Waste Management Division PO Box 95, 29 Hazen Drive Concord, NH 03302

Type of Submittal (Check One-Most Applicable) П Remedial Action Work Scope Remedial Action Plan ☐ Reimbursement Request Bid Plans and Specifications Remedial Action Implementation Report ■ UST Facility Report Treatment System and POE O&M ☐ AST Facility Report Activity and Use Restriction Emergency/Initial Response Action Temporary Surface Water Discharge Permit Groundwater Quality Assessment Initial Site Characterization Groundwater Management Permit Site Investigation • Permit Application • Site Investigation Report • Renewal Application • Supplemental Site Investigation Report • Deed Recordation Documentation • GMZ Delineation • Abutter Notification Documentation • Source Area Investigation • Release of Recordation • Data Submittal Data Submittal · Annual Summary Report

PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

Unsolicited Brownfields Submittal

Closure Documentation

Annual Summary Report

Former Polyclad Laminates Site 45 Tannery Street Franklin, New Hampshire NHDES Site #199902062

Prepared For: Lakes Region Planning Commission 103 Main Street – Suite #3 Meredith, NH 03253 Phone: (603) 279-8171


Phone: (603) 279-8171 Contact: Mr. Kimon Koulet

Prepared By:

CREDERE ASSOCIATES, LLC

776 Main Street Westbrook, Maine 04092 Phone: (207) 828-1272 ext. 20 Contact: Jonathan O'Donnell

June 27, 2012

Recommended Risk Category (check one)							
	Immediate Human Health Risk (Impacted water supply well, etc.)	☐ 4.	Surface Water Impact	☐ 7. Alternate Water Available/Low Level Groundwater Contamination (<1,000 X			
□ 2. ¹	Potential Human Health Risk (Water supply well within 1,000' or Site	☐ 5.	No Alternate Water Available/No Existing Wells in Area	AGQS) ☐ 8. No AGQS Violation/No Source Remaining			
	within SWPA)	☐ 6.	Alternate Water Available/High Level Groundwater Contamination (>1,000 X	Closure Recommended			
☐ 3. 1	Free Product or Source Hazard		AGQS)				

CREDERE ASSOCIATES, LLC

776 Main Street Westbrook, Maine 04092 Phone: 207-828-1272 Fax: 207-887-1051

June 27, 2012

Mr. Kimon Koulet Executive Director Lakes Region Planning Commission 103 Main Street, Suite #3 Meredith, New Hampshire 03253

Subject: Phase II Environmental Site Assessment

Former Polyclad Laminates Site 45 Tannery Street, Franklin, NH

NHDES Site # 199902062

Dear Mr. Koulet:

Attached is the Phase II Environmental Site Assessment for the Former Polyclad Laminates Site located at 45 Tannery Street in Franklin, New Hampshire. **Sections 11** and **12** of the attached report present our conclusions and recommendations regarding the Site. Copies of this report have been forwarded to the New Hampshire Department of Environmental Services (NHDES), the United States Environmental Protection Agency (U.S. EPA), and the City of Franklin.

Please do not hesitate to contact me at (207) 828-1272 ext. 20 if you have any questions, comments, or require additional information regarding this investigation.

Very truly,

CREDERE ASSOCIATES, LLC

Jonathan O'Donnell Geo-Environmental Engineer

cc: Elizabeth Dragon, City of Franklin

Richard Lewis, City of Franklin

John Liptak, NHDES

Jerry Minor-Gordon, U.S. EPA

Phase II Environmental Site Assessment Report

Former Polyclad Laminates Site 45 Tannery Street Franklin, New Hampshire NHDES Site #199902062

Prepared for:

Lakes Region Planning Commission 103 Main Street, Suite #3 Meredith, New Hampshire 03253 Attn: Kimon Koulet Executive Director

June 27, 2012

In Reference to: Credere Project No. 10001086

Submitted by: Credere Associates, LLC 776 Main Street Westbrook, ME 04092

TABLE OF CONTENTS

Section	on Title	Page No.
EXE	CUTIVE SUMMARY	1
1. I	INTRODUCTION	1-1
2. I	PROJECT BACKGROUND	2-1
2.1	Site Description	2-1
2.2	Summary of Previous Work	
2.2.	•	
2.2.		
2.2	, , 0	
2.2.	→	
2.3	Potential Future Site Use	
3. I	PHASE II SCOPE OF WORK	3-1
4. I	PHASE II FIELD ACTIVITIES	4-1
4.1	Ground Penetrating Radar Survey	4-1
4.2	Surficial Soil Investigation	4-1
4.3	Test Pit Investigation	4-2
4.4	Sub-Slab Soil Gas Investigation	4-5
4.5	Soil Boring and Monitoring Well Installation	4-5
4.6	Groundwater Sampling	4-8
4.7	Building Material Debris Sampling	
4.7.	= = = = = = = = = = = = = = = = = = =	
4.7.	2 Potential PCB-Containing Materials	4-9
5. S	SUMMARY OF REGULATORY STANDARDS	5-1
5.1	Soil	5-1
5.2	Groundwater	5-1
5.3	Soil Gas	5-1
5.4	Potential Asbestos-Containing Materials	5-1
5.5	Potential PCB-Containing Materials	5-1
6. I	PHASE II RESULTS	6-1
6.1	Site Geology	6-1
6.1.	**	
6.1.	2 Bedrock Geology	6-1
6.1	, 6 6,	
6.2	Ground Penetrating Radar Results	
6.3	Surficial Soil Sample Results	
6.4	Test Pit Sample Results	
6.5	Sub-Slab Soil Gas Sample Results	
6.6	Soil Boring Sample Results	6-3

<u>June 27</u>	7, 2012	FINAL
<i>c</i> 7		6.2
6.7	Groundwater Sample Results	
6.8	Building Material/Debris Results	
6.8.1	0	
6.8.2	Potential PCB-Containing Material	0-4
7. (QUALITY ANALYSIS/QUALITY CONTROL	7-1
7.1	Precision	7-1
7.2	Bias	7-2
7.3	Accuracy	
7.4	Representativeness	
7.5	Comparability	
7.6	Completeness	
8. (CONCEPTUAL SITE MODEL	8-1
8.1	Contaminants of Concern	8-1
8.2	Site Geology and Hydrogeology	
8.3	Definitions of Exposure Pathways and Potential Receptors	
9. I	DEVIATIONS	9-1
10. I	OATA GAPS	10-1
11. (CONCLUSIONS	11-1
11 1	Recognized Environmental Conditions	11-1
	Additional Environmental Concerns	
12. F	RECOMMENDATIONS	12-1
13. S	SIGNATURES OF ENVIRONMENTAL PROFESSIONALS	13-1
	IMITATIONS	14-1

LIST OF TABLES

Table 1	Summary of Exploration Locations and Sampling Methods						
Table 2 S	Table 2 Summary of Photoionization Detector (PID) Field Screening Resu						
Table 3Sum	mary of X-Ray Fluorescence (XRF) Meter Field Screening Results						
Table 4Summary of Groundwater Elevation 1							
Table 5Summary of Analytical Results for Soil Sa							
Table 6 Summary of Analytical Results for Building Mater							
Table 7	Summary of Analytical Results for Soil Gas Samples						
	Summary of Analytical Results for Groundwater Samples						
Table 9							
	LIST OF FIGURES						
Figure 1	Site Location Plan						
	Phase II Environmental Site Assessment Sample Location						
	Plan Showing Recognized Environmental Conditions						
Figure 3	UST-6 Area Enlargement Plan						
Figure 4							
	Summary of Groundwater Results Plan						
Figure 6	July 5, 2011 Groundwater Elevation Contour Plan						
	Buried Tannery Waste Location Plan						
Figure 8							
	LIST OF APPENDICES						
	EIST OF ATTENDICES						
Annendix A	Site-Specific Quality Assurance Project Plan Addendum						
* *	Test Pit Logs						
	Groundwater Sampling Logs						
1.1	Laboratory Analytical Reports						
r r	======================================						

EXECUTIVE SUMMARY

Credere Associates, LLC (Credere) has conducted a Phase II Environmental Site Assessment (ESA) at the former Polyclad Laminates Site (the Site) located at 45 Tannery Street in Franklin, New Hampshire, in general conformance with the American Society for Testing Materials (ASTM) Standard Guide for Environmental Site Assessments: *Phase II Environmental Site Assessment Process* E 1903-97 (reapproved 2002). Phase II ESA activities were performed specifically to confirm or dismiss *recognized environmental conditions* (RECs) and other ASTM *non-scope considerations* (NCs) identified during a Phase I ESA that was completed for the Site by Nobis Engineering, Inc. (Nobis) in April 2011 and additional environmental concerns identified by Credere during the development of a site-specific quality assurance project plan (SSQAPP) addendum for the Site.

Credere's Phase II ESA work, which is outlined in the New Hampshire Department of Environmental Services (NHDES) and the United States Environmental Protection Agency (U.S. EPA) approved SSQAPP addendum, included the following: a ground penetrating radar (GPR) survey of the Site to identify subsurface features; advancement of five (5) soil borings; excavation of thirteen (13) test pits; installation of three (3) monitoring wells; and collection and laboratory analysis of two (2) sub-slab soil gas samples, four (4) surficial soil samples, eighteen (18) subsurface soil samples, seven (7) building material/debris samples, and groundwater samples from an existing monitoring well and the three (3) newly installed monitoring wells.

Based on the findings of this work, Credere's conclusions regarding the identified RECs and additional environmental concerns are as follows:

Recognized Environmental Conditions

- REC-1, which was associated the presence of a 12,000-gallon fuel oil underground storage tank (UST) (identified as UST-6) that was closed-in-place in the vicinity of the loading dock, is <u>dismissed</u> because no evidence of contamination was identified in soil samples collected from the sides and adjacent to the bottom of the closed-in-place UST in test pits CA-TP-7 and CA-TP-7A. In addition, observations made by Credere indicated that this UST was filled with clean sand at the time of closure-in-place.
- REC-2, which was associated with the potential presence of a reported 4,000-gallon fuel
 oil UST (identified as UST-8) shown on a historical Sanborn Map, is <u>dismissed</u> because
 no UST was identified in this location during the GPR survey and no evidence of
 contamination exceeding applicable standards was identified in test pits CA-TP-8, CATP-10, or CA-TP-11.
- REC-3, which was associated with the potential presence of a reported 4,000-gallon fuel oil UST (identified as UST-9) shown on a historical Sanborn Map, is <u>dismissed</u> because no UST was identified in this location during the GPR survey, and no evidence of

- contamination was identified in test pit CA-TP-9 or in soil gas sample locations CA-SG-1 through CA-SG-5, which were completed to evaluate this REC.
- REC-4, which was associated with a former fuel dispenser and a number of filling caps formerly located in the vicinity of the closed-in-place UST-6, is <u>dismissed</u> because no evidence of contamination exceeding applicable standards was identified is soil samples collected from test pit CA-TP-12, which was advanced in the suspected location a former fuel dispenser.
- REC-5, which was associated with the presence of a sheen of degraded gasoline previously noted in 2008 in existing monitoring well MW-2, is <u>confirmed</u>, because groundwater from a newly installed monitoring well (CA-2) located 30 feet southwest of MW-2 contained 1,2,4-trimethylbenzene at a concentration exceeding the applicable NHDES Ambient Groundwater Quality Standard (AGQS), suggesting that a plume of degraded gasoline is present beneath the Site.
- REC-6, which was associated with a subsurface structure identified during a previous GPR survey east of the former building and believed to be a former concrete septic tank, is <u>dismissed</u> because this structure was determined to be a part of the municipal sewer system and not a septic tank, and therefore does not represent a pathway to the subsurface environment.
- REC-7, which was associated with the presence of buried waste related to the previous usage of the Site as a tannery, is <u>dismissed</u>. While evidence of buried waste was observed in the form of leather hides in test pits CA-TP-9, CA-TP-13, and CA-TP-14, no evidence of contamination at concentrations exceeding applicable standards was observed in association with the buried waste. However, this condition represents a solid waste issue that should be properly managed.
- REC-8, which was associated with pipes that were previously noted emitting unknown solvent odors and elevated total volatile organic readings in the southwestern portion of the building, is <u>dismissed</u>, because no evidence of contamination exceeding applicable standards was identified in soil gas (soil gas sample locations CA-SG-6 through CA-SG-11), soil (boring CA-3), or in groundwater (monitoring well CA-3) samples collected from this area.
- REC-9, which was associated with former press pits located within the manufacturing slab that are stained with petroleum, is <u>dismissed</u> because no evidence of contamination was identified in soil samples collected from adjacent to the bottoms of the press pits (borings CA-4 and CA-5).
- REC-10, which was associated with a pile of demolition debris located on the southwestern portion of the Site, is <u>dismissed</u> because no potential lead-based paint or PCB-containing materials were observed in the pile, and no asbestos was identified in a floor tile sample collected from the pile.

Additional Environmental Concerns

The following additional environmental concerns were identified by Credere during development of the SSQAPP and assessed during this Phase II ESA:

- Potential impact associated with the former use of the Site for railroad activities is confirmed, because benzo[a]pyrene was detected above the applicable NHDES Soil Remediation Standards (SRS) in surficial soil sample CA-SS-3. Benzo[a]pyrene is a polycyclic aromatic hydrocarbon (PAH) which is known to be associated with railroad activities.
- The potential impact of a former electrical transformer located on the west side of the building is <u>dismissed</u>, because no PCBs were identified in soil collected from an electrical pit in this area of the Site. Additionally, two samples of stained concrete collected from this area of the Site contained no PCBs above laboratory practical quantification limits.
- A soil sample collected from test pit CA-TP-15 at 5 to 7 feet below ground surface (bgs) contained the PAHs benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno(1,2,3-cd)pyrene, and dibenzo(a,h)anthracene at concentrations which exceeded their applicable NHDES SRS. No staining was observed in this test pit nor was this sample associated with any observed buried wastes. Additionally, no PAHs were identified in soil in contact with buried waste in test pits CA-TP-13 or CA-TP-14. Although this test pit was not in the location of or downgradient of any identified Site USTs, it is Credere's opinion that this contamination may be associated with a past petroleum release from the former UST-10, which was located approximately 40 feet away or from another unknown on-site source.
- Building material sample results indicate that blue 12-inch square floor tile remnants remaining attached to the concrete building slab are asbestos-containing material (ACM). It is not clear if any of these tiles are present in the demolition pile remaining on-site.

Based on observations and results of this Phase II ESA for the Site, Credere makes the following recommendations:

- Credere recommends that delineation of all buried solid waste at the Site be conducted, including tannery hides, other tannery wastes, and building demolition debris, per NHDES Solid Waste Rules Env-Sw 309 in support of a Pre-1981 landfill registration.
- Subsequent to the delineation of all buried solid waste at the Site, Credere recommends that the Site be registered as a Pre-1981 landfill according to NHDES Solid Waste Rules Env-Sw 309.

- Credere recommends that delineation of the identified PAH contaminated surficial soil in the areas of CA-SS-3 and CA-TP-15 be conducted. Credere recommends that a Remedial Action Plan (RAP) be developed to address the PAH contaminated soil.
- Credere recommends additional investigation to assess the full extent and magnitude of degraded gasoline contamination identified at monitoring well CA-2. This additional assessment should supplement the development of a groundwater flow model of the Site in order to define the nature, extent, and/or potential fate and transport characteristics of the identified impacted media. Credere also recommends that this petroleum contamination issue be referred to the NHDES Petroleum Remediation Program as the observed contamination is likely associated with one of the former USTs at the Site. If accepted into this program, future investigation work will be reimbursed by the program.
- Credere recommends that the identified ACM floor tile remaining on the former building slab be properly handled according to all applicable NHDES Asbestos and Solid Waste Rules prior to the development of the Site.

1. INTRODUCTION

This report presents the results of a Phase II Environmental Site Assessment (ESA) conducted by Credere Associates, LLC (Credere) at the former Polyclad Laminates site (the Site) located at 45 Tannery Street in Franklin, New Hampshire as part of the Lakes Region Planning Commission's (LRPC) Brownfields Assessment Program. **Figure 1** shows the general location of the Site in Franklin.

