White/Black Fibrous Heterogeneous	40%	Cellulose	60% Non-fibrous (other)	None Detected
G-R1-1-C 131102738-0018	- Roofing	White/Black Non-Fibrous Heterogeneous	40%	Cellulose	60% Non-fibrous (other)	None Detected
H-R1-2-A 131102738-0019	- Roofing	Black Non-Fibrous Homogeneous	10%	Glass	90% Non-fibrous (other)	None Detected
H-R1-2-B 131102738-0020	- Roofing	Black Non-Fibrous Homogeneous	10%	Glass	90% Non-fibrous (other)	None Detected
H-R1-2-C 131102738-0021	- Roofing					Not Analyzed
			Sample not	t in bag.		

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



C 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

				<u>Non-Ast</u>	<u>pestos</u>	Asbestos	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Туре	
H-R2-3-A 131102738-0022	- Roofing	Black/Silver Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
H-R2-3-B 131102738-0023	- Roofing	Black/Silver Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
H-R2-3-C 131102738-0024	- Roofing	Black/Silver Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
H-R2-2-A 131102738-0025	- Roofing	Black Non-Fibrous Homogeneous	Result renr	esents one layer of a r	80% Non-fibrous (other)	20% Chrysotile	
H-R2-2-B 131102738-0026	- Roofing					Stop Positive (Not Analyzed)	
H-R2-2-C 131102738-0027	- Roofing					Stop Positive (Not Analyzed)	
H-R2-1-A 131102738-0028	- Roofing	Gray Fibrous Homogeneous		Cellulose Glass	5% Non-fibrous (other)	None Detected	
itial report from 07/	08/2011 09:54:24						
Analyst(s)					Rel STate	~	
Kevin Pine (85) Steve Grise (21)					Renaldo Drakes, Laboratory or other approved signa	0	



( 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

		Non-Asbestos				<u>Asbestos</u>
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Туре
H-R2-1-B 131102738-0029	- Roofing	Gray Fibrous Homogeneous	90% 5%		5% Non-fibrous (other)	None Detected
H-R2-1-C 131102738-0030	- Roofing	Gray Fibrous Homogeneous	90% 5%		5% Non-fibrous (other)	None Detected
H-R1-1-A 131102738-0031	- Roofing	Black/Green Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected
H-R1-1-B 131102738-0032	- Roofing	Black/Green Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected
H-R1-1-C 131102738-0033	- Roofing	Black/Green Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected
H-K3-1A 131102738-0034	- Floor Tile	Green Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-K3-1B 131102738-0035	- Floor Tile	Green Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



C 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

				<u>Non-As</u>	<u>bestos</u>	Asbestos
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
H-K3-1C 131102738-0036	- Floor Tile	Green Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-K3-2-A 131102738-0037	- Linoleum	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-K3-2-B 131102738-0038	- Linoleum	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-K3-2-C 131102738-0039	- Linoleum	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-K2-3-A 131102738-0040	- Plaster	White Fibrous Homogeneous	10%	Hair	90% Non-fibrous (other)	None Detected
H-K2-3-B 131102738-0041	- Plaster	White Fibrous Homogeneous	10%	Hair	90% Non-fibrous (other)	None Detected
H-K2-3-C 131102738-0042	- Plaster	White Fibrous Homogeneous	10%	Hair	90% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



C 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

		Non-Asbestos				<u>Asbestos</u>
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
H-K2-1-A 131102738-0043	- Floor Tile	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-K2-1-B 131102738-0044	- Floor Tile	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-K2-1-C 131102738-0045	- Floor Tile	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-K2-2-A 131102738-0046	- Mastic	Yellow Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-K2-2-B 131102738-0047	- Mastic	Yellow Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-K2-2-C 131102738-0048	- Mastic	Yellow Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-B2-1-A 131102738-0049	- Floor Tile	Blue Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



C 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

		Non-Asbestos				<u>Asbestos</u>
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
H-B2-1-B 131102738-0050	- Floor Tile	Blue Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-B2-1-C 131102738-0051	- Floor Tile	Blue Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-5-1-A 131102738-0052	- Ceiling Tile	Gray Fibrous Homogeneous	80%	Cellulose	20% Non-fibrous (other)	None Detected
H-5-1-B 131102738-0053	- Ceiling Tile	Gray Fibrous Homogeneous	80%	Cellulose	20% Non-fibrous (other)	None Detected
H-5-1-C 131102738-0054	- Ceiling Tile	Gray Non-Fibrous Homogeneous	80%	Cellulose	20% Non-fibrous (other)	None Detected
H-3-1-A 131102738-0055	- Plaster	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-3-1-B 131102738-0056	- Plaster	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



C 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

		Non-Asbestos			<u>Asbestos</u>	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Туре
H-3-1-C 131102738-0057	- Plaster	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-E-1-A 131102738-0058	- Window Glazing	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-E-1-B 131102738-0059	- Window Glazing	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-E-1-C 131102738-0060	- Window Glazing	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-K1-2-A 131102738-0061	- Plaster	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-K1-2-B 131102738-0062	- Plaster	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-K1-2-C 131102738-0063	- Plaster	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



C 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

			Asbestos		
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
H-K1-1-A 131102738-0064	- Bulk	Blue Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected
H-K1-1-B 131102738-0065	- Bulk	Blue Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected
H-K1-1-C 131102738-0066	- Bulk	Blue Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected
B-E-1-A 131102738-0067	- Window Glazing	White Non-Fibrous Homogeneous		98% Non-fibrous (other)	2% Chrysotile
B-E-1-B 131102738-0068	- Window Glazing				Stop Positive (Not Analyzed)
B-E-1-C 131102738-0069	- Window Glazing				Stop Positive (Not Analyzed)
G-E-1-A 131102738-0070	- Asphalt Paper	Black Fibrous Homogeneous	60% Cellulose	40% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