The Phase II ESA was completed in general conformance with the American Society for Testing Materials (ASTM) Standard Guide for Environmental Site Assessments: *Phase II Environmental Site Assessment Process* E 1903-97 (reapproved 2002).

The field program used during this Phase II ESA was completed in accordance with the U.S. Environmental Protection Agency (EPA)-approved June 28, 2011, Site-Specific Quality Assurance Project Plan (SSQAPP) Addendum. The SSQAPP is an addendum to the previously approved New Hampshire Generic QAPP RFA #08166 and #09036, which was prepared for all of Credere's EPA work in New Hampshire. The SSQAPP addendum is included in **Appendix A**. Photographs taken during the completion of this Phase II ESA are included in **Appendix B**.

2. PROJECT BACKGROUND

2.1 SITE DESCRIPTION

The Site is composed of a single vacant 1.97-acre parcel of land located at 45 Tannery Street in Franklin, New Hampshire, that is situated along the Pemigewasset River. The Site consists of a vacant lot with a concrete slab-on-grade foundation and a pile of debris remaining from the previous demolition of the Site building. **Figure 2** shows the former Site building footprint and other pertinent Site features.

According to Nobis Engineering, Inc. (Nobis)'s April 11, 2011, Phase I ESA report for the Site, which was reviewed as a part of the development of the SSQAPP, the Site was first developed in 1892. By approximately 1930, the first building was constructed on the Site. The most recent building was demolished in 2008 after it collapsed due to heavy winter snow cover.

According to the Nobis Phase I ESA report, the Site appears to have been used for railroad purposes when the Boston & Maine and Bristol Railroad transected the Site beginning in 1892. It is not clear when railroad activities ceased on the Site. However, records do show that the Hingston Leather Company, Inc. and Louis Verza Leather Company were using the Site for tannery activities beginning in the 1950s until the mid to late 1950s. Nobis indicated that there was very little environmental information available for the Site as it pertains to the former tannery operations.

Between 1979 and 1980, Polyclad Laminates, Inc. began operations on the Site. Polyclad Laminates, Inc. manufactured component materials used in multi-layered circuit boards called "pre-preg." The process involved dipping fiberglass cloth in a dip tank filled with epoxy resin. Polyclad Laminates used the Site for the manufacture of pre-preg from between 1979 and 1980 until approximately 2006.

2.2 SUMMARY OF PREVIOUS WORK

The following is a summary of the findings and conclusions of Nobis as reported in their April 2011 Phase I ESA for the Site:

2.2.1 Recognized Environmental Conditions

- 1. The presence of a 12,000-gallon fuel oil underground storage tank (UST) (identified as UST-6) that is located in the vicinity of the loading dock and was closed-in-place (date uncertain) represented a REC.
- 2. The potential presence of a reported 4,000-gallon fuel oil UST (identified as UST-8) shown on a Sanborn Map represented a REC because the presence of this tank has not

been confirmed and <u>no</u> documentation regarding closure of the tank or information on the integrity of the tank was identified during the Phase I ESA.

- 3. The potential presence of a reported 4,000-gallon fuel oil UST (identified as UST-9) shown on a Sanborn Map represented a REC because the presence of this tank has not been confirmed and documentation regarding closure of the tank or information on the integrity of the tank was not identified during the Phase I ESA.
- 4. Due to the potential for undocumented past releases to the environment, Nobis identified a REC associated with presence of a former gasoline dispenser and a number of filling caps formerly located in the vicinity of former UST-6 because these items may have been associated with additional undocumented USTs in this area, and documentation regarding the removal of this dispenser or the disposition of related piping with respect to potential releases has not been confirmed.
- 5. The presence of a sheen of degraded gasoline previously noted in 2008 in monitoring well MW-2 for which a source was not identified, represents a REC due to the potential for an unidentified source of petroleum contamination to be present at the Site. [Note: According to a Phase II ESA Report prepared by Delta Consultants on April 10, 2008, previous sampling data collected in 2007 indicates that no volatile organic compounds (VOCs), metals, or polychlorinated biphenyls (PCBs) were detected in excess of New Hampshire Soil Remediation Standards (SRS) in a soil sample collected at 30 to 32 feet bgs during drilling of this well and no VOCs or semi-volatile organic compounds (SVOCs) were detected in excess of Ambient Groundwater Quality Standards (AGQS) in the groundwater sample collected from this well. However, a petroleum sheen was noted during sampling of the groundwater and the tentatively identified compounds (TICs) noted during laboratory analysis revealed that the sheen was likely gasoline.]
- 6. The potential that a subsurface structure identified during a ground penetrating radar (GPR) survey east of the former building, which was suspected to be a former concrete septic tank, represents a REC because of the potential for previous undocumented subsurface storage or disposal of hazardous substances and/or petroleum products in and around this structure.
- 7. The presence of buried waste related to the previous usage of the Site as a tannery represents a REC because the understanding of the extent and disposition of the waste (leather waste or unsuitable materials) is limited and may have led to improper disposal of hazardous substances.
- 8. Nobis concluded that, because of the potential for undocumented releases of hazardous substances in the past or in the future, pipes that were previously noted emitting unknown solvent odors and elevated total volatile organic compounds detected in the former chemical mixing room in the southwestern portion of the building, represented a REC

because the source of these odors (which may be a formerly closed-in-place acetone tank) is not known.

- 9. Two former press pits located within the manufacturing slab that are stained with petroleum represent a REC and they have not been fully assessed.
- 10. A pile of unknown debris located on the southwestern portion of the Site that is consistent with demolition debris represents a REC for its potential to contain waste ACM, lead-based paint [and other contaminants].

2.2.2 Other Potential Environmental Conditions

Based on review of the April 2011 Nobis Phase I ESA, Credere offers the following list of other potential environmental conditions:

- 1. Nobis documented that the Site was previously used for railroad activities beginning as early as 1892. Nobis concluded that this past use of the Site represented a *de minimis condition* because any contaminants from this past use would likely be deemed a background condition. Credere agrees with this assertion, but it is our opinion that non-point source background type releases of polycyclic aromatic hydrocarbons (PAHs), which would be considered the primary contaminants of concern, still represent a threat to human health if they exceed applicable New Hampshire Department of Environmental Services (NHDES) soil standards and should be addressed as a part of future redevelopment of the Site. Therefore, it is our opinion that this past use should be assessed as a part of this Phase II ESA.
- 2. Nobis indicated in the Phase I ESA that a data gap in the form of snow cover was noted during the Site Reconnaissance portion of their work. Given that the ground could not be observed, confirmation of exterior surface conditions is warranted prior commencing Phase II ESA field work because additional RECs may be identified that require assessment. As a result, a supplemental Site Reconnaissance is recommended as the first task of this Phase II ESA.
- 3. A former electrical transformer was located on the west side of the building. No information was noted in the previous reports regarding the potential presence of PCBs in the dielectric fluid associated with this transformer. However, considering the timeframe when this transformer would have been in operation, it may have contained PCBs, and a potential release of dielectric fluid from this former transformer may have impacted environmental conditions at the Site. For this reason, the potential presence of PCBs is a concern that should be considered.

2.2.3 History of Underground Storage Tanks at the Site

The operational history of USTs is an important element in the environmental history of the Site. As result, the information below, as reported by Nobis in the April 2011 Phase I ESA, provides an inventory of the USTs which have been identified at the Site. Additional details concerning UST history can be reviewed in the previously submitted Nobis Phase I ESA.

UST ID	Capacity (gallons)	Material Held	Current Status
UST -1	6,000	Methyl Cellosolve	Removed, 1998
UST-2	4,500	CS 350 Acetone	Closed in-place, 1998
UST-3	4,500	Epoxy Resin	Closed in-place, 1999
UST-4	6,000	CS 350 Acetone	Closed in-place, 1999
UST-5	4,000	Gasoline	Removed, date uncertain.
UST-6	12,000	Fuel Oil	Closed in-place, date uncertain
UST-7	13,500	Epoxy Resin	Removed 2008
UST-8	4,000	Fuel Oil	Status unknown, approximate location from 1964 Sanborn Map
UST -9	4,000	Fuel Oil	Status unknown, approximate location from 1929 Sanborn Map
UST-10	8,000	Waste Petroleum Distillates	Removed 2008

2.2.4 Other Documented Previous Environmental Work Cited by Nobis

The Nobis Phase I ESA details the completion of several other investigations, which were completed outside the Brownfields due diligence process, likely as part of a previous effort to sell the Site. Documented previous works include the following:

- 1. A January 12, 1999 Underground Storage Tank (UST) Closure Report UST-1 prepared by Les A. Cartier and Associates, Inc.
- 2. A July 15, 1999 UST Closure Report UST-2, UST-3 and UST-4 prepared by Environmental Science & Engineering (ESE).
- 3. A 2005 Phase I Environmental Site Assessment and Limited Compliance Review prepared by Delta Consultants.
- 4. An April 10, 2008 Phase II Environmental Site Assessment prepared by Delta Consultants.
- 5. An October 15, 2008 UST Closure Report UST-7 and UST-10 prepared Delta Consultants.

The conditions identified by Nobis in **Section 2.2** cumulatively considered all the above referenced previous investigations. Credere also reviewed and considered this cumulative work as a part of the development of the SSQAPP for the Site.

2.3 POTENTIAL FUTURE SITE USE

The City of Franklin has partnered with LRPC to assess the Site so that the City can redevelop the Site into a new Water Department Building.

3. PHASE II SCOPE OF WORK

Credere performed this Phase II ESA to assess the Site considering the anticipated re-use scenario and the identified environmental conditions noted in **Section 2**. An SSQAPP Addendum was developed that outlined the work to be completed, methodologies to be used, and data quality objectives for the project (see **Appendix A**). The Phase II ESA tasks completed included the following:

- 1. Ground Penetrating Radar (GPR) survey of the Site to identify subsurface features
- 2. Four (4) surficial soil samples were collected to and submitted for off-site laboratory analysis.
- 3. Thirteen (13) test pits were excavated at the Site and subsurface soil samples from twelve (12) test pits were collected and submitted for off-site laboratory analysis.
- 4. Five (5) soil borings were advanced at the Site and subsurface soil samples were collected and submitted for off-site laboratory analysis.
- 5. Three of the soil borings were completed as monitoring wells (CA-1, CA-2, and CA-3), and groundwater was collected from the new monitoring wells and existing monitoring well MW-2, and submitted for off-site laboratory analysis.
- 6. Building material/debris samples were collected from the former building foundation slab and from a demolition debris pile at the Site and submitted for off-site laboratory analysis.

Deviations from the scope of work described in the SSQAPP Addendum are summarized in **Section 9** of this report.

4. PHASE II FIELD ACTIVITIES

This sampling program was developed to confirm or dismiss the RECs identified during the Phase I ESA (see SSQAPP Addendum in **Appendix A**) and other potential environmental conditions identified by Credere. All soil, groundwater, and potential PCB-containing building material samples collected by Credere for laboratory analysis were submitted to Absolute Resource Associates of Portsmouth, New Hampshire for analysis. Soil gas samples collected by Credere for laboratory analysis were submitted to Alpha Analytical of Mansfield, Massachusetts. Potential asbestos-containing building materials were submitted to EMSL Analytical, Inc. of Woburn, Massachusetts. Requirements relative to Chain of Custody, Data Management and Documentation, Data Validation, and Data Usability Assessments contained in the SSQAPP were followed. **Figure 2** shows the approximate locations of the building, pertinent Site features, and sample locations.

4.1 GROUND PENETRATING RADAR SURVEY

On June 28, 2011, Credere oversaw a GPR survey of the Site by DigSmart of Maine (DigSmart) to identify subsurface features at the Site potentially associated with environmental conditions at the Site. DigSmart scanned the subsurface with a GPR by walking in continuous and consecutive north-south transects over the areas of the Site associated with RECs (see **Appendix A**). The GPR technician located the lateral extent of subsurface anomalies in areas of concern at the Site. The location of subsurface anomalies was marked on the surface in pink spray paint.

4.2 SURFICIAL SOIL INVESTIGATION

On June 28 and July 5, 2011, Credere collected three (3) surficial soil samples (CA-SS-1, CA-SS-2, and CA-SS-3) to assess possible impacts to the surface from former railroad activities at the Site. The locations of these samples at the Site are depicted on **Figure 2**. The collected samples were submitted for off-site laboratory analysis of PAHs.

All surficial soil samples were collected from 0 to 2 feet below ground surface (bgs) in accordance with standard operating procedures (SOPs) HWRB-11, HWRB-12, HWRB-15, DR#024, DR#025, and Credere-004. Any visible organic debris and/or grass or degraded asphalt was removed from samples prior to placement in laboratory glassware.

Each collected soil sample was logged and visual and/or olfactory evidence of contamination was noted. Samples were then field screened for VOCs with a 10.6 electron volt (eV) photoionization detector (PID) calibrated to a 100 parts per million by volume (ppm_v) isobutylene standard with the instrument response factor set to 1.0. Surficial soil samples were also screened for RCRA 8 metals with an Innov-X X-ray fluorescence (XRF) meter.

Exploration locations and methodologies used are summarized in **Table 1**, PID field screening results are included in **Table 2**, and XRF field screening results are included in **Table 3**.

4.3 TEST PIT INVESTIGATION

On June 28, 2011, Credere oversaw test pit investigation activities which were performed by J.A. Eaton Inspection Services, Inc. of Windham, Maine to assess RECs identified in the previous Phase I ESA and to investigate subsurface anomalies identified during the GPR survey. Please note that six (6) test pits were previously excavated part of a 2008 investigation by Delta Consultants (TP-1 to TP-6). Test pits TP-1 and TP -2 were located off of the Site in the adjacent parking area to the south of the Site. Test pits TP-3 to TP-6 were located on the Site, and are depicted on **Figure 2**. Thirteen (13) test pits were excavated by Credere during this Phase II ESA work, and are identified as CA-TP-7, CA-TP-7A, and CA-TP-8 through CA-TP-18. Soil samples were continuously collected from each test pit. Each collected soil sample was logged and visual and/or olfactory screened for evidence of contamination and was then screened for VOCs with PID and for metals using an XRF as described in **Section 4.2**.

The rational for each test pit and soil samples submitted for laboratory analysis are provided below. The locations of each test pit are described in **Table 1** and are also depicted on **Figure 2**. Copies of test pit logs are included as **Appendix C.**

CA-TP-7

Test pit CA-TP-7 was excavated along the western side of a closed-in-place UST, believed to be UST-6, which is a 12,000-gallon former fuel oil UST. The top of the UST was located at 4 feet bgs. A ductile iron pipe was located parallel to the UST at 8 feet bgs, which prevented the advancement of the test pit past this depth. No soil sample was submitted for laboratory analysis from this test pit, and a second test pit was excavated to assess soil near the bottom of the UST.

CA-TP-7A

Test pit CA-TP-7A was advanced along the southern side of the closed-in-place UST believed to be UST-6, which is a 12,000-gallon former fuel-oil UST. The top of the UST was located at 4 feet bgs and the bottom of the UST was located at approximately 11 feet bgs. Samples from deeper than 12 feet bgs were collected using a split-spoon sampler driven from a drill rig because this depth was beyond the capacity of the excavator used at the Site (see **Section 4.5**). The 10 to 12 foot bgs soil sample was submitted for laboratory analysis of NHDES *Petroleum and Hazardous Waste Full List of Analytes for Volatile Organics* (NHDES Full List VOCs), total petroleum hydrocarbons (TPH), lead, and PAHs because this sample was just below and adjacent to the bottom of UST-6.

CA-TP-8

Test pit CA-TP-8 was excavated west of the former building in the area where a reported 4,000-gallon fuel oil UST (identified as UST-8) was shown on a historical Sanborn Map. No evidence of a UST was identified in this test pit. No evidence of contamination was observed in this test pit, although the upper 4.5 feet of material was comprised of

building demolition debris, consisting of mostly crushed concrete block, and an older asphalt paving layer was encountered at 4.5 feet bgs. The material beneath the asphalt layer was composed of sand with some gravel. The 6 to 8 foot bgs soil sample was submitted for laboratory analysis of NHDES Full List VOCs, TPH, and PAHs because this was perceived to be the intersection of fill materials and native material.

CA-TP-9

Test pit CA-TP-9 was excavated beneath the northern end of the building slab where a reported 4,000-gallon fuel oil UST (identified as UST-9) is shown on a historical Sanborn Map. No evidence of a UST was identified during the GPR survey or in this test pit. The test pit location was between a patch in the concrete slab and an area of GPR anomalies beneath the slab. Tannery waste in the form of hides was observed from 2 to 4 feet bgs. Asphalt pieces were encountered at approximately 8 feet bgs. The 6 foot bgs soil sample was submitted for laboratory analysis of NHDES Full List VOCs, TPH, and PAHs because this was immediately beneath the buried tannery waste.

CA-TP-10

Test pit CA-TP-10 was excavated west of the former building in the area where a reported 4,000-gallon fuel oil UST (identified as UST-8) was shown on a historical Sanborn Map. No evidence of a UST was identified in this test pit. No evidence of contamination was observed in this test pit, although the upper 4.5 feet of material was comprised of building demolition debris, consisting of mostly crushed concrete block. An older asphalt paving layer was present at 4.5 feet bgs. The material beneath the asphalt layer was composed of sand with some gravel. The 0 to 2 foot bgs soil sample was submitted for laboratory analysis of NHDES Full List VOCs and total Pb because of elevated metals detected during XRF field screening.

CA-TP-11

Test pit CA-TP-11 was excavated west of the former building in the area where a reported 4,000-gallon fuel oil UST (identified as UST-8) was shown on a historical Sanborn Map. No evidence of a UST was identified in this test pit. No evidence of contamination was observed in this test pit, although the upper 3 feet of material was comprised of building demolition debris, consisting of mostly crushed concrete block, and an older asphalt paving layer was present at 3 feet bgs. The 6.5 to 9 foot bgs soil sample was submitted for laboratory analysis of NHDES Full List VOCs and total Pb because of elevated metals detected during XRF field screening.

CA-TP-12

Test pit CA-TP-12 was advanced west of the former building in the suspected location of a former fuel dispenser. A concrete sump extended to 2 feet bgs. A soil sample collected from 3 foot bgs was submitted for laboratory analysis of NHDES Full List VOCs and total Pb because petroleum staining was observed at this depth.

CA-TP-13

Test pit CA-TP-13 was excavated east of the former building in a location where the GPR survey indicated possible waste fill materials. Tannery waste in the form of hides was observed from 4 to 5 feet bgs. However, the 2 to 4 foot bgs soil sample was submitted for laboratory analysis of NHDES Full List VOCs, RCRA 8 metals, PAHs, and PCBs because this sample was in contact with the buried tannery waste and elevated chromium (Cr) was noted in this sample during XRF field screening.

CA-TP-14

Test pit CA-TP-14 was excavated east of the former building foundation in a location where the GPR survey indicated possible waste fill materials. Tannery waste in the form of hides was observed from 4 to 8 feet bgs. The 6 to 8 foot bgs soil sample was submitted for laboratory analysis of NHDES Full List VOCs, RCRA 8 metals, and PAHs because this sample was in contact with the buried tannery waste and elevated chromium was noted during XRF field screening. This sample was also analyzed for hexavalent Cr (Cr VI) based on the results of total Cr analysis.

CA-TP-15

Test pit CA-TP-15 was excavated east of the former building foundation to assess possible buried tannery waste. No tannery waste was present in this test pit. The 5 to 7 foot bgs soil sample was submitted for laboratory analysis of NHDES Full List VOCs, RCRA 8 metals, and PAHs because of the presence of wastes at this depth in test pit CA-TP-14.

CA-TP-16

Test pit CA-TP-16 was excavated west of the former building foundation to assess possible buried tannery waste. No tannery waste was present in this test pit. However, sand and gravel fill was observed in the 0 to 2 foot bgs interval, and native material was observed below this interval. Therefore, the 0 to 2 foot bgs soil sample was submitted for laboratory analysis of NHDES Full List VOCs, RCRA 8 metals, and PAHs to characterize fill material that did not appear to be associated with tannery waste at the Site.

CA-TP-17

Test pit CA-TP-17 was advanced north of the former building foundation to assess possible buried tannery waste. No tannery waste was present in this test pit. However, the 4 to 7 foot bgs soil sample was submitted for laboratory analysis of NHDES Full List VOCs, RCRA 8 metals, and PAHs because of the presence of wastes at this depth in test pits CA-TP-13 and CA-TP-14.

CA-TP-18

Test pit CA-TP-18 was excavated north of the former building foundation to assess possible buried tannery waste. No tannery waste was present in this test pit. The 3 to 5

foot bgs soil sample was submitted for laboratory analysis of NHDES Full List VOCs, RCRA 8 metals, and PAHs because of the presence of wastes at this depth in test pits CA-TP-13 and CA-TP-14.

4.4 SUB-SLAB SOIL GAS INVESTIGATION

On June 28, 2011, Credere installed eleven (11) soil gas collection points beneath the concrete slab of the former Site building. Five (5) soil gas collection points (CA-SG-1 to CA-SG-5) were installed beneath the northern end of the slab to assess a suspected former UST (REC-3), and six (6) soil gas collection points (CA-SG-6 to CA-SG-11) were installed beneath the southern end of the slab to assess previously observed organic vapor odors (REC-8) in this area.

A 0.5-inch diameter hole was drilled through the slab and underlying sub-base material in each sampling location. A steel soil gas/pore-water probe was then installed in the drilled hole to a depth of 6 inches beneath the slab bottom. The annulus around the sampler was then sealed with activated bentonite clay and the probe was allowed to equilibrate for one hour. At this time, the internal rod was removed from the soil gas/pore-water sampler and the soil gas was field screened with a ppbRAE Plus PID, which is a low level PID capable of measuring VOCs in air below 1 ppm_v. The PID was connected to the sampler using low-density polyethylene (LDPE) tubing and calibrated to a 10 parts per million by volume (ppm_v) isobutylene standard with the instrument response factor set to 1.0.

One location from each area (CA-SG-1 to CA-SG-5 and CA-SG-6 to CA-SG-11) with the highest field screening VOC concentration was then sampled for laboratory analysis for VOCs using a vacuum sealed Summa canister connected to the sampler using LDPE tubing with an elapsed sampling time of one hour. The Summa canisters were then submitted for laboratory analysis of Toxic Organic Compounds in Ambient Air by EPA Method TO-15.

4.5 SOIL BORING AND MONITORING WELL INSTALLATION

Five (5) soil borings (CA-1 through CA-5) were advanced at the Site on June 29, 2011. Soil boring locations are depicted on **Figure 2**. T&K Well Drilling, a licensed NH well driller, from Troy, NH was retained by Credere and performed the drilling activities. Credere was onsite during the work to provide oversight of the drilling and well installation and to collect soil samples for field screening and laboratory analysis.

Soil borings were advanced using a truck-mounted hollow stem auger drill rig. Soil samples were continuously collected and logged using split-spoon soil sampling. Borings CA-4 and CA-5 were advanced to 10 feet bgs before sampling to assess the soils adjacent to the bottom of the former press pits. Each collected soil sample was field logged and then screened for VOCs with a PID and for metals using an XRF as described in **Section 4.2**.

Monitoring wells were installed in soil boring locations CA-1, CA-2, and CA-3. Each monitoring well was completed with two-inch diameter PVC pipe and 0.010-inch wide slotted PVC screen. The annulus was packed with size No. 2 washed sand to approximately 1-foot above the screen depth and a bentonite seal was placed on top of the annulus and at the ground surface to prevent surface water infiltration. Following installation, each monitoring well was developed and allowed to equilibrate for five days prior to sampling. **Table 1** is a summary of the exploration methods used at each location including the media that was sampled. Field screening results are included in **Table 2** and **Table 3**. Copies of soil boring logs are included as **Appendix D.**

The rationale for the location of each soil boring and the soil sample submitted for laboratory analyses is provided below:

CA-1

Soil boring CA-1 was advanced to a depth of 35 feet bgs in the location of soil gas sampling point CA-SG-2, which had the highest VOC concentration observed during field screening of sub-slab soil gas sampling from locations CA-SG-1 to CA-SG-5. These soil gas sampling points were positioned in an area where a former UST (UST-9) was believed to have been located. The 26 to 28-foot bgs soil sample was submitted for laboratory analysis of NHDES Full List VOCs, TPH, and PAHs because the water table was present within this depth interval, and although an aromatic odor was observed throughout the entire boring depth during advancement of the boring, no PID field screening evidence of contamination was observed during drilling at this location.

Soil boring CA-1 was completed as a monitoring well, screened from 25 to 35 feet bgs to intersect the water table.

CA-2

Soil boring CA-2 was advanced to a depth of 35 feet bgs in an area east of the former Site building where buried tannery waste was observed during test pitting and near existing well MW-2 (the location where a sheen was observed on groundwater in 2008). CA-2 was originally planned to be located downgradient of the suspected septic tank, but the boring/well was moved to generally assess the groundwater flow from the rest of the site when it was discovered that the suspect septic tank was actually part of the Franklin sewer system. The 6 to 8-foot bgs soil sample was submitted for laboratory analysis of NHDES Full List VOCs and RCRA 8 metals plus Cu, Ni, and Zn because VOCs and elevated Cr indicative of tannery waste were detected in this interval during field screening.

Soil boring CA-2 was completed as a monitoring well, screened from 25 to 35 feet bgs to intersect the water table.

CA-3

Soil boring CA-3 was advanced to a depth of 35 feet bgs in the location of soil gas sampling point CA-SG-10, which had the highest VOC concentration observed during field screening of sub-slab soil gas sampling from locations CA-SG-6 to CA-SG-11. These soil gas sampling points were positioned in an area where organic odors had previously been observed emanating from a pipe during the Phase I ESA (REC-8). The 2 to 4-foot bgs soil sample was submitted for laboratory analysis of NHDES Full List VOCs and RCRA 8 metals plus Cu, Ni, and Zn. This sample interval was selected because Cr, Pb, and Hg were identified in the sample during XRF field screening at concentrations which may exceed the NHDES SRS.

Soil boring CA-3 was completed as a monitoring well, and was screened from 25 to 35 feet bgs to intersect the water table.

CA-4 and CA-5

Soil borings CA-4 and CA-5 were advanced immediately adjacent to the former press pits located within the former building footprint. One attempt was made to advance CA-5 within one of the former press pits, which are now filled with demolition debris. However, the bottom of the press pit, located at 10 feet bgs, is composed of reinforced concrete and prevented full penetration of the augers (i.e. refusal). The locations of CA-4 and CA-5 were then moved to be immediately adjacent to the press pits on the downgradient (east) side, and borings were advanced to 10 feet bgs before beginning sampling.

CA-4 and CA-5 were advanced to 10 feet bgs, and then samples were collected continuously from 10 to 14 feet bgs. An aromatic odor was observed in both borings that was similar to the odor observed in boring CA-1; however, no evidence of contamination was identified with PID field screening. The 10 to 12 foot bgs soil sample from CA-4 and the 12 to 14 foot bgs soil sample from CA-5 were submitted for laboratory analysis of NHDES Full List VOCs, TPH, RCRA 8 metals plus Cu, Ni, and Zn, SVOCs, and PCBs to assess soil adjacent to the bottom of the press pits.

CA-TP-7A (Soil Boring Portion)

Samples from 10 to 16 feet bgs from test Pit CA-TP-7A were collected using a split-spoon sampler driven from a drill rig because this depth was beyond the capacity of the excavator used at the Site. The 10 to 12 foot bgs soil sample was submitted for laboratory analysis of NHDES *Petroleum and Hazardous Waste Full List of Analytes for Volatile Organics* (NHDES Full List VOCs), total petroleum hydrocarbons (TPH), total lead (Pb), and polycyclic aromatic hydrocarbons (PAHs) because this sample was adjacent to the end of the tank bottom.

4.6 GROUNDWATER SAMPLING

Credere returned to the Site on July 5, 2011, to sample the newly installed monitoring wells and previously installed monitoring well MW-2.

Each of the new monitoring wells was surveyed for location and relative groundwater elevations were measured for the new monitoring wells and existing monitoring well MW-2. Based on the results of the survey and measured groundwater elevations, a model of groundwater flow was interpolated.

Depth to groundwater at the Site at the date of sampling was approximately 27 feet bgs, which is at the practical suction limits of Credere's low-flow peristaltic pump. Credere therefore opted to deviate from the EPA-approved SSQAPP and collect groundwater by purging the wells with a submersible pump. Samples were then collected with a single use bailer in accordance with NHDES Standard Operating Procedures (HWRB-2, HWRB-4 and HWRB-6) included in Credere's NHDES/EPA approved generic NH QAPP.

A minimum of three well volumes of groundwater were pumped from each well prior to using the bailer for collecting samples. Field measurements were collected for temperature, pH, conductivity, oxidation-reduction potential, and turbidity at approximate 5-minute intervals.

Because bailers were used to sample the wells, Credere did not have the proper equipment to field filter the samples for metals from CA-2 and CA-3. Credere therefore opted to collect unfiltered samples in the HNO₃-preserved laboratory HDPE bottles. These samples were therefore *total* metals, which was a deviation from the specification for *dissolved* metals that was included in the EPA approved SSQAPP. Results revealed that chromium Cr and Pb were present in the CA-2 sample in excess of their Ambient Groundwater Quality Standards (AGQS). As a result, Credere then returned to the Site on July 14, 2011 and re-sampled well CA-2. The collected sample was filtered in the field through a 0.2 micron filter, and the collected sample was submitted for laboratory analysis of *dissolved* RCRA 8 metals. Groundwater sampling logs are included in **Appendix E**, and groundwater and monitoring well elevation field data are included as **Table 4**.

All collected groundwater samples were submitted to ARA for laboratory analysis. Groundwater sample from location CA-1 was analyzed for NHDES Full List VOCs. The initial sample from location CA-2 was analyzed for NHDES Full List VOCs, SVOCs, and *total* RCRA 8 metals plus Cu, Ni, and Zn. A second sample from CA-2 was analyzed for dissolved RCRA 8 metals. The groundwater sample collected from CA-3 was analyzed for NHDES Full List VOCs and total RCRA 8 metals. The groundwater sample collected from MW-2 was analyzed for NHDES Full List VOCs and total Pb.

4.7 BUILDING MATERIAL DEBRIS SAMPLING

4.7.1 Potential Asbestos Containing Materials

On June 28, 2011, NH-certified Asbestos Inspector Judd Newcomb (Certification # AI 000383) of Credere inventoried suspect asbestos-containing material (ACM) bulk products in building demolition debris and on the former building foundation at the Site. Credere identified four (4) potential ACMs and collected three (3) samples of each material for laboratory analysis for asbestos in accordance with NHDES Env-A 1800. Samples were submitted to EMSL of Woburn, Massachusetts for analysis. Copies of generated laboratory reports are included as **Appendix F**.

The following is a description of the collected potential ACM-containing bulk product samples:

- Potential ACM bulk product sample D-1 was collected from light blue 12 inch-square floor tiles remaining on the former building slab.
- Potential ACM bulk product sample D-2 was collected from white speckled floor tile remaining on the former building slab.
- Potential ACM bulk product sample D-3 was collected from gray floor tile remaining on the former building slab.
- Potential ACM bulk product sample D-4 was collected from off-white floor tile pieces in the debris pile located on the southern end of the former building slab.

4.7.2 Potential PCB-Containing Materials

On June 28, 2011, Credere inventoried suspect PCB-containing bulk products in building demolition debris and on the building foundation at the Site. Examples of suspect products typically include, but are not limited to, paint, caulking, sealants, grout, mastic, glazing, insulation, transformers, capacitors, electrical equipment, used motor/hydraulic oil, fluorescent light ballasts, cable insulation, thermal insulation, adhesives and tapes, plastics, carbonless copy paper, floor finishes, gaskets, ceiling tile coatings, flooring sealants, roofing materials, and siding materials. Consistent with this inventory and the results of previous investigations at similar sites, Credere identified and sampled one (1) potentially PCB-containing bulk product. The collected material was a blue floor coating (sample D-Floor Covering) that was noted coating a portion of the former building foundation. This sample was submitted to ARA for analysis of PCBs.