C 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 04092			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

				Non-Asb	<u>estos</u>	Asbestos
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
G-E-1-B 131102738-0071	- Asphalt Paper	Black Fibrous Homogeneous	60%	Cellulose	40% Non-fibrous (other)	None Detected
G-E-1-C 131102738-0072	- Asphalt Paper	Black Fibrous Homogeneous	60%	Cellulose	40% Non-fibrous (other)	None Detected
B-1-1-A 131102738-0073	- Ceiling Tile	Gray Fibrous Homogeneous	80%	Cellulose	20% Non-fibrous (other)	None Detected
B-1-1-B 131102738-0074	- Ceiling Tile	Gray Fibrous Homogeneous	80%	Cellulose	20% Non-fibrous (other)	None Detected
B-1-1-C 131102738-0075	- Ceiling Tile	Gray Fibrous Homogeneous	80%	Cellulose	20% Non-fibrous (other)	None Detected
G- <b>7-3-A</b> 131102738-0076	- Wire Cover	Brown/Black Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected
G-7-3-B 131102738-0077	- Wire Cover	Brown/Black Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



( 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

				<u>Non-Ast</u>	Asbestos	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Туре
G-7-3-C 131102738-0078	- Wire Cover	Brown/Black Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected
G-7-2-A 131102738-0079	- Bulk	Brown/Black Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected
G-7-2-B 131102738-0080	- Bulk	Brown/Black Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected
G-7-2-C 131102738-0081	- Bulk	Brown/Black Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected
G-7-1-A 131102738-0082	- Wire Cover	Brown/Black Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected
G-7-1-B 131102738-0083	- Wire Cover	Brown/Black Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected
G-7-1-C 131102738-0084	- Wire Cover	Brown/Black Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



( 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

				<u>Non-Asb</u>	Asbestos	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
G-6-3-A 131102738-0085	- Ceiling Tile	Tan Fibrous Homogeneous	90%	Cellulose	10% Non-fibrous (other)	None Detected
G-6-3-B 131102738-0086	- Ceiling Tile	Tan Fibrous Homogeneous	90%	Cellulose	10% Non-fibrous (other)	None Detected
G-6-3-C 131102738-0087	- Ceiling Tile	Tan Fibrous Homogeneous	90%	Cellulose	10% Non-fibrous (other)	None Detected
G-6-1-A 131102738-0088	- Floor Tile	Red Non-Fibrous Homogeneous			95% Non-fibrous (other)	5% Chrysotile
G-6-1-B 131102738-0089	- Floor Tile					Stop Positive (Not Analyzed)
G-6-1-C 131102738-0090	- Floor Tile					Stop Positive (Not Analyzed)
G-6-2-A 131102738-0091	- Mastic	Brown Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



C 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

			Non-As	sbestos	<u>Asbestos</u>
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
G-6-2-B 131102738-0092	- Mastic	Brown Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected
G-6-2-c 131102738-0093	- Mastic	Brown Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected
G-5-1-A 131102738-0094	- Plaster	Gray Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected
G-5-1-B 131102738-0095	- Plaster	Gray Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected
G-5-1-C 131102738-0096	- Plaster	Gray Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected
G-1-1-A 131102738-0097	- Floor Tile	White Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected
G-1-1-B 131102738-0098	- Floor Tile	White Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



0 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 10001087 / Guay's	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

				Non-Asbesto	<u>s</u>	<u>Asbestos</u>
Sample	Description	Appearance	% Fib	rous	% Non-Fibrous	% Type
G-1-1-C 131102738-0099	- Floor Tile	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
G-1-2-A 131102738-0100	- Floor Tile	Black Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
G-1-2-B 131102738-0101	- Floor Tile	Black Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
G-1-2-C 131102738-0102	- Floor Tile	Black Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
G-1-3-A 131102738-0103	- Mastic	Yellow Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
G-1-3-B 131102738-0104	- Mastic	Yellow Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
G-1-3-C 131102738-0105	- Mastic	Yellow Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



C 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 04092			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

				<u>Non-Ast</u>	pestos	<u>Asbestos</u>
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
G-4-1-A 131102738-0106	- Sheetrock	Gray Fibrous Heterogeneous	5%	Cellulose	95% Non-fibrous (other)	None Detected
G-4-1-B 131102738-0107	- Sheetrock	Gray Fibrous Heterogeneous	5%	Cellulose	95% Non-fibrous (other)	None Detected
G-4-1-C 131102738-0108	- Sheetrock	Gray Fibrous Heterogeneous	5%	Cellulose	95% Non-fibrous (other)	None Detected
G-8-1-A 131102738-0109	- Plaster	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
G-8-1-B 131102738-0110	- Plaster	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
G-8-1-C 131102738-0111	- Plaster	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
G-3-1A 131102738-0112	- Plaster	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



0 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 10001087 / Guay's	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

			Non-Asbestos			Asbestos
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
G-3-1B 131102738-0113	- Plaster	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
G-3-1C 131102738-0114	- Plaster	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
G-1-4-A 131102738-0115	- Plaster	Tan Fibrous Heterogeneous	10%	Cellulose	90% Non-fibrous (other)	None Detected
G-1-4-B 131102738-0116	- Plaster	Tan Fibrous Heterogeneous	10%	Cellulose	90% Non-fibrous (other)	None Detected
G-1-4-C 131102738-0117	- Plaster	Tan Fibrous Heterogeneous	10%	Cellulose	90% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory

**APPENDIX F** 

## ASBESTOS-CONTAINING MATERIALS SURVEY REPORT





# **Asbestos-Containing Materials Survey Report**



Former Guay's Garage 599-601 South Main Street Franklin, New Hampshire NHDES Site #199808031

Prepared for:

Lakes Region Planning Commission 103 Main Street, Suite #3 Meredith, NH 03253

# November 2, 2011

In Reference to: Project No. 10001087

Submitted by: Credere Associates, LLC 776 Main Street Westbrook, ME 04092

November 2, 2011

#### **TABLE OF CONTENTS**

Sec	tion Title	Page No.
1.	Introduction	1
	Asbestos-Containing Materials Survey	
3.	Results	

#### LIST OF TABLES

#### **LIST OF FIGURES**

Figure 1	Site Location Map
e	Asbestos-Containing Materials Survey Plan – Garage/Barn
•	
8	

#### **APPENDICES**

Appendix A	Asbestos Inspector Certification Documents
Appendix B	Laboratory Analytical Reports



CREDERE ASSOCIATES, LLC

#### 1. INTRODUCTION

This report presents the results of an Asbestos-Containing Materials Survey of the former Guay's Garage Site (the Site), located 599-601 South Main Street in Franklin, New Hampshire. The Site is composed of a single 2.363-acre parcel of land with two buildings; a two-story residence, and a single story concrete garage building with attached barn.

This assessment of asbestos-containing materials (ACM) in and on the Site buildings was conducted by New Hampshire-certified Asbestos Inspectors Jonathan O'Donnell and Judd Newcomb on June 15, 2011, under the Lakes Region Planning Commission (LRPC) Brownfields Assessment Program. This assessment was conducted in accordance with New Hampshire Department of Environmental Services (NHDES) Env-A 1800: Asbestos Management and Control. Certification documentation for Mr. O'Donnell and Mr. Newcomb is provided as **Appendix A. Figure 1** shows the general location of the Site in Franklin.

#### 2. ASBESTOS-CONTAINING MATERIALS SURVEY

The purpose of this survey was to identify ACM within or on the Site buildings, as is defined in NHDES Env-A 1800. Credere performed a visual inspection of areas (room or other functional unit) of the Site buildings. Credere personnel inventoried potential ACM in each area of the building, and recorded the approximate amount (area, length, volume, pipe diameter, etc.) of each type of suspected ACM.

Types of materials that were noted included, but were not limited to, the following:

- Thermal Insulation Systems
- Sprayed or Troweled Surfacing Materials
- Fire-proofing
- Floor Tiles
- Ceiling Tiles
- Plaster
- Cement Boards (Transite) or Pipes
- Mastics, Glazes, and Caulks

Three bulk samples of each type of homogenous suspected ACM in each area were collected and submitted for laboratory analysis to EMSL Analytical, Inc. of Woburn, MA. Building plans depicting the areas in each building are included as **Figure 2** (Garage/Barn) and **Figure 3** (House). Each suspect material from each area was designated with a unique sample identification code, with the suffixes A, B, C added for multiple randomly selected discrete samples of each material.



CREDERE ASSOCIATES, LLC

1

#### **Surfacing Materials**

Three (3) randomly selected discrete samples of each suspect sprayed or troweled on homogeneous surfacing material in each area were collected from homogeneous areas of 1,000 square feet or less. No homogeneous surfacing material in any one area exceeding 1,000 square feet was identified.

#### **Thermal System Insulation**

No suspect thermal system insulation (TSI) was identified in the Site buildings

#### Miscellaneous Suspected ACM

Three (3) randomly selected discrete samples were collected from each miscellaneous suspected ACM.

Suspect ACM materials that were sampled are identified in Table 1.

Table 1 - Sampled Suspect Asbestos-Containing Materials							
Sample ID	Building Area		Material Description				
B-1-1	Barn	Storage Room, East End of Barn	Spare 12 in. square ceiling tiles				
B-E-1	Barn	Barn Exterior	Window glazing on wooden windows				
G-1-1	Garage	Garage Room 1	White floor tile				
G-1-2	Garage	Garage Room 1	Black floor tile				
G-1-3	Garage	Garage Room 1	Tile mastic				
G-1-4	Garage	Garage Room 1	Pink drywall ceiling				
G-3-1	Garage	Garage Room 3	Plaster wall				
G-4-1	Garage	Garage Room 4	Drywall				
G-5-1	Garage	Garage Room 5	Spray concrete wall cover				
G-6-1	Garage	Garage Room 6	Red floor tile				
G-6-2	Garage	Garage Room 6	Mastic on red floor tile				
G-6-3	Garage	Garage Room 6	Fiberboard ceiling tiles				
G-7-1	Garage	Garage Room 7	White cloth wrapping on wiring				
G-7-2	Garage	Garage Room 7	Black cloth wrapping on wiring				
G-7-3	Garage	Garage Room 7	Red cloth wrapping on wiring				
G-8-1	Garage	Garage Room 8	Plaster over sheetrock				
G-E-1	Garage	Garage Exterior	Black asphalt paper on rear exterior				
G-R1-1	Garage	Garage Roof 1	Top shingle layer, gray				
G-R1-2	Garage	Garage Roof 1	Middle shingle layer, red				
G-R1-3	Garage	Garage Roof 1	Bottom shingle layer, gray				