Additionally, Credere collected a soil sample for an electrical pit (identified as Transformer Pit) and two concrete samples (CA-CC-1 and CA-CC-2) from oil-stained concrete in an area where a transformer may have been located which may have been impacted by possible PCB-containing dielectric fluid released from a former transformer.

5. SUMMARY OF REGULATORY STANDARDS

As a part of this Phase II ESA, Credere collected soil, groundwater, soil gas and building material samples to confirm or dismiss the presence of contaminants associated with the RECs and other potential environmental concerns identified at the Site, and to assess the potential for future risk which may result during anticipated redevelopment. Sample results were compared to the applicable state and federal standards and guidelines described below.

5.1 SOIL

Concentrations in soil samples were compared to New Hampshire's Soil Remediation Standards (SRS) detailed in NHDES Env-Or 600 Contaminated Site Management.

5.2 GROUNDWATER

Concentrations in groundwater samples were compared to New Hampshire's Ambient Groundwater Quality Standards (AGQS) detailed in NHDES Env-Or 600 Contaminated Site Management.

5.3 SOIL GAS

Concentrations of VOCs in sub-slab soil gas were compared to the NHDES Vapor Intrusion Screening Levels for Commercial Soil Gas and the Vapor Intrusion Mitigation Decision Criteria, both updated July 2011. Analytes in soil gas without screening levels were considered to be unregulated.

5.4 POTENTIAL ASBESTOS-CONTAINING MATERIALS

Concentrations of asbestos in building material and debris samples were compared to the limit of 1% by weight detailed in NHDES Env-A 1800 Asbestos Management and Control.

5.5 POTENTIAL PCB-CONTAINING MATERIALS

Bulk products that contain concentrations of total PCBs equal to or in excess of 50 mg/kg are defined as PCB bulk product wastes in accordance with 40 CFR 761.3. These materials are regulated for disposal under 40 CFR 761.62. Bulk products that have been analyzed to contain total PCBs at a concentration of equal to or greater than 1 mg/kg but less than 50 mg/kg (and not as a result of dilution) are not regulated for disposal as long as they remain in use. However, if these materials are removed from use, they must be disposed of at a facility that is licensed to accept these materials in accordance with the applicable state regulations. Bulk products which have been analyzed to contain total PCBs at a concentration of less than 1 mg/kg are unrestricted for future use and/or disposal.

Phase II Environmental Site Assessment Former Polyclad Laminates Site Franklin, New Hampshire NHDES# 199902062 June 27, 2012

FINAL

Bulk materials which have been analyzed to contain total PCB concentrations equal to or in excess of 1 mg/kg as a result of contact with a PCB bulk product waste are defined as a PCB remediation waste in accordance with 40 CFR 761.3. These materials must be disposed of in accordance with 40 CFR 761.61 or under a special approval which meets the requirements presented at 40 CFR 761.79(h). Bulk materials which have been analyzed to contain total PCBs at concentrations of less than 1 mg/kg are unrestricted for future use and/or disposal.

6. PHASE II RESULTS

The following subsections present the results of the data collected during the field work portion of this Phase II ESA.

6.1 SITE GEOLOGY

6.1.1 Surficial Geology

During the advancement of soil borings for the current and previous Phase II ESA work, the native surficial geology of the Site was observed to consist of sand deposits with some gravel. Areas of the northern and eastern portions of the Site were observed to contain up to 8 feet or more of fill material, some of which included thin layers of tannery waste in the form of scrap hides (see **Figure 7**).

6.1.2 Bedrock Geology

No bedrock was encountered at the Site during test pit or soil boring activities. According to the Generalized Bedrock Geologic Map of New Hampshire compiled by the United States Geological Survey, the Site is underlain primarily by aluminous schist, calc-silicate granofels, and bimodal metavolcanic rocks of Silurian age.

6.1.3 Site Hydrogeology

Groundwater elevations are based on water levels recorded on July 5, 2011, and are depicted relative to the elevation of the top of monitoring well MW-2 of 334.89 feet based on the elevation of this well used in previous investigations of the Site.

The data show that the groundwater gradient at the time of sampling was almost flat across the Site, with a slight hydraulic gradient of approximately 0.0008 ft/ft, flowing to the northeast towards the Pemigwasset River (**Figure 6**). Please note that the gradient and flow direction were calculated from a limited number of wells. Additional wells may be needed to confirm the predominant groundwater flow direction.

6.2 GROUND PENETRATING RADAR RESULTS

DigSmart identified a potential UST west of the former building foundation. DigSmart also identified subsurface anomalies on the northern and eastern sides of the former building and beneath the northern portion of the foundation slab. These locations were investigated during test pitting activities at the Site.

6.3 SURFICIAL SOIL SAMPLE RESULTS

No visual and/or olfactory evidence of contamination was observed in the field in any of the surficial soil samples collected at the Site. PID readings were non-detect for all surficial soil samples collected. XRF field screening detected Cr in sample CA-SS-2 at a concentration that exceeded the applicable NHDES SRS. No concentrations of any other RCRA 8 metals were detected in surficial soil samples exceeding the applicable NHDES SRS. Surficial soil sample field screening results are summarized in **Table 2** and **Table 3**.

Laboratory analyzed surficial soil sample CA-SS-3 contained the PAH benzo[a]pyrene at a concentration (0.71 mg/kg) which exceeded the applicable NHDES SRS of 0.70 mg/kg. Results for surficial soil samples CA-SS-1 and CA-SS-2 indicated that these samples contained no PAHs above practical quantitation limits (PQLs). Surficial soil sample laboratory results are summarized in **Table 5**. Locations where NHDES SRS were exceeded are depicted on **Figure 4**.

6.4 TEST PIT SAMPLE RESULTS

Thirteen (13) test pits were excavated by Credere during this Phase II ESA work (CA-TP-7, CA-TP-7A, and CA-TP-8 to CA-TP-18. Test Pits TP-1 to TP-6 were previously completed by others. Test pits TP-1 and TP-2 were reportedly located off of the Site in the adjacent paved parking lot on Tannery Street.

Tannery waste in the form of thin layers of hides were observed in test pits CA-TP-9 (2 to 6 feet bgs), CA-TP-13 (4 to 5 feet bgs), and CA-TP-14 (4 to 8 feet bgs). No other visual and/or olfactory evidence of contamination was observed in the field in any of the test pit soil samples collected at the Site. PID readings ranged from non-detect to 2.4 ppm_v for all test pit soil samples collected.

XRF field screening indicated that Cr was present at concentrations exceeding the applicable NHDES SRS of 130 mg/kg for Cr VI in test pits CA-TP-8 (6 to 8 feet bgs), CA-TP-9 (0 to 4 feet bgs), CA-TP-13 (2 to 4 feet bgs), and CA-TP-14 (6 to 8 feet bgs). XRF field screening also indicated that arsenic (As) was present at concentrations exceeding the applicable NHDES SRS of 11 mg/kg in test pits CA-TP-8 (0 to 4 feet bgs), CA-TP-10 (0 to 4 feet bgs), and CA-TP-11 (0 to 2 and 4.5 to 6.5 feet bgs). Test Pit soil sample field screening results are summarized in **Table 2** and **Table 3**.

The laboratory analytical sample collected from test pit CA-TP-14 at 6 to 8 feet bgs contained total Cr at a concentration (260 mg/kg) which exceeded the NHDES SRS of 130 mg/kg for Cr VI. This sample was then analyzed for Cr VI, and was found to contain a concentration of Cr VI (4.5 mg/kg) that was below the applicable NHDES SRS. This indicates that only 1.7% of the Cr in this sample was in the Cr VI state. Therefore, no exceedance of the applicable NHDES SRS was identified.

The laboratory analytical sample collected from test pit CA-TP-15 at 5 to 7 feet bgs contained the PAHs benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno(1,2,3-cd)pyrene, and dibenzo(a,h)anthracene at concentrations which exceeded their applicable NHDES SRS.

No other soil samples from the Site test pits exceeded applicable NHDES SRS for any of the laboratory analyzed parameters. Test pit soil sample laboratory analytical results are summarized in **Table 5**. Locations where NHDES SRS were exceeded are depicted on **Figure 4**.

6.5 SUB-SLAB SOIL GAS SAMPLE RESULTS

No VOCs in soil gas exceeded the applicable vapor intrusion guidelines for commercial soil gas in samples collected from the Site during this Phase II ESA. Soil gas laboratory results are summarized on **Table 7**.

6.6 SOIL BORING SAMPLE RESULTS

As indicated previously, an aromatic odor was observed in all soil samples collected from soil boring CA-1, CA-4, and CA-5. However, no other visual and/or olfactory evidence of contamination was observed in the field in any of the soil boring soil samples collected at the Site. PID readings ranged from non-detect to 10.2 ppm_v for all boring soil samples collected.

XRF field screening indicated that Cr was present at concentrations exceeding the applicable NHDES SRS of 130 mg/kg for Cr VI in soil borings CA-1 (2 to 4 feet bgs), CA-2 (0 to 2 and 6 to 8 feet bgs), and CA-3 (0 to 18, 20 to 28, and 30 to 32 feet bgs). XRF field screening also indicated that Hg was present at concentrations exceeding the applicable NHDES SRS of 6 mg/kg in soil boring CA-3 (0 to 20 and 22 to 32 feet bgs). XRF field screening also indicated that Pb was present at concentrations exceeding the applicable NHDES SRS of 400 mg/kg in soil boring CA-3 (2 to 4 feet bgs). Soil boring sample field screening results are summarized in **Table 2** and **Table 3**.

In contrast to the field screening results, laboratory results for soil samples collected from locations CA-1, CA-2, CA-3, CA-4, and CA-5 contained no contaminants exceeding the applicable NHDES SRS. Soil boring sample laboratory results are summarized on **Table 5**.

6.7 GROUNDWATER SAMPLE RESULTS

Groundwater from well CA-2 was observed to have a petroleum odor during the two times it was sampled (July 5 and 14, 2011). 1,2,4-trimethylbenzene was quantified at 710 μ g/L in the groundwater sample collected from monitoring well CA-2 on July 5, 2011 exceeding the applicable NHDES AGQS of 330 μ g/L.

Concentrations of *total* Cr and Pb exceeding their respective NHDES AGQS were quantified in the groundwater sample collected from monitoring well CA-2 on July 5, 2011; however concentrations of *dissolved* Cr and Pb collected on July 14, 2011 were below the applicable NHDES AGQS. Therefore, no exceedances of the applicable NHDES AGQS for Cr and Pb were identified.

No other analytes exceeded their applicable NHDES AGQS in groundwater samples collected from the Site during this Phase II ESA. Groundwater sample laboratory results are summarized on **Table 8**.

6.8 BUILDING MATERIAL/DEBRIS RESULTS

6.8.1 Potential Asbestos Containing Material

Light blue 12-inch square floor tiles (Bulk product sample D-1) remaining on the former building slab were found to be ACM (containing 5% chrysotile). These floor tiles are present in one area of the former building floor slab (see **Figure 4**). These tiles are in a highly degraded state. No other samples were analyzed to be ACM. Building material laboratory results are summarized on **Table 6**. The laboratory analytical report is included in **Appendix F**.

6.8.2 Potential PCB-Containing Material

The blue floor coating (sample D-Floor Covering) that covers much of the northern portion of the former building foundation was found to contain no PCBs above the laboratory practical quantitation limit (PQL).

Soil from the electrical pit ("Transformer Pit") and two concrete samples (CA-CC-1 and CA-CC-2) from oil-stained concrete in an area where a transformer may have been located were found to contain no PCBs above the laboratory PQL.

Building material laboratory results are summarized on **Table 6.** The laboratory analytical report is included in **Appendix F**.

7. QUALITY ANALYSIS/QUALITY CONTROL

The contracted laboratory, Absolute Resource Associates (ARA) of Portsmouth, New Hampshire, provided Level II analytical data according to EPA protocols, EPA laboratory data validation guidance, and the SSQAPP. The laboratories provided the following information in analytical reports:

- Data results sheets
- Method blank results
- Surrogate recoveries and acceptance limits
- Duplicate results/acceptance limits
- Spike/duplicate results/acceptance limits
- Laboratory control sample results
- Description of analytical methods and results
- Other pertinent results/limits as deemed appropriate

As outlined in the SSQAPP, at the completion of the field tasks and upon receipt of the analytical results, a data usability analysis was conducted to document the precision, bias, accuracy, representativeness, comparability, and completeness of the results. The following sections present this analysis.

7.1 PRECISION

Precision measures the reproducibility of measurements. The precision measurement is established using the relative percent difference (RPD) between the sample and duplicate results. Relative percent differences were calculated for soil samples where both sample and duplicate values were greater than five times (5X) the PQL of the analyte. The acceptable upper limit for RPD is 35%. The RPD is calculated as follows:

RPD (%) =
$$\underbrace{\text{(Sample Result - Duplicate Result)} \times 100}_{\text{Mean of the Two Results}}$$

The following duplicate samples were collected during this Phase II ESA:

- CA-TP-DUP-1 (duplicate soil sample collected at test pit location CA-TP-14 from 6 to 8 feet bgs) and analyzed for VOCs, PAHs, and RCRA 8 metals plus Cu, Ni, and Zn.
- CA-TP-DUP-2 (duplicate soil sample collected at test pit location CA-TP-9 from 6 feet bgs) and analyzed for TPH.

Table 9 summarizes the duplicate sample results and RPDs.

The duplicate concentrations of barium in samples CA-TP-14/CA-TP-DUP-1 had a RPD of 64.7%, which exceeded the limit of 35%. However, both barium concentrations (47 and 92

Phase II Environmental Site Assessment Former Polyclad Laminates Site Franklin, New Hampshire NHDES# 199902062 June 27, 2012

FINAL

mg/kg were below the NHDES SRS of 1,000 mg/kg. Therefore, Credere does not believe that this lack of precision affects the conclusions of this Phase II ESA.

7.2 BIAS

Bias is the systematic or persistent distortion of a measurement process that causes errors in one direction. Bias assessments are made using personnel, equipment, and spiking materials or reference materials as independent as possible from those used in the calibration of the measurement system. Bias assessments were based on the analysis of spiked samples so that the effect of the matrix on recovery is incorporated into the assessment. A documented spiking protocol and consistency in following that protocol are important in obtaining meaningful data quality estimates.

Matrix spike and matrix spike duplicate samples (MS/MSD) were used to assess bias as prescribed in the specified methods. Acceptable recovery values were within the recoveries specified by each of the analysis methods. Control samples for assessing bias were analyzed at a rate as specified in the analytical SOPs and specified analytical methods.

The laboratory provides quality control non-conformance reports that indicate if Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD) and/or MS/MSD had low, failing, or high recoveries, and if the sample result was affected. Likewise, the laboratory reports any compounds that had failing RPDs in the LCS/LCSD pair or the MS/MSD pair. This indicates the percent difference between the laboratory sample and its duplicate or the spike and it's duplicate. According to the laboratory, unless noted in the non-conformance summary, all of the quality control criteria for these analyses were within acceptable limits. Specific comments from the laboratory included:

VOCs

The MLCS/D4295 did not meet the acceptance criteria for chloromethane. This compound showed high recovery. There is no impact to the data as this analyte was not detected in the associated samples. The MLCS/D4295 did not meet the acceptance criteria for dichlorodifluoromethane. The MLCSD4295 did not meet the acceptance criteria for bromomethane. The recovery was acceptable in the LCS. These compounds are known to be problematic in the method.

The MLCS/D4307 did not meet the acceptance criteria for dichlorodifluoromethane and vinyl chloride. These compounds are known to be problematic in the method.

PCBs

The relative percent difference between the LCS4305 and LCSD4305 was outside the acceptance criteria for PCB-1016 and PCB-1260. The percent recovery for these analytes in each QC parameter was within the acceptance criteria. No impact to the data suspected.

PAHs/SVOCs

The LCS/D4327 did not meet the acceptance criteria for phenol and 4-nitrophenol. These compounds are known to be problematic in the method.

7.3 ACCURACY

Accuracy is a statistical measurement of correctness and includes components of random error (variability due to imprecision) and systemic error. It, therefore, reflects the total error associated with a measurement. A measurement is accurate when the value reported does not differ from the true value or known concentration of the spike or standard. For VOCs and PAHs, surrogate compound recoveries are also used to assess accuracy and method performance for each sample analyzed. Analysis of performance evaluation samples are also used to provide additional information for assessing the accuracy of the analytical data being produced. Both accuracy and precision are calculated for each analytical batch, and the associated sample results are interpreted by considering these specific measurements.

The laboratory provides a non-conformance summary that reports if all of the quality control criteria including initial calibration, calibration verification, surrogate recovery, holding time and method accuracy/precision for analysis were within acceptable limits. According to the laboratory, unless noted in the non-conformance summary, all of the quality control criteria for these analyses were within acceptable limits.

7.4 REPRESENTATIVENESS

Objectives for representativeness are defined for each sampling and analysis task and are a function of the investigative objectives. Representativeness was accomplished during this project through use of standard field, sampling, and analytical procedures.

All objectives for sampling and analytical representativeness for samples that were analyzed, as specified in the SSQAPP Addendum, were met.

7.5 COMPARABILITY

Comparability is the confidence with which one data set can be compared to another data set. The objective for this QA/QC program is to produce data with the greatest possible degree of comparability. Comparability was achieved by using standard methods for sampling and analysis, reporting data in standard units, normalizing results to standard conditions and using standard and comprehensive reporting formats. Complete field documentation was used, including standardized data collection forms to support the assessment of comparability. Historical comparability shall be achieved through consistent use of methods and documentation procedures throughout the project.

Phase II Environmental Site Assessment Former Polyclad Laminates Site Franklin, New Hampshire NHDES# 199902062 June 27, 2012

FINAL

7.6 COMPLETENESS

Completeness is calculated by comparing the number of samples successfully analyzed to the number of samples collected. The goal for completeness is 95 percent. The completeness for this project was 100 percent, as there were no samples that could not be analyzed due to holding time violations, samples spilled or broken, or any other reason.

8. CONCEPTUAL SITE MODEL

This Phase II ESA was designed to provide further understanding of the contaminants at the Site and to aid in changing the Site use from industrial to recreational. The following section is a description of the Conceptual Site Model (CSM), which incorporates information from this investigation.

8.1 CONTAMINANTS OF CONCERN

Based on the results of this Phase II ESA, the following COCs were identified at the Site:

- 1,2,4-trimethylbenzene in groundwater
- Benzo[a]pyrene in surficial soil
- The PAHs benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno(1,2,3-cd)pyrene, and dibenzo(a,h)anthracene in subsurface soil
- Asbestos in floor tiles on the former building foundation slab

8.2 SITE GEOLOGY AND HYDROGEOLOGY

The Site is located near the west bank of the Pemigewasset River in a developed area of Franklin, New Hampshire. The eastern adjoining property between the Site and river is currently undeveloped. Area topography generally slopes east towards the river. Storm water at the Site likely follows surficial topography and is directed into the river.

Soil boring and test pit data obtained from this Phase II ESA and from reports that were reviewed as a part of the Phase I ESA indicates that soil beneath the Site consists of a mixture of sand and gravel with some areas of fill material that includes tannery waste (hides) on the east side of the Site. The water table was identified at approximately 28 feet bgs.

8.3 DEFINITIONS OF EXPOSURE PATHWAYS AND POTENTIAL RECEPTORS

To aid in a thorough understanding of the environmental concerns present at the Site, a graphical presentation of the identified COCs and potential migration pathways to receptors is included as **Figure 8**. Exposure Pathways and Potential Receptors depicted on the CSM are defined as follows.

Exposure Pathways describe how a human or environmental receptor comes into contact with contaminants which may be present at the Site. Exposure pathways presented in the CSM include the following:

Inhalation: This pathway is primarily associated with groundwater

contamination within 30 feet of an occupied structure when groundwater elevation is less than 15 feet below surface grade, or when depth to groundwater is unknown. This pathway is applicable when receptors may inhale impacted media in the

form of vapor.

Exposure via dermal absorption occurs when receptors are Dermal Absorption: exposed to chemical concentrations present in soil, groundwater,

or surface water through direct contact with the skin.

Active Ingestion: The Active Ingestion pathway represents exposure which may

> occur through the active ingestion of contaminant concentrations via a drinking water supply well or through agricultural

products.

Incidental This pathway is applicable when receptors may incidentally Uptake:

ingest or inhale impacted media in the form of dust or airborne

particulates.

Potential Receptors are categorized by duration of exposure and intensity of use at the Site. The receptor categories for this project described in the CSM include the following:

Commercial receptors are those which are present at the Site for Commercial:

long durations but with low intensity exposure such as indoor

office workers.

Site workers are present at the Site for short durations though Site Worker:

> intensity of use is high, such as during non-routine activities including construction or utility work. Examples include outdoor

commercial workers and construction workers.

Visitors are characterized by low duration, i.e. less than two Visitor:

> hours per day, and low intensity usage such as that which would occur during activities such as walking, shopping, and bird

watching.

Terrestrial and These receptors include flora and fauna which may be exposed to Aquatic Biota:

contaminants in their respective land-based or aquatic

environments.

Please note that the Site is not anticipated to be used for residential purposes. Therefore, residential receptors are not evaluated as part of this CSM.

Based on known history of the Site, the identified COCs may have been released to the environment through surficial and subsurface releases associated with previous industrial usage, filling with tannery waste, the degradation of hazardous building materials, and previous bulk petroleum storage. Primary impacted media at the Site include surficial soil, subsurface soil, and groundwater.

The PAH benzo[a]pyrene in surficial soil and asbestos in exposed floor tiles may migrate through aeolian dispersion and impact on-site or off-site receptors. Both asbestos and PAHs have low propensity to leach and are unlikely to affect subsurface conditions through infiltration and leaching. Potential receptors identified for the Site include future commercial workers, site workers (i.e. construction workers, etc.), and visitors, as well as terrestrial biota. Potential exposure pathways for these human receptors to PAHs or asbestos include incidental uptake (including inhalation). Receptors may also be exposed to PAHs via dermal absorption.

The PAHs in subsurface soil are unlikely to migrate unless disturbed during future Site work. Human receptors identified for the Site include future site workers (i.e. construction workers, etc.) who could be exposed via dermal absorption or incidental ingestion (including inhalation).

The 1,2,4-trimethylbenzene identified in groundwater at the Site has likely leached and infiltrated from an upgradient on-site subsurface soil source area. This potential source area was not defined by this Phase II ESA. Human receptors identified for the Site include future site workers (i.e. construction workers, etc.) who could be exposed via dermal absorption or incidental ingestion (including inhalation).

9. DEVIATIONS

The following deviations were made from the SSQAPP Addendum (see **Appendix A**) during the course of the investigation:

- 1. Soil boring CA-2 and test pit CA-TP-13 were moved from their proposed locations in the SSQAPP. These sampling locations were proposed to assess a possible septic tank which was suspected of discharging to the adjacent Pemigwasset River. Based on field observations and information obtained from City of Franklin public works employee, it was determined that this tank was connected to the City sanitary sewer system. Based on this information, Credere determined that this tank did not require assessment, and soil boring CA-2 and test pit CA-TP-13 were moved approximately 30 to 40 feet to the southwest to assess possible buried tannery waste.
- 2. Soil borings CA-4 and CA-5 were not installed through the bottoms of the former press pits, because the drill rig augers could not penetrate the reinforced concrete at the bottom. Instead, these soil borings were moved several feet to the east and were advanced immediately adjacent to the sidewalls of the press pits.
- 3. Due to the depth to groundwater at the Site, Credere did not have the proper equipment to field filter metals samples from CA-2 and CA-3 when they were first sampled on July 5, 2011. Credere therefore opted to collect unfiltered samples in the HNO₃-preserved laboratory HDPE bottles. These samples therefore represented *total* metals samples which deviated from the specification in Credere's NHDES and EPA approved SSQAPP. The SSQAPP called for the collection of samples for *dissolved* metals. To meet the SSQAPP requirement, Credere returned to the Site on July 14, 2011 and re-sampled monitoring well CA-2, and the sample was field filtered prior to placing it in appropriate glassware. It is worth noting that monitoring well CA-3 was not re-sampled because no contaminants were detected above AGQS in this well.

10. DATA GAPS

The source of gasoline contamination of groundwater detected at monitoring well CA-2 has not been identified, and the extent of groundwater contamination has not been fully delineated. No other data gaps have been identified for the Site.

11. CONCLUSIONS

Our conclusions in relation to the identified RECs and other environmental concerns, and the investigation results are presented below:

11.1 RECOGNIZED ENVIRONMENTAL CONDITIONS

- REC-1, which was associated the presence of a 12,000-gallon fuel oil underground storage tank (UST) (identified as UST-6) that was closed-in-place in the vicinity of the loading dock, is <u>dismissed</u> because no evidence of contamination was identified in soil samples collected from the sides and adjacent to the bottom of the closed-in-place UST in test pits CA-TP-7 and CA-TP-7A. In addition, observations made by Credere indicated that this UST was filled with clean sand at the time of closure-in-place.
- REC-2, which was associated with the potential presence of a reported 4,000-gallon fuel
 oil UST (identified as UST-8) shown on a historical Sanborn Map, is <u>dismissed</u> because
 no UST was identified in this location during the GPR survey and no evidence of
 contamination exceeding applicable standards was identified in test pits CA-TP-8, CATP-10, or CA-TP-11.
- REC-3, which was associated with the potential presence of a reported 4,000-gallon fuel
 oil UST (identified as UST-9) shown on a historical Sanborn Map, is <u>dismissed</u> because
 no UST was identified in this location during the GPR survey, and no evidence of
 contamination was identified in test pit CA-TP-9 or in soil gas sample locations CA-SG-1
 through CA-SG-5, which were completed to evaluate this REC.
- REC-4, which was associated with a former fuel dispenser and a number of filling caps formerly located in the vicinity of the closed-in-place UST-6, is <u>dismissed</u> because no evidence of contamination exceeding applicable standards was identified is soil samples collected from test pit CA-TP-12, which was advanced in the suspected location a former fuel dispenser.
- REC-5, which was associated with the presence of a sheen of degraded gasoline previously noted in 2008 in existing monitoring well MW-2, is <u>confirmed</u>, because groundwater from a newly installed monitoring well (CA-2) located 30 feet southwest of MW-2 contained 1,2,4-trimethylbenzene at a concentration exceeding the applicable NHDES Ambient Groundwater Quality Standard (AGQS), suggesting that a plume of degraded gasoline is present beneath the Site.
- REC-6, which was associated with a subsurface structure identified during a previous GPR survey east of the former building and believed to be a former concrete septic tank, is <u>dismissed</u> because this structure was determined to be a part of the municipal sewer system and not a septic tank, and therefore does not represent a pathway to the subsurface environment.

- REC-7, which was associated with the presence of buried waste related to the previous usage of the Site as a tannery, is <u>dismissed</u>. While evidence of buried waste was observed in the form of leather hides in test pits CA-TP-9, CA-TP-13, and CA-TP-14, no evidence of contamination at concentrations exceeding applicable standards was observed in association with the buried waste. However, this condition represents a solid waste issue that should be properly managed.
- REC-8, which was associated with pipes that were previously noted emitting unknown solvent odors and elevated total volatile organic readings in the southwestern portion of the building, is <u>dismissed</u>, because no evidence of contamination exceeding applicable standards was identified in soil gas (soil gas sample locations CA-SG-6 through CA-SG-11), soil (boring CA-3), or in groundwater (monitoring well CA-3) samples collected from this area.
- REC-9, which was associated with former press pits located within the manufacturing slab that are stained with petroleum, is <u>dismissed</u> because no evidence of contamination was identified in soil samples collected from adjacent to the bottoms of the press pits (borings CA-4 and CA-5).
- REC-10, which was associated with a pile of demolition debris located on the southwestern portion of the Site, is <u>dismissed</u> because no potential lead-based paint or PCB-containing materials were observed in the pile, and no asbestos was identified in a floor tile sample collected from the pile.

11.2 ADDITIONAL ENVIRONMENTAL CONCERNS

The following additional environmental concerns were identified by Credere during development of the SSQAPP and assessed during this Phase II ESA:

- Potential impact associated with the former use of the Site for railroad activities is confirmed, because benzo[a]pyrene was detected above the applicable NHDES SRS in surficial soil sample CA-SS-3. Benzo[a]pyrene is a PAH which is known to be associated with railroad activities.
- The potential impact of a former electrical transformer located on the west side of the building is <u>dismissed</u>, because no PCBs were identified in soil collected from an electrical pit in this area of the Site. Additionally, two samples of stained concrete collected from this area of the Site contained no PCBs above laboratory practical quantification limits.
- A soil sample collected from test pit CA-TP-15 at 5 to 7 feet below ground surface (bgs) contained the PAHs benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno(1,2,3-cd)pyrene, and dibenzo(a,h)anthracene at concentrations which exceeded their applicable NHDES SRS. No staining was observed in this test pit nor was this sample associated with any observed buried wastes. Additionally, no PAHs

were identified in soil in contact with buried waste in test pits CA-TP-13 or CA-TP-14. Although this test pit was not in the location of or downgradient of any identified Site USTs, it is Credere's opinion that this contamination may be associated with a past petroleum release from the former UST#10, which was located approximately 40 feet away or from another unknown on-site source.

• Building material sample results indicate that blue 12-inch square floor tile remnants remaining attached to the concrete building slab are asbestos-containing material (ACM). It is not clear if any of these tiles are present in the demolition pile remaining on-site.

12. RECOMMENDATIONS

Based on observations and results of this Phase II ESA for the Site, Credere makes the following recommendations:

- Credere recommends that delineation of all buried solid waste at the Site be conducted, including tannery hides, other tannery wastes, and building demolition debris, per NHDES Solid Waste Rules Env-Sw 309 in support of a Pre-1981 landfill registration.
- Subsequent to the delineation of all buried solid waste at the Site, Credere recommends that the Site be registered as a Pre-1981 landfill according to NHDES Solid Waste Rules Env-Sw 309.
- Credere recommends that delineation of the identified PAH contaminated surficial soil in the areas of CA-SS-3 and CA-TP-15 be conducted. Credere recommends that a Remedial Action Plan (RAP) be developed to address the PAH contaminated soil.
- Credere recommends additional investigation to assess the full extent and magnitude of degraded gasoline contamination identified at monitoring well CA-2. This additional assessment should supplement the development of a groundwater flow model of the Site in order to define the nature, extent, and/or potential fate and transport characteristics of the identified impacted media. Credere also recommends that this petroleum contamination issue be referred to the NHDES Petroleum Remediation Program as the observed contamination is likely associated with one of the former USTs at the Site. If accepted into this program, future investigation work will be reimbursed by the program.
- Credere recommends that the identified ACM floor tile remaining on the former building slab be properly handled according to all applicable NHDES Asbestos and Solid Waste Rules prior to the development of the Site.

13. SIGNATURES OF ENVIRONMENTAL PROFESSIONALS

The following Environmental Professionals performed this Phase II ESA in conformance with ASTM Standard Guide E 1903-97 (reapproved 2002). The following individual(s) meet the qualifications for individuals completing or overseeing all appropriate inquiries, and possess sufficient specific education, training, and experience necessary to exercise professional judgment to develop opinions and conclusions regarding the existence of environmental conditions on the Site. Any work completed on this Phase II ESA by an individual who is not considered an environmental professional was completed under the supervision or responsible charge of the environmental professional.

Jonathan O'Donnell

Geo-Environmental Engineer

Jedd Steinglass Senior Geologist

Richard S. Vandenberg, PG

Senior Geologist

14. LIMITATIONS

This report has been prepared as part of a contract agreement between Credere Associates, LLC and LRPC for their Brownfields program. This agreement was established in order to provide LRPC with information upon which it can rely concerning the existence or likely existence of various environmental contaminants on or adjacent to the Site.