November 2, 2011

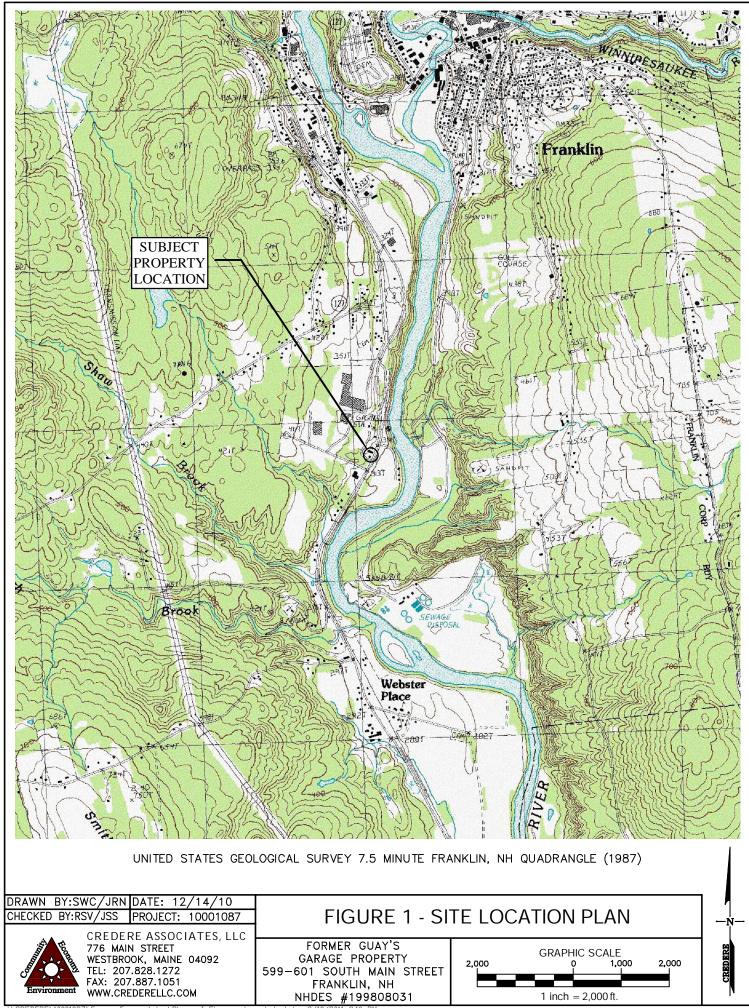
2

CREDERE ASSOCIATES, LLC

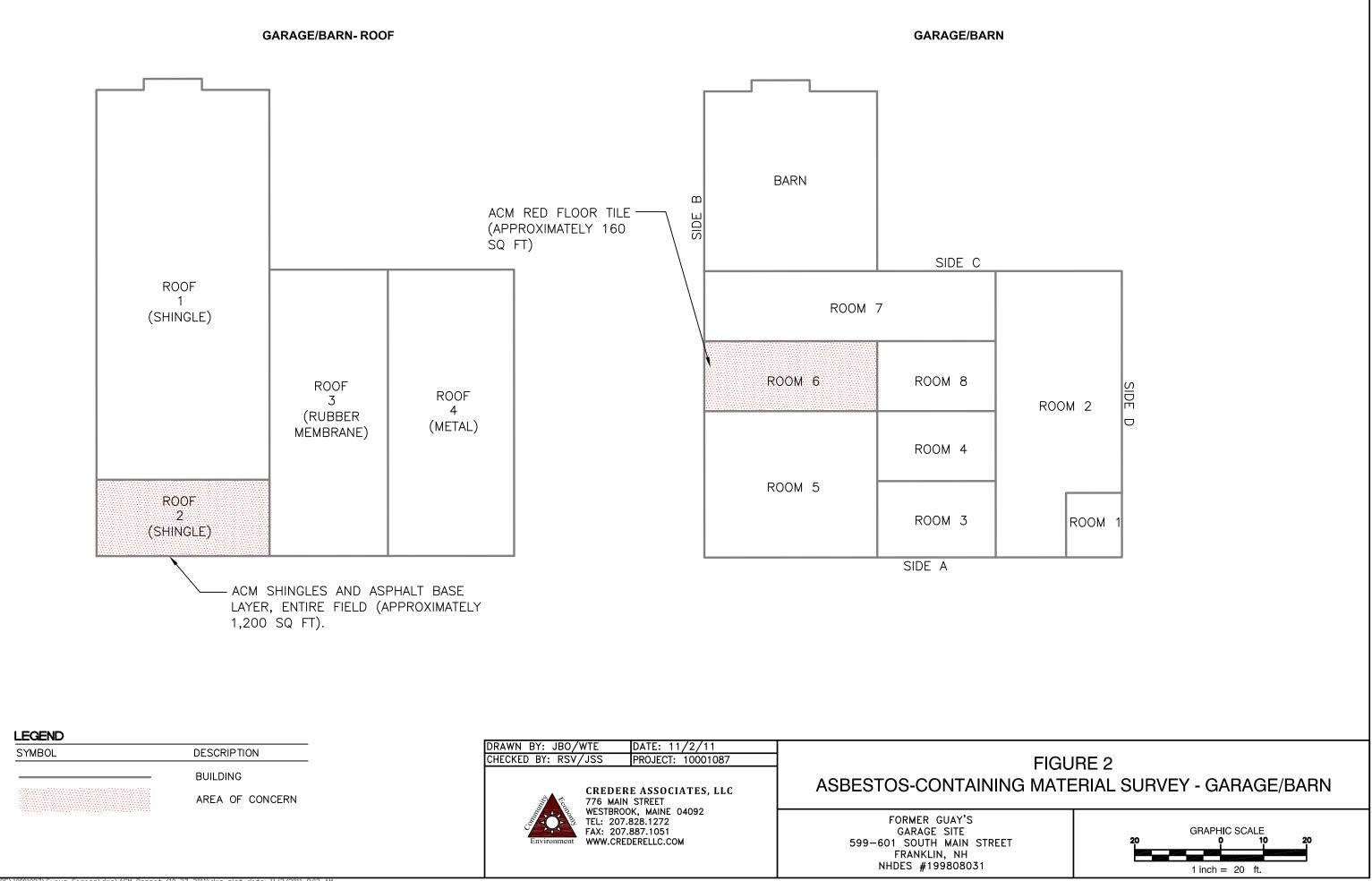
Table 1 - Sampled Suspect Asbestos-Containing Materials							
Sample ID	Building	Area	Material Description				
G-R2-1	Garage	Garage Roof 2	Black shingles				
G-R2-2	Garage	Garage Roof 2	Asphalt layer beneath shingles				
G-R2-3	Garage	Garage Roof 2	Black asphalt paper from wooden arch on building front				
H-3-1	House	House Room 3	Plaster wall, landing to basement stairs				
H-5-1	House	House Room 5	Replacement ceiling tiles				
H-B2-1	House	House Bath 2	Floor tile				
H-E-1	House	House Exterior	Window glazing, south side				
H-K1-1	House	House Kitchen 1	Floor tile				
H-K1-2	House	House Kitchen 1	Plaster ceiling				
H-K2-1	House	House Kitchen 2	Floor tile				
H-K2-2	House	House Kitchen 2	Mastic on floor tile				
H-K2-3	House	House Kitchen 2	Plaster/hair coating in closet				
H-K3-1	House	House Kitchen 3	Blue floor tile				
H-K3-2	House	House Kitchen 3	Linoleum on top of floor tile				
H-R1-1	House	House Roof 1	Shingles, gray				
H-R1-2	House	House Roof 1	Asphalt paper beneath shingles				
H-R2-1	House	House Roof 2	Asphalt paper under membrane, on top of foam board				
H-R2-2	House	House Roof 2	Older asphalt paper under membrane and foam board				
H-R2-3	House	House Roof 2	Silver coated asphalt tape on eve				

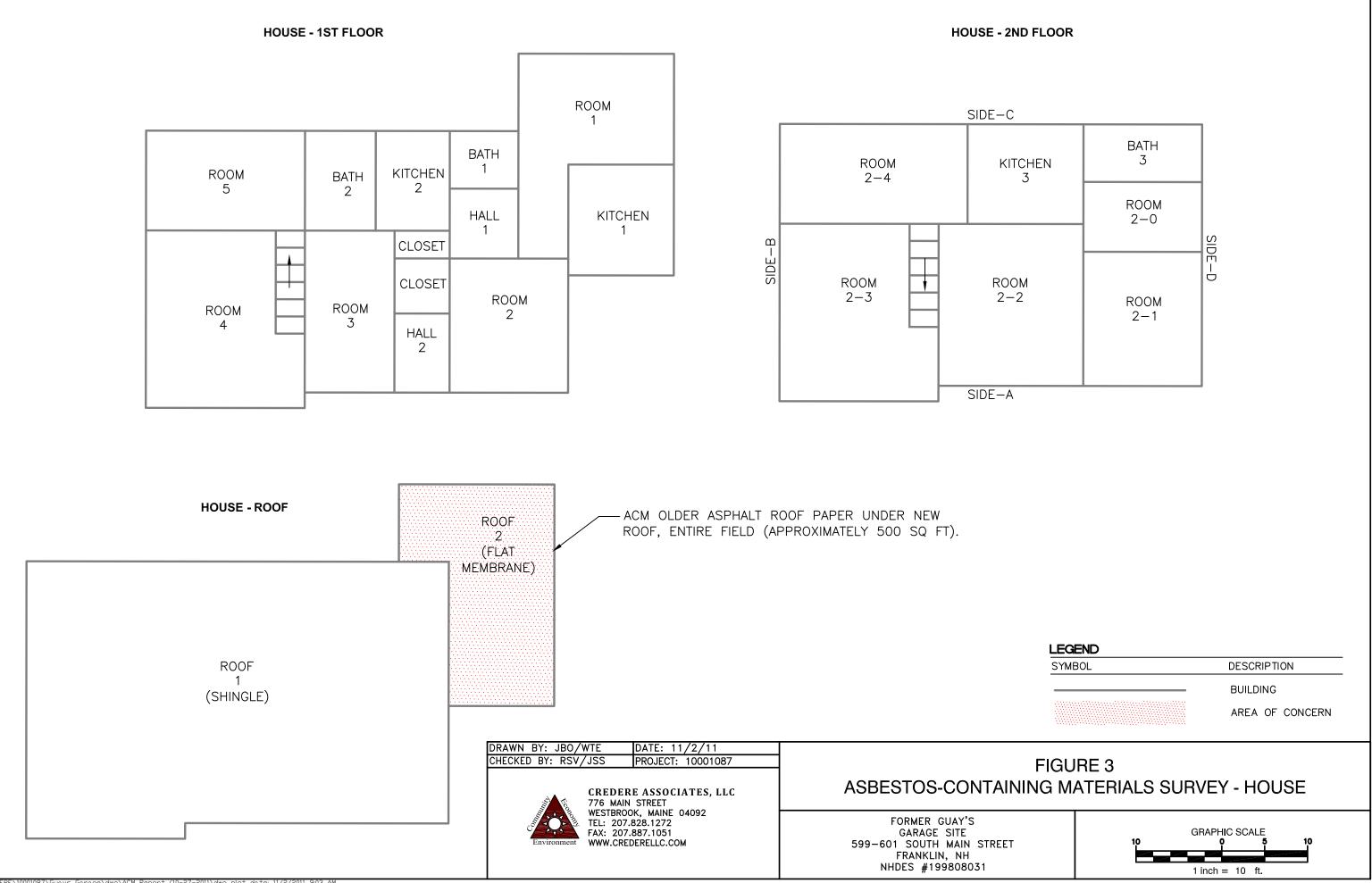
#### 3. RESULTS

Laboratory reports for the analysis of Site samples are included as **Appendix B**. Materials that were identified as ACM by laboratory analysis include the following:


- Garage "Roof 2", entire roof field, black asphalt shingles, and asphalt base layer, approximately 1200 square feet,
- House "Roof 2", entire roof field, asphalt paper old roofing beneath new roof and foam board, approximately 500 square feet,

3


- Barn, exterior window glazing on wood windows,
- Garage "Room 6", red floor tile, approximately 160 square feet.