This report does not reflect:

- 1. Conditions in untested areas.
- 2. Variations in chemical concentrations that can occur between sample locations.
- 3. The total understanding of potential influences of off-site areas or historical uses that may have contributed or currently contribute to Site contamination, particularly relating to groundwater and subsurface soil conditions. The limited evaluation of off-site contamination sources was based on available data and records.
- 4. The potential presence of compound sources was based on available data and records.
- 5. The potential presence of analytes that were not analyzed for or that may be present below minimum Practical Quantification Limits for the methods tested.
- 6. The conditions of groundwater and/or surface water beyond available data.
- 7. Variation in the Site conditions that occurred at a time other than when the Site inspection was completed.

In the event that any conditions different from those described herein are encountered at a later time, Credere Associates, LLC requests an opportunity to review such differences and modify the assessment and conclusions of this report. This report was prepared expressly for the purpose described. The information in this report may not be suitable for any other use without adaptation for the specific purpose intended. Any such reuse of this report, without adaptation, shall be at the sole risk and liability of the party undertaking the reuse.

FORMER POLYCLAD LAMINATES SITE 45 TANNERY STREET - FRANKLIN NEW HAMPSHIRE NHDES SITE NO. 199902062

SUMMARY OF EXPLORATION LOCATIONS AND SAMPLING METHODS

Location Name	Media Sampled	Type of Exploration	Location	Sampling Method
CA-SG-1		71		, ,
CA-SG-2				
CA-SG-3			Beneath northern end of foundation slab.	
CA-SG-4				
CA-SG-5				Summa sampling canister via 1/4
CA-SG-6	Soil Gas			inch stainless steel probe through
CA-SG-7				floor slab, sealed in place with bentonite
CA-SG-8			Deposits a sufficiency and of foundation also	
CA-SG-9			Beneath southern end of foundation slab.	
CA-SG-10				
CA-SG-11				
CA-TP-7		Test Pit	West side of closed-in-place UST-6	Excavator
CA-TP-7A		Test Pit/Soil Boring	South side of closed-in-place UST-6	Excavator, split-spoon sampler
CA-TP-8			West of slab loading dock area in suspected location of UST-8.	
CA-TP-9			Under northern portion of foundation near suspected location of UST-9.	
CA-TP-10			West of slab loading dock area in suspected location of UST-8.	
CA-TP-11			West of slab loading dock area in suspected location of UST-8.	
CA-TP-12	Subsurface Soil	Test Pit	West of slab, beneath fuel dispenser sump.	Excavator
CA-TP-13			East of slab, subsurface anomaly detected by Ground Penetrating Radar.	
CA-TP-14			East of slab, subsurface anomaly detected by Ground Penetrating Radar.	
CA-TP-15			East of slab.	
CA-TP-16			West of slab.	
CA-TP-17			North of slab.	
CA-TP-18			North of slab.	
Transformer Pit			West of slab, loading dock area, grab sample from soil at pit bottom.	
CA-SS-1	Surficial Soil	Surficial Soil Sample	Co-located with CA-TP-17.	Pre-cleaned shovel
CA-SS-2			Co-located with CA-TP-14.	
CA-SS-3			South of slab,	
CA-1			Co-located with CA-SG-2.	
CA-2	Subsurface Soil and Groundwater	Soil Boring & Monitoring Well	East of slab, buried tannery waste area.	Split-spoon sampler.
CA-3			Co-located with CA-SG-10.	Purge groundwater sampling using submersible pump.
CA-4		0.05	Immediately east of press pits.	oubinersible pullip.
CA-5	Subsurface Soil	Soil Boring	Immediately east of press pits.	
MW-2	Groundwater	Monitoring Well	East of slab, buried tannery waste area.	Purge groundwater sampling using submersible pump.
CC-1 CC-2			Stained concrete in area of possible transformer	Single-use drill bit and scupula
D-Floor Covering			On northen end of slab.	Hand.
D-Floor Covering			On central portion of slab.	Hand
D-1	Building Material/Debris		On central portion of slab.	Hand
D-2 D-3			On central portion of slab.	Hand
			·	
D-4			From debris pile, southern end of slab.	Hand

FORMER POLYCLAD LAMINATES SITE 45 TANNERY STREET - FRANKLIN NEW HAMPSHIRE NHDES SITE NO. 199902062

SUMMARY OF PHOTOIONIZATION DETECTOR (PID) FIELD SCREENING RESULTS

Location	Sample Depth (feet bgs)	Sample Date	PID Results (ppm _v)	Evidence of Contaminated or Petroleum Impacted Soils
Test Pit Sample				
	0-2		ND	
CA-TP-7	3-5	06/28/11	ND	No visual evidence observed.
CA-TF-7	5-7	00/20/11	ND	No visual evidence observed.
	7-8		ND	
	4		0.5	
	6		1.4	
	8		1.3	
CA-TP-7A	9	06/30/11	1.4	No visual evidence observed.
	9.5		1.3	
	10-12		1.9	
	12-14		1.1	
	14-16		0.4	
	0-2		1.2	
	2-4		ND	
CA-TP-8	4.5-6	06/28/11	1.1	No visual evidence observed.
	6-8		ND	
	8-9		ND	
	0		0.7	
	2		1.3	
CA-TP-9	4	06/30/11	1.8	No visual evidence observed.
	6		2.4	
	8		2.0	
	0-2		ND	
0.4 TD 40	2-4	00/00/44	ND	
CA-TP-10	4.5-6	06/28/11	ND	No visual evidence observed.
	6-8		ND	
	8-9		ND	
	0-2		ND	
CA-TP-11	3-4.5	06/28/11	ND	No visual evidence observed.
	4.5-6.5		ND	
	6.5-9		ND ND	
	2 (In sump)			
CA-TP-12	2 (below concrete)	06/30/11	0.7 1.2	In sump. Wet black organic material. No odor.
	3 4		0.5	
	0-2		ND	
	2-4		ND ND	
CA-TP-13	4-5	06/28/11	ND ND	No visual evidence observed.
	6-8		ND	
	2-4		ND ND	
CA-TP-14	4-6	06/28/11	ND ND	No visual evidence observed.
OA-11 -14	6-8	00/20/11	ND ND	No visual evidence observed.
	0-2		ND	
CA-TP-15	2-4	06/28/11	ND	No visual evidence observed.
5/C11 10	5-7	00/20/11	ND	THE VISUAL EVIDENCE OBSERVED.
	0-2		ND	
CA-TP-16	2-4	06/28/11	ND	No visual evidence observed.
5 11 10	5-7	03,20,11	ND	110 110001 01100 00001 100.
	2-4		ND	
CA-TP-17	4-7	06/28/11	ND ND	No visual evidence observed.
	0-1.5		ND	
CA-TP-18		06/28/11	ND ND	No visual evidence observed.
UA-1F-10	1.5-3 3-5	UU/20/11	ND ND	ino visual evidence observed.
	ა-ა		ND	

FORMER POLYCLAD LAMINATES SITE 45 TANNERY STREET - FRANKLIN NEW HAMPSHIRE NHDES SITE NO. 199902062

SUMMARY OF PHOTOIONIZATION DETECTOR (PID) FIELD SCREENING RESULTS

Location	Sample Depth (feet bgs)	Sample Date	PID Results (ppm _v)	Evidence of Contaminated or Petroleum Impacted Soils
urficial Soil Samples				
CA-SS-1	0-2	06/28/11	ND	No visual evidence observed.
CA-SS-2	0-2	06/28/11	ND	No visual evidence observed.
CA-SS-3	0-2	07/05/11	ND	No visual evidence observed.
Transformer Pit	Pit Bottom	06/28/11	ND	No visual evidence observed.
ubsurface Soil Samples				
	0-2		ND	
	2-4		ND	1
	4-6		ND	1
	6-8		ND	1
	8-10		ND	1
	10-12		ND	1
0.1.1	12-14	00/00/44	ND	No visual evidence observed. Slight aromatic odor
CA-1	14-16	06/29/11	ND	observed.
	16-18	1	ND	
	18-20	1	ND	
	20-22	1	ND	
	22-24	1	ND	
	24-26	1	ND	
	26-28		ND	
	0-2		ND	
	2-4	1	ND	
	4-6	1	ND	
	6-8	1	10.2	
	8-10		7.9	1
	10-12		1.2	1
	12-14		ND	
CA-2	14-16	06/29/11	ND	No visual evidence observed.
CA-2	16-18	06/29/11	ND	ino visual evidence observed.
	18-20		ND	
	20-22		ND	
	22-24		ND	
	24-26		ND	
	26-28		ND	
	28-30		ND	
	30-32		ND ND	
	0-2 2-4	-	ND ND	1
	2-4 4-6	1	ND	1
	6-8	1	1.2	1
	8-10	Ī	ND	
	10-12	4	ND NB	
	12-14 14-16		ND ND	
CA-3	16-18	06/29/11	ND	No visual evidence observed.
	18-20	1	ND	
	20-22		ND	
	22-24	-	ND ND	1
	24-26 26-28	1	ND ND	1
	28-30	1	ND ND	1
	30-32	1	ND	
CA-4	10-12	06/29/11	NS ND	No visual evidence observed. Slight aromatic odor
	12-14 10-12	22.207.1	ND ND ND	observed. No visual evidence observed. Slight aromatic odor

Notes

Samples were field screened using a Thermo OVM 580B PID; the PID was calibrated using 100 ppm isobutylene and a response factor of 1.0.

ND - VOCs not detected with PID

NS - no sample from this depth

 $\ensuremath{\mathsf{ppm}_{\!\scriptscriptstyle V}}$ - parts per million by volume

bgs - below ground surface

TABLE 3 FORMER POLYCLAD LAMINATES SITE 45 TANNERY STREET - FRANKLIN NEW HAMPSHIRE NHDES SITE NO. 199902062 SUMMARY OF X-RAY FLUORESCENCE (XRF) METER FIELD SCREENING RESULTS