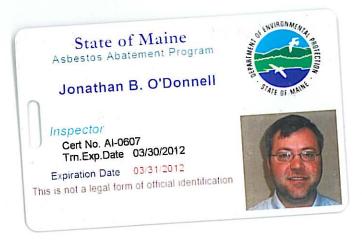

CREDERE ASSOCIATES, LLC



1:\CREDERE\10001087\Guays Garage\dwg\Phase I Figures.dwg plot date: 2/10/2011 3:10 PM






J:\CREDERE\10001087\Guays Garage\dwg\ACM Report (10-27-2011).dwg plot date: 11/2/2011 9:03 AM

### APPENDIX A

#### ASBESTOS INSPECTOR CERTIFICATION DOCUMENTATION



CREDERE ASSOCIATES, LLC









Expiration Date 03/31/2012

Inspector

Cert No. AI-0608 Trn.Exp.Date 03/30/2012

### **APPENDIX B**

#### LABORATORY ANALYTICAL REPORTS



CREDERE ASSOCIATES, LLC

\Me01seusse\projects\10001087 LRPC Pet Brownfields\WORKING FILES\Guay's Garage Franklin\Phase II ESA\ACM Report_LRPC Guay's ACM Report_11-02-11.doc



( 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

				Non-Asb	Asbestos	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Туре
G-R2-3-A 131102738-0001	- Roofing	Black Fibrous Homogeneous	80%	Cellulose	20% Non-fibrous (other)	None Detected
G-R2-3-B 131102738-0002	- Roofing	Black Fibrous Homogeneous	80%	Cellulose	20% Non-fibrous (other)	None Detected
G-R2-3-C 131102738-0003	- Roofing	Black Fibrous Homogeneous	80%	Cellulose	20% Non-fibrous (other)	None Detected
G-R2-2-A 131102738-0004	- Roofing	Black Non-Fibrous Homogeneous	15%	Cellulose	80% Non-fibrous (other)	5% Chrysotile
G-R2-2-B 131102738-0005	- Roofing					Stop Positive (Not Analyzed)
G-R2-2-C 131102738-0006	- Roofing					Stop Positive (Not Analyzed)
G-R2-1-A 131102738-0007	- Roofing	Black Fibrous Heterogeneous	25%	Cellulose	70% Non-fibrous (other)	5% Chrysotile

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



C 7	lonathan O'Donnell Credere Associates, I 76 Main Street Vestbrook, ME 04092		Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738	
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

		Asbestos				
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Туре
G-R2-1-B 131102738-0008	- Roofing					Stop Positive (Not Analyzed)
G-R2-1-C 131102738-0009	- Roofing					Stop Positive (Not Analyzed)
G-R1-3-A 131102738-0010	- Roofing	Black Fibrous Heterogeneous	40%	Cellulose	60% Non-fibrous (other)	None Detected
G-R1-3-B 131102738-0011	- Roofing	Black Fibrous Heterogeneous	40%	Cellulose	60% Non-fibrous (other)	None Detected
G-R1-3-C 131102738-0012	- Roofing	Black Fibrous Heterogeneous	40%	Cellulose	60% Non-fibrous (other)	None Detected
G-R1-2-A 131102738-0013	- Roofing	Red/Black Fibrous Heterogeneous	40%	Cellulose	60% Non-fibrous (other)	None Detected
G-R1-2-B 131102738-0014	- Roofing	Red/Black Fibrous Heterogeneous	40%	Cellulose	60% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



C 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

#### Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using **Polarized Light Microscopy**

Sample	Description		Non-Asbestos			Asbestos
		Appearance	%	Fibrous	% Non-Fibrous	% Type
G-R1-2-C 131102738-0015	- Roofing	Red/Black Fibrous Heterogeneous	40%	Cellulose	60% Non-fibrous (other)	None Detected
G-R1-1-A 131102738-0016	- Roofing	White/Black Fibrous Heterogeneous	40%	Cellulose	60% Non-fibrous (other)	None Detected
G-R1-1-B 131102738-0017	- Roofing	White/Black Fibrous Heterogeneous	40%	Cellulose	60% Non-fibrous (other)	None Detected
G-R1-1-C 131102738-0018	- Roofing	White/Black Non-Fibrous Heterogeneous	40%	Cellulose	60% Non-fibrous (other)	None Detected
H-R1-2-A 131102738-0019	- Roofing	Black Non-Fibrous Homogeneous	10%	Glass	90% Non-fibrous (other)	None Detected
H-R1-2-B 131102738-0020	- Roofing	Black Non-Fibrous Homogeneous	10%	Glass	90% Non-fibrous (other)	None Detected
H-R1-2-C 131102738-0021	- Roofing					Not Analyzed
			Sample not	t in bag.		

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



C 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

				Asbestos		
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
H-R2-3-A 131102738-0022	- Roofing	Black/Silver Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-R2-3-B 131102738-0023	- Roofing	Black/Silver Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-R2-3-C 131102738-0024	- Roofing	Black/Silver Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-R2-2-A 131102738-0025	- Roofing	Black Non-Fibrous Homogeneous	Result renr	esents one layer of a r	80% Non-fibrous (other)	20% Chrysotile
H-R2-2-B 131102738-0026	- Roofing					Stop Positive (Not Analyzed)
H-R2-2-C 131102738-0027	- Roofing					Stop Positive (Not Analyzed)
H-R2-1-A 131102738-0028	- Roofing	Gray Fibrous Homogeneous		Cellulose Glass	5% Non-fibrous (other)	None Detected
itial report from 07/	08/2011 09:54:24					
Analyst(s)					Rel STate	~
Kevin Pine (85) Steve Grise (21)					Renaldo Drakes, Laboratory or other approved signa	0



( 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

			Non-Asbestos			<u>Asbestos</u>
Sample	Description	Appearance		Fibrous	% Non-Fibrous	% Type
H-R2-1-B 131102738-0029	- Roofing	Gray Fibrous Homogeneous	90% 5%		5% Non-fibrous (other)	None Detected
H-R2-1-C 131102738-0030	- Roofing	Gray Fibrous Homogeneous	90% 5%		5% Non-fibrous (other)	None Detected
H-R1-1-A 131102738-0031	- Roofing	Black/Green Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected
H-R1-1-B 131102738-0032	- Roofing	Black/Green Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected
H-R1-1-C 131102738-0033	- Roofing	Black/Green Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected
H-K3-1A 131102738-0034	- Floor Tile	Green Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-K3-1B 131102738-0035	- Floor Tile	Green Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



C 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

		Non-Asbestos			Asbestos	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
H-K3-1C 131102738-0036	- Floor Tile	Green Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-K3-2-A 131102738-0037	- Linoleum	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-K3-2-B 131102738-0038	- Linoleum	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-K3-2-C 131102738-0039	- Linoleum	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-K2-3-A 131102738-0040	- Plaster	White Fibrous Homogeneous	10%	Hair	90% Non-fibrous (other)	None Detected
H-K2-3-B 131102738-0041	- Plaster	White Fibrous Homogeneous	10%	Hair	90% Non-fibrous (other)	None Detected
H-K2-3-C 131102738-0042	- Plaster	White Fibrous Homogeneous	10%	Hair	90% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



C 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

			Non-Asbestos			Asbestos	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type	
H-K2-1-A 131102738-0043	- Floor Tile	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
H-K2-1-B 131102738-0044	- Floor Tile	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
H-K2-1-C 131102738-0045	- Floor Tile	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
H-K2-2-A 131102738-0046	- Mastic	Yellow Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
H-K2-2-B 131102738-0047	- Mastic	Yellow Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
H-K2-2-C 131102738-0048	- Mastic	Yellow Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
H-B2-1-A 131102738-0049	- Floor Tile	Blue Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



C 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

			Non-Asbestos			Asbestos	
Sample	Description	Appearance		Fibrous	% Non-Fibrous	% Туре	
H-B2-1-B 131102738-0050	- Floor Tile	Blue Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
H-B2-1-C 131102738-0051	- Floor Tile	Blue Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
H-5-1-A 131102738-0052	- Ceiling Tile	Gray Fibrous Homogeneous	80%	Cellulose	20% Non-fibrous (other)	None Detected	
H-5-1-B 131102738-0053	- Ceiling Tile	Gray Fibrous Homogeneous	80%	Cellulose	20% Non-fibrous (other)	None Detected	
H-5-1-C 131102738-0054	- Ceiling Tile	Gray Non-Fibrous Homogeneous	80%	Cellulose	20% Non-fibrous (other)	None Detected	
H-3-1-A 131102738-0055	- Plaster	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	
H-3-1-B 131102738-0056	- Plaster	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected	

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



C 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

		Non-Asbestos			Asbestos	
Sample	Description	Appearance %		Fibrous	% Non-Fibrous	% Type
H-3-1-C 131102738-0057	- Plaster	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-E-1-A 131102738-0058	- Window Glazing	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-E-1-B 131102738-0059	- Window Glazing	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-E-1-C 131102738-0060	- Window Glazing	Tan Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-K1-2-A 131102738-0061	- Plaster	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-K1-2-B 131102738-0062	- Plaster	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
H-K1-2-C 131102738-0063	- Plaster	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



C 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

			<u>Asbestos</u>		
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
H-K1-1-A 131102738-0064	- Bulk	Blue Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected
H-K1-1-B 131102738-0065	- Bulk	Blue Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected
H-K1-1-C 131102738-0066	- Bulk	Blue Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected
B-E-1-A 131102738-0067	- Window Glazing	White Non-Fibrous Homogeneous		98% Non-fibrous (other)	2% Chrysotile
B-E-1-B 131102738-0068	- Window Glazing				Stop Positive (Not Analyzed)
B-E-1-C 131102738-0069	- Window Glazing				Stop Positive (Not Analyzed)
G-E-1-A 131102738-0070	- Asphalt Paper	Black Fibrous Homogeneous	60% Cellulose	40% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



C 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 04092			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