				NF	IDES Soi	Remedia	ation Star	ndard and	d Metal C	oncentra	tion (mg/l	kg)	
Location	Sample Depth (feet bgs)	Sample Date	Cr	Ni	Cu	Zn	As	Se	Ag	Cd	Ва	Hg	Pb
			130*	400	NE	1,000	11	180	89	33	1,000	6	400
Test Pit Sample													
	0-2		<lod< td=""><td><lod< td=""><td>43</td><td>61</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>28</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>43</td><td>61</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>28</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	43	61	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>28</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>28</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>28</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>28</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>28</td></lod<></td></lod<>	<lod< td=""><td>28</td></lod<>	28
CA-TP-7	3-5	6/28/2011	<lod< td=""><td><lod< td=""><td>22</td><td>22</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>22</td><td>22</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	22	22	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<>	<lod< td=""><td>19</td></lod<>	19
	5-7	0, = 0, = 0	<lod< td=""><td><lod< td=""><td><lod< td=""><td>57</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>57</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>57</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	57	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<>	<lod< td=""><td>17</td></lod<>	17
	7-8		<lod< td=""><td><lod< td=""><td>23</td><td>32</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>23</td><td>32</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	23	32	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<>	<lod< td=""><td>16</td></lod<>	16
	4		<lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>22</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>22</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	22	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<>	<lod< td=""><td>25</td></lod<>	25
04 70 74	6	0/00/0044	<lod< td=""><td><lod< td=""><td>23</td><td>41</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>23</td><td>41</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	23	41	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<>	<lod< td=""><td>19</td></lod<>	19
CA-TP-7A	8	6/30/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>25</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>25</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	25	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<>	<lod< td=""><td>25</td></lod<>	25
	9		<lod< td=""><td><lod< td=""><td><lod< td=""><td>11</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>11</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>11</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	11	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<>	<lod< td=""><td>20</td></lod<>	20
	9.5		103	<lod< td=""><td><lod< td=""><td>18</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>18</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	18	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>50</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>50</td></lod<></td></lod<>	<lod< td=""><td>50</td></lod<>	50
	0-2		<lod< td=""><td><lod< td=""><td><lod< td=""><td>65</td><td>18</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>65</td><td>18</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>65</td><td>18</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	65	18	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
CA TD 0	2-4	0/20/2044	<lod< td=""><td><lod< td=""><td>24</td><td>45</td><td>17</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>24</td><td>45</td><td>17</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	24	45	17	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>15</td></lod<></td></lod<>	<lod< td=""><td>15</td></lod<>	15
CA-TP-8	4.5-6	6/28/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>22</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>22</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	22	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<>	<lod< td=""><td>20</td></lod<>	20
	6-8 8-9	l	163	<lod< td=""><td><lod <lod< td=""><td>20</td><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></td></lod<></lod </td></lod<>	<lod <lod< td=""><td>20</td><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></td></lod<></lod 	20	<lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></td></lod<>	<lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></lod </td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></lod 	<lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<>	<lod< td=""><td>17</td></lod<>	17
		-	<lod< td=""><td><lod< td=""><td><lod <lod< td=""><td>17 31</td><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td></td><td>307 <lod< td=""><td><lod <lod< td=""><td>16</td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></td></lod<>	<lod< td=""><td><lod <lod< td=""><td>17 31</td><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td></td><td>307 <lod< td=""><td><lod <lod< td=""><td>16</td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod </td></lod<>	<lod <lod< td=""><td>17 31</td><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td></td><td>307 <lod< td=""><td><lod <lod< td=""><td>16</td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod 	17 31	<lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td></td><td>307 <lod< td=""><td><lod <lod< td=""><td>16</td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod <lod< td=""><td></td><td>307 <lod< td=""><td><lod <lod< td=""><td>16</td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td></td><td>307 <lod< td=""><td><lod <lod< td=""><td>16</td></lod<></lod </td></lod<></td></lod<></lod 		307 <lod< td=""><td><lod <lod< td=""><td>16</td></lod<></lod </td></lod<>	<lod <lod< td=""><td>16</td></lod<></lod 	16
	0 0-2		<lod 204</lod 	<lod <lod< td=""><td><lod <lod< td=""><td>27</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>21 20</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>27</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>21 20</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	27	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>21 20</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>21 20</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>21 20</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>21 20</td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td>21 20</td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>21 20</td></lod<></lod 	21 20
CA-TP-9	2-4	6/30/2011		<lod <lod< td=""><td><lod <lod< td=""><td>28</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>26</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>28</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>26</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	28	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>26</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>26</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>26</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>26</td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td>26</td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>26</td></lod<></lod 	26
CA-17-9	4-6	6/30/2011	227 146	<lod <lod< td=""><td><lod <lod< td=""><td>24</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>22</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>24</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>22</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	24	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>22</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>22</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>22</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>22</td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td>22</td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>22</td></lod<></lod 	22
	6-8	ł	<lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>26</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>326</td><td><lod <lod< td=""><td>18</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod <lod< td=""><td>26</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>326</td><td><lod <lod< td=""><td>18</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>26</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>326</td><td><lod <lod< td=""><td>18</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	26	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>326</td><td><lod <lod< td=""><td>18</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>326</td><td><lod <lod< td=""><td>18</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td>326</td><td><lod <lod< td=""><td>18</td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>326</td><td><lod <lod< td=""><td>18</td></lod<></lod </td></lod<></lod 	326	<lod <lod< td=""><td>18</td></lod<></lod 	18
	0-8		<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>68</td><td>13</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td>19</td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td>68</td><td>13</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td>19</td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>68</td><td>13</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td>19</td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	68	13	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td>19</td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td>19</td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td>19</td></lod<></lod </td></lod<></td></lod<></lod 	<lod< td=""><td><lod <lod< td=""><td>19</td></lod<></lod </td></lod<>	<lod <lod< td=""><td>19</td></lod<></lod 	19
	2-4	ł	<lod< td=""><td><lod< td=""><td><lod< td=""><td>70</td><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>371</td><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>70</td><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>371</td><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>70</td><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>371</td><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	70	24	<lod< td=""><td><lod< td=""><td><lod< td=""><td>371</td><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>371</td><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>371</td><td><lod< td=""><td>25</td></lod<></td></lod<>	371	<lod< td=""><td>25</td></lod<>	25
CA-TP-10	4.5-6	6/28/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>20</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>20</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	20	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>14</td></lod<></td></lod<>	<lod< td=""><td>14</td></lod<>	14
	6-8		<lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>23</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<></lod 	<lod< td=""><td><lod <lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>23</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></td></lod<></lod </td></lod<>	<lod <lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>23</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></td></lod<></lod 	24	<lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>23</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></td></lod<>	<lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>23</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>23</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>23</td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td>23</td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>23</td></lod<></lod 	23
	0-2		<lod< td=""><td><lod< td=""><td>47</td><td>73</td><td>17</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>47</td><td>73</td><td>17</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	47	73	17	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<>	<lod< td=""><td>26</td></lod<>	26
	3-4.5	i	<lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	24	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<>	<lod< td=""><td>16</td></lod<>	16
CA-TP-11	4.5-6.5	6/28/2011	117	<lod< td=""><td><lod< td=""><td>47</td><td>15</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>47</td><td>15</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	47	15	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<>	<lod< td=""><td>22</td></lod<>	22
	6.5-9	i	129	<lod< td=""><td>24</td><td>31</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	24	31	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>22</td></lod<></td></lod<>	<lod< td=""><td>22</td></lod<>	22
	2 (In sump)		<lod< td=""><td><lod< td=""><td>6,040</td><td>306</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>171</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>6,040</td><td>306</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>171</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	6,040	306	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>171</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>171</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>171</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>171</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>171</td></lod<></td></lod<>	<lod< td=""><td>171</td></lod<>	171
	2 (below concrete)		<lod< td=""><td><lod< td=""><td>1,200</td><td>87</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>85</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1,200</td><td>87</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>85</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	1,200	87	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>85</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>85</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>85</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>85</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>85</td></lod<></td></lod<>	<lod< td=""><td>85</td></lod<>	85
CA-TP-12	2-3	6/30/2011	<lod< td=""><td><lod< td=""><td>124</td><td>37</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>124</td><td>37</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	124	37	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>18</td></lod<></td></lod<>	<lod< td=""><td>18</td></lod<>	18
	3-4	1	<lod< td=""><td><lod< td=""><td><lod< td=""><td>89</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>89</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>89</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	89	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<>	<lod< td=""><td>16</td></lod<>	16
	0-2		107	<lod< td=""><td><lod< td=""><td>23</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>23</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	23	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<>	<lod< td=""><td>25</td></lod<>	25
04 TD 40	2-4	0/00/0044	142	<lod< td=""><td>24</td><td>35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	24	35	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<>	<lod< td=""><td>21</td></lod<>	21
CA-TP-13	4-5	6/28/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td>30</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>30</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>30</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	30	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<>	<lod< td=""><td>25</td></lod<>	25
	6-8	1	<lod< td=""><td><lod< td=""><td><lod< td=""><td>34</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>34</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>34</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	34	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<>	<lod< td=""><td>27</td></lod<>	27
	2-4		<lod< td=""><td><lod< td=""><td><lod< td=""><td>32</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>32</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>32</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	32	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<>	<lod< td=""><td>21</td></lod<>	21
CA-TP-14	4-6	6/28/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td>35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>341</td><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>341</td><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>341</td><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	35	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>341</td><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>341</td><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>341</td><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>341</td><td><lod< td=""><td>21</td></lod<></td></lod<>	341	<lod< td=""><td>21</td></lod<>	21
	6-8	1	639	<lod< td=""><td><lod< td=""><td>52</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>52</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	52	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>30</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>30</td></lod<></td></lod<>	<lod< td=""><td>30</td></lod<>	30
	0-2		<lod< td=""><td><lod< td=""><td><lod< td=""><td>37</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>361</td><td><lod< td=""><td>33</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>37</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>361</td><td><lod< td=""><td>33</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>37</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>361</td><td><lod< td=""><td>33</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	37	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>361</td><td><lod< td=""><td>33</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>361</td><td><lod< td=""><td>33</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>361</td><td><lod< td=""><td>33</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>361</td><td><lod< td=""><td>33</td></lod<></td></lod<>	361	<lod< td=""><td>33</td></lod<>	33
CA-TP-15	2-4	6/28/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td>40</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>40</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>40</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	40	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>26</td></lod<></td></lod<>	<lod< td=""><td>26</td></lod<>	26
	5-7		<lod< td=""><td><lod< td=""><td><lod< td=""><td>33</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>32</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>33</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>32</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>33</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>32</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	33	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>32</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>32</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>32</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>32</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>32</td></lod<></td></lod<>	<lod< td=""><td>32</td></lod<>	32
	0-2		<lod< td=""><td><lod< td=""><td>27</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>27</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	27	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<>	<lod< td=""><td>17</td></lod<>	17
CA-TP-16	2-4	6/28/2011	<lod< td=""><td><lod< td=""><td>21</td><td>13</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>21</td><td>13</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	21	13	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>10</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>10</td></lod<></td></lod<>	<lod< td=""><td>10</td></lod<>	10
	5-7		<lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>15</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>15</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	15	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<>	<lod< td=""><td>17</td></lod<>	17
CA-TP-17	2-4	6/28/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td>28</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>28</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>28</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	28	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>23</td></lod<></td></lod<>	<lod< td=""><td>23</td></lod<>	23
OA-TE-II	4-7	0/20/2011	<lod< td=""><td><lod< td=""><td>22</td><td>15</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>22</td><td>15</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	22	15	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<>	<lod< td=""><td>16</td></lod<>	16
	0-1.5		<lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	24	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<>	<lod< td=""><td>20</td></lod<>	20
CA-TP-18	1.5-3	6/28/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>16</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>16</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	16	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<>	<lod< td=""><td>21</td></lod<>	21
	3-5		<lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	24	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>23</td></lod<></td></lod<>	<lod< td=""><td>23</td></lod<>	23
Transformer Pit	2	6/28/2011	<lod< td=""><td>52</td><td>1,561</td><td>168</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>40</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	52	1,561	168	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>40</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>40</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>40</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>40</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>40</td></lod<></td></lod<>	<lod< td=""><td>40</td></lod<>	40

TABLE 3 FORMER POLYCLAD LAMINATES SITE 45 TANNERY STREET - FRANKLIN NEW HAMPSHIRE NHDES SITE NO. 199902062 SUMMARY OF X-RAY FLUORESCENCE (XRF) METER FIELD SCREENING RESULTS

				NH	IDES Soil	l Remedia	ation Star	ndard and	d Metal C	oncentra	tion (mg/	kg)	
Location	Sample Depth (feet bgs)	Sample Date	Cr	Ni	Cu	Zn	As	Se	Ag	Cd	Ва	Hg	Pb
			130*	400	NE	1,000	11	180	89	33	1,000	6	400
Surficial Soil Sample	es												
CA-SS-1	0-2	6/28/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>23</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>23</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	23	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<>	<lod< td=""><td>21</td></lod<>	21
CA-SS-2	0-2	6/28/2011	260	<lod< td=""><td><lod< td=""><td>51</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>483</td><td><lod< td=""><td>24</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>51</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>483</td><td><lod< td=""><td>24</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	51	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>483</td><td><lod< td=""><td>24</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>483</td><td><lod< td=""><td>24</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>483</td><td><lod< td=""><td>24</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>483</td><td><lod< td=""><td>24</td></lod<></td></lod<>	483	<lod< td=""><td>24</td></lod<>	24
CA-SS-3	0-2	7/5/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>48</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>48</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>48</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>48</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>48</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>48</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>48</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>48</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>48</td></lod<></td></lod<>	<lod< td=""><td>48</td></lod<>	48
Subsurface Soil San		T											
	0-2		112	<lod< td=""><td><lod< td=""><td>19</td><td><lod< td=""><td>4</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>19</td><td><lod< td=""><td>4</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	19	<lod< td=""><td>4</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	4	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>30</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>30</td></lod<></td></lod<>	<lod< td=""><td>30</td></lod<>	30
	2-4		136	<lod< td=""><td><lod< td=""><td>20</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>20</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	20	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<>	<lod< td=""><td>17</td></lod<>	17
	4-6		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<>	<lod< td=""><td>21</td></lod<>	21
	6-8		<lod< td=""><td><lod< td=""><td>24</td><td>13</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>24</td><td>13</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	24	13	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<>	<lod< td=""><td>20</td></lod<>	20
	8-10		<lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>19</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>19</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	19	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<>	<lod< td=""><td>16</td></lod<>	16
	10-12	ł	<lod< td=""><td>40 <lod< td=""><td><lod <lod< td=""><td>14</td><td><lod 8</lod </td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>321 <lod< td=""><td><lod <lod< td=""><td>21 14</td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></td></lod<>	40 <lod< td=""><td><lod <lod< td=""><td>14</td><td><lod 8</lod </td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>321 <lod< td=""><td><lod <lod< td=""><td>21 14</td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<>	<lod <lod< td=""><td>14</td><td><lod 8</lod </td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>321 <lod< td=""><td><lod <lod< td=""><td>21 14</td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	14	<lod 8</lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>321 <lod< td=""><td><lod <lod< td=""><td>21 14</td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td>321 <lod< td=""><td><lod <lod< td=""><td>21 14</td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>321 <lod< td=""><td><lod <lod< td=""><td>21 14</td></lod<></lod </td></lod<></td></lod<></lod 	321 <lod< td=""><td><lod <lod< td=""><td>21 14</td></lod<></lod </td></lod<>	<lod <lod< td=""><td>21 14</td></lod<></lod 	21 14
CA-1	12-14	6/29/2011	<lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>12 11</td><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>19</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod <lod< td=""><td>12 11</td><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>19</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>12 11</td><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>19</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod 	12 11	<lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>19</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>19</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>19</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>19</td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td>19</td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>19</td></lod<></lod 	19
	14-16		<lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>12</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>23</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod <lod< td=""><td>12</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>23</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>12</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>23</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	12	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>23</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>23</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>23</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>23</td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td>23</td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>23</td></lod<></lod 	23
	16-18 18-20	ł	<lod <lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></lod 	<lod< td=""><td><lod< td=""><td>17</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>17</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	17	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>21</td></lod<></td></lod<>	<lod< td=""><td>21</td></lod<>	21
	20-22	ł	<lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td>13</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<></lod 	<lod< td=""><td><lod <lod< td=""><td>13</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></lod </td></lod<>	<lod <lod< td=""><td>13</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></lod 	13	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>18</td></lod<></td></lod<>	<lod< td=""><td>18</td></lod<>	18
	22-24	1	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>15</td><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td>20</td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td>15</td><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td>20</td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>15</td><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td>20</td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod 	15	<lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td>20</td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td>20</td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td>20</td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td>20</td></lod<></lod </td></lod<></td></lod<></lod 	<lod< td=""><td><lod <lod< td=""><td>20</td></lod<></lod </td></lod<>	<lod <lod< td=""><td>20</td></lod<></lod 	20
	24-26	1	<lod <lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td>365</td><td><lod< td=""><td>18</td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></lod 	<lod< td=""><td><lod< td=""><td>14</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td>365</td><td><lod< td=""><td>18</td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>14</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td>365</td><td><lod< td=""><td>18</td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></td></lod<>	14	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod <lod< td=""><td>365</td><td><lod< td=""><td>18</td></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod <lod< td=""><td>365</td><td><lod< td=""><td>18</td></lod<></td></lod<></lod </td></lod<></td></lod<>	<lod< td=""><td><lod <lod< td=""><td>365</td><td><lod< td=""><td>18</td></lod<></td></lod<></lod </td></lod<>	<lod <lod< td=""><td>365</td><td><lod< td=""><td>18</td></lod<></td></lod<></lod 	365	<lod< td=""><td>18</td></lod<>	18
	26-28	i	<lod <lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></lod 	<lod< td=""><td><lod< td=""><td>20</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>20</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	20	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<>	<lod< td=""><td>20</td></lod<>	20
	0-2		148	<lod< td=""><td><lod< td=""><td>37</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>28</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>37</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>28</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	37	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>28</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>28</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>28</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>28</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>28</td></lod<></td></lod<>	<lod< td=""><td>28</td></lod<>	28
	2-4	i	<lod< td=""><td><lod< td=""><td><lod< td=""><td>29</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>29</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>29</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	29	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>25</td></lod<></td></lod<>	<lod< td=""><td>25</td></lod<>	25
	4-6	i	<lod< td=""><td><lod< td=""><td><lod< td=""><td>35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	35	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<>	<lod< td=""><td>20</td></lod<>	20
	6-8	1	151	<lod< td=""><td><lod< td=""><td>38</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>38</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	38	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<>	<lod< td=""><td>20</td></lod<>	20
	8-10	1	<lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	24	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>20</td></lod<></td></lod<>	<lod< td=""><td>20</td></lod<>	20
	10-12	1	<lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>19</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>19</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	19	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<>	<lod< td=""><td>17</td></lod<>	17
	12-14	1	<lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>19</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>19</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	19	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<>	<lod< td=""><td>27</td></lod<>	27
CA-2	14-16	6/29/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	24	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<>	<lod< td=""><td>19</td></lod<>	19
	16-18	1	<lod< td=""><td><lod< td=""><td><lod< td=""><td>31</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>31</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>31</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	31	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>17</td></lod<></td></lod<>	<lod< td=""><td>17</td></lod<>	17
	18-20	1	<lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>380</td><td><lod< td=""><td>9</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>19</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>380</td><td><lod< td=""><td>9</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>19</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>380</td><td><lod< td=""><td>9</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	19	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>380</td><td><lod< td=""><td>9</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>380</td><td><lod< td=""><td>9</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>380</td><td><lod< td=""><td>9</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>380</td><td><lod< td=""><td>9</td></lod<></td></lod<>	380	<lod< td=""><td>9</td></lod<>	9
	20-22	1	<lod< td=""><td><lod< td=""><td><lod< td=""><td>35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	35	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>19</td></lod<></td></lod<>	<lod< td=""><td>19</td></lod<>	19
	22-24	1	<lod< td=""><td><lod< td=""><td><lod< td=""><td>26</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>26</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>26</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	26	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>16</td></lod<></td></lod<>	<lod< td=""><td>16</td></lod<>	16
	24-26	1	114	<lod< td=""><td>30</td><td>38</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	30	38	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>23</td></lod<></td></lod<>	<lod< td=""><td>23</td></lod<>	23
	26-28		<lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>421</td><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>25</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>421</td><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>25</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>421</td><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	25	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>421</td><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>421</td><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>421</td><td><lod< td=""><td>16</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>421</td><td><lod< td=""><td>16</td></lod<></td></lod<>	421	<lod< td=""><td>16</td></lod<>	16
	28-30		<lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>22</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>22</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	22	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>15</td></lod<></td></lod<>	<lod< td=""><td>15</td></lod<>	15
	0-2		472	<lod< td=""><td><lod< td=""><td>10</td><td><lod< td=""><td>5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td><td>185</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>10</td><td><lod< td=""><td>5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td><td>185</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	10	<lod< td=""><td>5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td><td>185</td></lod<></td></lod<></td></lod<></td></lod<>	5	<lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td><td>185</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>18</td><td>185</td></lod<></td></lod<>	<lod< td=""><td>18</td><td>185</td></lod<>	18	185
	2-4 4-6	ł	423 164	<lod <lod< td=""><td><lod <lod< td=""><td>22 13</td><td><lod <lod< td=""><td>5 <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>25 19</td><td>401 199</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>22 13</td><td><lod <lod< td=""><td>5 <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>25 19</td><td>401 199</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod 	22 13	<lod <lod< td=""><td>5 <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>25 19</td><td>401 199</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod 	5 <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>25 19</td><td>401 199</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>25 19</td><td>401 199</td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td>25 19</td><td>401 199</td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>25 19</td><td>401 199</td></lod<></lod 	25 19	401 199
	6-8	İ	248	<lod <lod< td=""><td><lod <lod< td=""><td>18</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>16</td><td>215</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>18</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>16</td><td>215</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	18	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>16</td><td>215</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>16</td><td>215</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>16</td><td>215</td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td>16</td><td>215</td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>16</td><td>215</td></lod<></lod 	16	215
	8-10]	461	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td>123</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td>123</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td>123</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td>123</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td>123</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td>123</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>14</td><td>123</td></lod<></td></lod<>	<lod< td=""><td>14</td><td>123</td></lod<>	14	123
	10-12	1	518	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td>146</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td>146</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td>146</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td>146</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td>146</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td>146</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>14</td><td>146</td></lod<></td></lod<>	<lod< td=""><td>14</td><td>146</td></lod<>	14	146
	12-14 14-16	ł	647 674	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>17 15</td><td>127 108</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>17 15</td><td>127 108</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>17 15</td><td>127 108</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>17 15</td><td>127 108</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>17 15</td><td>127 108</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>17 15</td><td>127 108</td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td>17 15</td><td>127 108</td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>17 15</td><td>127 108</td></lod<></lod 	17 15	127 108
CA-3	16-18	6/29/2011	187	<lod <lod< td=""><td><lod <lod< td=""><td>13</td><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td>10</td><td>119</td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>13</td><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td>10</td><td>119</td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod 	13	<lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td>10</td><td>119</td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod 	<lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td>10</td><td>119</td></lod<></td></lod<></lod </td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td>10</td><td>119</td></lod<></td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod< td=""><td>10</td><td>119</td></lod<></td></lod<></lod 	<lod< td=""><td>10</td><td>119</td></lod<>	10	119
	18-20]	105	<lod< td=""><td><lod< td=""><td>9</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td><td>106</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>9</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td><td>106</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	9	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td><td>106</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td><td>106</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>15</td><td>106</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>15</td><td>106</td></lod<></td></lod<>	<lod< td=""><td>15</td><td>106</td></lod<>	15	106
	20-22	I	173	<lod< td=""><td><lod< td=""><td>10</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>101</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>10</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>101</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	10	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>101</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>101</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>101</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>101</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>101</td></lod<></td></lod<>	<lod< td=""><td>101</td></lod<>	101
	22-24 24-26	ł	434 330	<lod <lod< td=""><td><lod <lod< td=""><td><lod 10</lod </td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>13 14</td><td>106 105</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod 10</lod </td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>13 14</td><td>106 105</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod 10</lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>13 14</td><td>106 105</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>13 14</td><td>106 105</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>13 14</td><td>106 105</td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td>13 14</td><td>106 105</td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>13 14</td><td>106 105</td></lod<></lod 	13 14	106 105
	26-28	1	280	<lod <lod< td=""><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>9</td><td>88</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>9</td><td>88</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></lod 	<lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>9</td><td>88</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>9</td><td>88</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>9</td><td>88</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>9</td><td>88</td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td>9</td><td>88</td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>9</td><td>88</td></lod<></lod 	9	88
	28-30]	89	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td>85</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td>85</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td>85</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td>85</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td>85</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td>85</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>14</td><td>85</td></lod<></td></lod<>	<lod< td=""><td>14</td><td>85</td></lod<>	14	85
	30-32		150	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>8</td><td>85</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>8</td><td>85</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>8</td><td>85</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>8</td><td>85</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>8</td><td>85</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>8</td><td>85</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>8</td><td>85</td></lod<></td></lod<>	<lod< td=""><td>8</td><td>85</td></lod<>	8	85
CA-4	10-12 12-14	6/29/2011	<lod <lod< td=""><td><lod <lod< td=""><td>23 <lod< td=""><td>41 <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>19 25</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>23 <lod< td=""><td>41 <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>19 25</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></td></lod<></td></lod<></lod 	23 <lod< td=""><td>41 <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>19 25</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></td></lod<>	41 <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>19 25</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>19 25</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>19 25</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>19 25</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>19 25</td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td>19 25</td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>19 25</td></lod<></lod 	19 25
CAE	10-12	6/20/2044	<lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>22</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>22</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>22</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>22</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>22</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>22</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>22</td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>22</td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td>22</td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>22</td></lod<></lod 	22
CA-5	12-14	6/29/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td>34</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>34</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>34</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	34	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>27</td></lod<></td></lod<>	<lod< td=""><td>27</td></lod<>	27