				<u>Non-Asb</u>	Asbestos	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
G-E-1-B 131102738-0071	- Asphalt Paper	Black Fibrous Homogeneous	60%	Cellulose	40% Non-fibrous (other)	None Detected
G-E-1-C 131102738-0072	- Asphalt Paper	Black Fibrous Homogeneous	60%	Cellulose	40% Non-fibrous (other)	None Detected
B-1-1-A 131102738-0073	- Ceiling Tile	Gray Fibrous Homogeneous	80%	Cellulose	20% Non-fibrous (other)	None Detected
B-1-1-B 131102738-0074	- Ceiling Tile	Gray Fibrous Homogeneous	80%	Cellulose	20% Non-fibrous (other)	None Detected
B-1-1-C 131102738-0075	- Ceiling Tile	Gray Fibrous Homogeneous	80%	Cellulose	20% Non-fibrous (other)	None Detected
G- <b>7-3-A</b> 131102738-0076	- Wire Cover	Brown/Black Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected
G-7-3-B 131102738-0077	- Wire Cover	Brown/Black Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



( 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

				<u>Non-Ast</u>	Asbestos	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
G-7-3-C 131102738-0078	- Wire Cover	Brown/Black Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected
G-7-2-A 131102738-0079	- Bulk	Brown/Black Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected
G-7-2-B 131102738-0080	- Bulk	Brown/Black Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected
G-7-2-C 131102738-0081	- Bulk	Brown/Black Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected
G-7-1-A 131102738-0082	- Wire Cover	Brown/Black Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected
G-7-1-B 131102738-0083	- Wire Cover	Brown/Black Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected
G-7-1-C 131102738-0084	- Wire Cover	Brown/Black Fibrous Heterogeneous	30%	Cellulose	70% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



( 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

		Non-Asbestos			pestos	Asbestos
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
G-6-3-A 131102738-0085	- Ceiling Tile	Tan Fibrous Homogeneous	90%	Cellulose	10% Non-fibrous (other)	None Detected
G-6-3-B 131102738-0086	- Ceiling Tile	Tan Fibrous Homogeneous	90%	Cellulose	10% Non-fibrous (other)	None Detected
G-6-3-C 131102738-0087	- Ceiling Tile	Tan Fibrous Homogeneous	90%	Cellulose	10% Non-fibrous (other)	None Detected
G-6-1-A 131102738-0088	- Floor Tile	Red Non-Fibrous Homogeneous			95% Non-fibrous (other)	5% Chrysotile
G-6-1-B 131102738-0089	- Floor Tile					Stop Positive (Not Analyzed)
G-6-1-C 131102738-0090	- Floor Tile					Stop Positive (Not Analyzed)
G-6-2-A 131102738-0091	- Mastic	Brown Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



C 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

			Non-As	Non-Asbestos		
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type	
G-6-2-B 131102738-0092	- Mastic	Brown Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected	
G-6-2-c 131102738-0093	- Mastic	Brown Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected	
G-5-1-A 131102738-0094	- Plaster	Gray Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected	
G-5-1-B 131102738-0095	- Plaster	Gray Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected	
G-5-1-C 131102738-0096	- Plaster	Gray Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected	
G-1-1-A 131102738-0097	- Floor Tile	White Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected	
G-1-1-B 131102738-0098	- Floor Tile	White Non-Fibrous Homogeneous		100% Non-fibrous (other)	None Detected	

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



0 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 10001087 / Guay's	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

				Non-Asbesto	<u>Asbestos</u>	
Sample	Description	Appearance	% Fib	rous	% Non-Fibrous	% Type
G-1-1-C 131102738-0099	- Floor Tile	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
G-1-2-A 131102738-0100	- Floor Tile	Black Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
G-1-2-B 131102738-0101	- Floor Tile	Black Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
G-1-2-C 131102738-0102	- Floor Tile	Black Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
G-1-3-A 131102738-0103	- Mastic	Yellow Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
G-1-3-B 131102738-0104	- Mastic	Yellow Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
G-1-3-C 131102738-0105	- Mastic	Yellow Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



C 7	Ionathan O'Donnell Credere Associates, 76 Main Street Vestbrook, ME 04092			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 <b>10001087 / Guay's</b>	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

			Non-Asbestos			Asbestos
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
G-4-1-A 131102738-0106	- Sheetrock	Gray Fibrous Heterogeneous	5%	Cellulose	95% Non-fibrous (other)	None Detected
G-4-1-B 131102738-0107	- Sheetrock	Gray Fibrous Heterogeneous	5%	Cellulose	95% Non-fibrous (other)	None Detected
G-4-1-C 131102738-0108	- Sheetrock	Gray Fibrous Heterogeneous	5%	Cellulose	95% Non-fibrous (other)	None Detected
G-8-1-A 131102738-0109	- Plaster	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
G-8-1-B 131102738-0110	- Plaster	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
G-8-1-C 131102738-0111	- Plaster	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
G-3-1A 131102738-0112	- Plaster	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory



0 7	Jonathan O'Donnell Credere Associates, 776 Main Street Westbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 cc/ 09472B 06/23/11 10:50 AM 131102738
Fax: Project:	(207) 887-1051 10001087 / Guay's	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	7/7/2011

	Description		Non-Asbestos			Asbestos
Sample		Appearance	%	Fibrous	% Non-Fibrous	% Туре
G-3-1B 131102738-0113	- Plaster	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
G-3-1C 131102738-0114	- Plaster	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
G-1-4-A 131102738-0115	- Plaster	Tan Fibrous Heterogeneous	10%	Cellulose	90% Non-fibrous (other)	None Detected
G-1-4-B 131102738-0116	- Plaster	Tan Fibrous Heterogeneous	10%	Cellulose	90% Non-fibrous (other)	None Detected
G-1-4-C 131102738-0117	- Plaster	Tan Fibrous Heterogeneous	10%	Cellulose	90% Non-fibrous (other)	None Detected

Initial report from 07/08/2011 09:54:24

Analyst(s)

Kevin Pine (85) Steve Grise (21)

Renaldo Drakes, Laboratory Manager or other approved signatory