<LOD - Concentration less than instrument level of detection</p>

Highlighted cells have concentrations that exceed NHDES Soil Remediation Standards

XRF - X-Ray Fluorescence Detector

bgs - below ground surface

^{* =} The regulatory threshold for Cr VI was used because it is the most stringent standard for chromium

TABLE 4 FORMER POLYCLAD LAMINATES SITE 45 TANNERY STREET - FRANKLIN NEW HAMPSHIRE NHDES SITE NO. 199902062 **SUMMARY OF GROUNDWATER ELEVATION DATA**

r	MONITORING WELL ID	CA-1	CA-2	CA-3	MW-2
Details	WELL DEPTH ⁽¹⁾ (FEET)	34.42	34.41	34.57	33.96
struction	LENGTH OF SCREEN (FEET)	10	10	10	10
Pertinent Well Construction Details	DEPTH TO TOP OF SCREEN ⁽¹⁾ (FEET)	25	25	25	25
Pertinen	TOP OF WELL ELEVATION ⁽²⁾ (FEET)	335.26	334.82	335.25	334.89
(GROUNDWATER DEPTH ⁽¹⁾ (FEET) July 5, 2011	28.02	27.57	27.75	27.64
GR	OUNDWATER ELEVATION ⁽³⁾ (FEET) July 5, 2011	307.24	307.25	307.50	307.25

Notes:

Notes:

(1) All depth levels were gauged from top of well PVC riser. Well depth measurements were taken at the time of groundwater sampling, and may refect loss of well depth due to sedimentation.

(2) Top of Well Elevations were related, via stadia survey, to elevation of existing well MW-2 (334.89 ft) from Delta Phase II ESA, April 10, 2008. Elevations of wells CA-1 through CA-3 were surveyed by Credere on July 5, 2011.

(3) Groundwater elevations have been calculated by subtracting the depth to groundwater from the well elevations.

FORMER POLYCLAD LAMINATES SITE

45 TANNERY STREET - FRANKLIN NEW HAMPSHIRE

NHDES SITE NO. 199902062

SUMMARY OF ANALYTICAL RESULTS FOR SOIL SAMPLES

	Regulatory	Surficial Soi	il Sample Lo	cation, Date,							Cub	surface Soil	Sample I oc	ation, Date, a	and Donth (fo	ot)						
	Standard	ar	nd Depth (fee	et)							Sub	Surface Soil	Sample Loc	ation, Date, a	ina Deptii (le	et)						
Parameter	NHDES SRS ⁽²⁾	CA-SS-1	CA-SS-2	CA-SS-3	Transformer Pit	CA-TP-7A	CA-TP-8	CA-TP-9	CA-TP-10	CA-TP-11	CA-TP-12	CA-TP-13	CA-TP-14	CA-TP-15	CA-TP-16	CA-TP-17	CA-TP-18	CA-1	CA-2	CA-3	CA-4	CA-5
	(mg/kg)	6/28/2011	6/28/2011	7/5/2011	6/28/2011	6/30/2011	6/28/2011	6/30/2011	6/28/2011	6/28/2011	6/30/2011	6/28/2011	6/28/2011	6/28/2011	6/28/2011	6/28/2011	6/28/2011	6/29/2011	6/29/2011	6/29/2011	6/29/2011	6/29/2011
		0-2'	0-2'	0-2'	2'	10-12'	6-8'	6'	0-2'	6.5-9'	3'	2-4'	6-8'	5-7'	0-2'	4-7'	3-5'	26-28'	6-8'	2-4'	10-12'	12-14'
(1)Volatile Organic Compounds (n	 	_																				
Trichlorofluoromethane	1,000	NS	NS	NS	NS	ND < 0.1	ND < 0.1	ND < 0.1	0.3	ND < 0.1	ND < 0.1	ND < 0.1	ND < 0.1	ND < 0.1	ND < 0.1	ND < 0.1	ND < 0.1	ND < 0.1	ND < 0.1	ND < 0.1	ND < 0.1	ND < 0.1
Total xylene	500	NS	NS	NS	NS	ND < 0.2	ND < 0.2	ND < 0.2	0.1	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.2
Total Petroleum Hydrocarbons (m	ng/kg) EPA Method 80	15B												•								•
TPH	10,000	NS	NS	NS	NS	ND < 190	ND < 220	ND < 200	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND < 220	NS	NS	ND < 240	ND < 250
Metals SW3051A (mg/kg)																						
Arsenic	11	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	3.0	1.4	6.1	1.2	2.7	2.7	NS	1.5	4.4	2.1	2.2
Barium	1,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	23	47	22	12	11	16	NS	13	16	15	16
Cadmium	33	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND < 0.3	ND < 0.3	ND < 0.3	ND < 0.2	ND < 0.3	ND < 0.3	NS	ND < 0.2	ND < 0.2	ND < 0.2	ND < 0.3
Chromium	130*	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	36	260	9	5	9	7	NS	25	6	6	7
Copper	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	18	14	20	10	22	13	NS	12	16	14	22
Lead	400	NS	NS	NS	NS	5.6	NS	NS	5.6	4.8	4.5	7.2	6.2	28	3.2	4.8	4.9	NS	4.9	5.5	4.0	4.1
Mercury	6	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND < 0.08	ND < 0.08	ND < 0.10	ND < 0.07	ND < 0.07	ND < 0.08	NS	ND < 0.07	ND < 0.08	ND < 0.07	ND < 0.08
Nickel	400	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	7	4	6	4	4	6	NS	5	7	5.0	6
Selenium	180	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND < 3	ND < 3	ND < 4	ND < 3	ND < 3	ND < 4	NS	ND < 3	ND < 3	ND < 3	ND < 3
Silver	89	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND < 0.4	ND < 0.5	ND < 0.5	ND < 0.4	ND < 0.5	ND < 0.5	NS	ND < 0.4	ND < 0.4	ND < 0.4	ND < 0.5
Zinc	1,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	21	17	23	9	13	15	NS	23	21	14	17
Hexavalent Chromium (mg/kg) by	method SM3500CrB							l		l				<u>'</u>	l		<u> </u>		l		<u> </u>	<u> </u>
Cr VI	130*	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	4.5	NS	NS	NS	NS	NS	NS	NS	NS	NS
(1)Semi-Volatile Organic Compour	nds(ma/ka) FPA Meth	od 8270C																				
All Compounds	Various	NS	NS	**	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	All ND	All ND
, ar compoundo	- Valloud																				7115	7
Polycyclic Aromatic Hydrocarbon	s (mg/kg) EPA Metho	d 8270C																				
Naphthalene	5	ND < 0.6	ND < 0.6	ND < 0.2	NS	ND < 0.5	ND < 0.5	ND < 0.5	NS	NS	NS	ND < 0.5	ND < 0.5	ND < 3.3	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	NS	NS	NS	NS
2-methylnaphthalene	96	ND < 0.6	ND < 0.6	ND < 0.2	NS	ND < 0.5	ND < 0.5	ND < 0.5	NS	NS	NS	ND < 0.5	ND < 0.5	ND < 3.3	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	NS	NS	NS	NS
Acenaphthylene	490	ND < 0.6	ND < 0.6	ND < 0.2	NS	ND < 0.5	ND < 0.5	ND < 0.5	NS	NS	NS	ND < 0.5	ND < 0.5	ND < 3.3	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	NS	NS	NS	NS
Acenaphthene	340	ND < 0.6	ND < 0.6	ND < 0.2	NS	ND < 0.5	ND < 0.5	ND < 0.5	NS	NS	NS	ND < 0.5	ND < 0.5	5.3	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	NS	NS	NS	NS
Dibenzofuran	NE 	ND < 0.6	ND < 0.6	ND < 0.2	NS	ND < 0.5	ND < 0.5	ND < 0.5	NS	NS	NS	ND < 0.5	ND < 0.5	3.6	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	NS	NS	NS	NS
Fluorene	77	ND < 0.6	ND < 0.6	ND < 0.2	NS	ND < 0.5	ND < 0.5	ND < 0.5	NS	NS	NS	ND < 0.5	ND < 0.5	7.7	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	NS	NS	NS	NS
Phenanthrene	960	ND < 0.6	ND < 0.6	0.6	NS	ND < 0.5	ND < 0.5	ND < 0.5	NS	NS	NS	ND < 0.5	ND < 0.5	100	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	NS	NS	NS	NS
Anthracene	1,000	ND < 0.6	ND < 0.6	0.12	NS NC	ND < 0.5	ND < 0.5	ND < 0.5	NS NC	NS NC	NS NC	ND < 0.5	ND < 0.5	33	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	NS NC	NS NC	NS NC	NS NC
Fluoranthene	960 720	ND < 0.6	ND < 0.6 ND < 0.6	1.5	NS NS	ND < 0.5	ND < 0.5 ND < 0.5	ND < 0.5	NS NC	NS NC	NS NS	ND < 0.5 ND < 0.5	ND < 0.5 ND < 0.5	160	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	NS NS	NS NS	NS NS	NS NS
Pyrene	1	ND < 0.6		1.3		ND < 0.5		ND < 0.5	NS	NS NC				160	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6				
Benzo[a]anthracene	120	ND < 0.6 ND < 0.6	ND < 0.6 ND < 0.6	0.69 0.8	NS NS	ND < 0.5 ND < 0.5	ND < 0.5 ND < 0.5	ND < 0.5 ND < 0.5	NS NS	NS NS	NS NS	ND < 0.5 ND < 0.5	ND < 0.5 ND < 0.5	80 74	ND < 0.5 ND < 0.5	ND < 0.6 ND < 0.6	ND < 0.6 ND < 0.6	ND < 0.6 ND < 0.6	NS NS	NS NS	NS NS	NS NS
Chrysene Benzo[b]fluoranthene	1	ND < 0.6	ND < 0.6	0.82	NS NS	ND < 0.5	ND < 0.5	ND < 0.5	NS NS	NS NS	NS NS	ND < 0.5	ND < 0.5 ND < 0.5	74 46	ND < 0.5 ND < 0.5	ND < 0.6	ND < 0.6 ND < 0.6	ND < 0.6	NS NS	NS NS	NS NS	NS NS
Benzo[k]fluoranthene	4	ND < 0.6	ND < 0.6	0.68	NS NS	ND < 0.5	ND < 0.5	ND < 0.5	NS	NS NS	NS	ND < 0.5	ND < 0.5	80	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	NS NS	NS	NS	NS
Benzo[a]pyrene	0.7	ND < 0.6	ND < 0.6	0.71	NS	ND < 0.5	ND < 0.5	ND < 0.5	NS	NS	NS	ND < 0.5	ND < 0.5	66	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	NS	NS	NS	NS
Indeno(1,2,3-cd)pyrene	1	ND < 0.6	ND < 0.6	0.34	NS	ND < 0.5	ND < 0.5	ND < 0.5	NS	NS	NS	ND < 0.5	ND < 0.5	18	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	NS	NS	NS	NS
Dibenzo(a,h)anthracene	0.7	ND < 0.6	ND < 0.6	0.14	NS NS	ND < 0.5	ND < 0.5	ND < 0.5	NS	NS	NS	ND < 0.5	ND < 0.5	9.6	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	NS	NS	NS	NS
Benzo(g,h,i)perylene	960	ND < 0.6	ND < 0.6	0.36	NS	ND < 0.5	ND < 0.5	ND < 0.5	NS	NS	NS	ND < 0.5	ND < 0.5	16	ND < 0.5	ND < 0.6	ND < 0.6	ND < 0.6	NS	NS	NS	NS
	I																					
Polychlorinated Biphenyls (mg/kg Total PCBs) EPA Method 8082	NO	NO.	No	ND 000	NO	NO	NO	NO	No	NO	ND 2.25	NO	NO.	NO	NO	NO	NO	NO	NO	ND 0.5	ND 0=
LOTOL DI DI	1	NS	NS	NS	ND < 0.03	NS	NS	NS	NS	NS	NS	ND < 0.03	NS	NS	NS	NS	NS	NS	NS	NS	ND < 0.6	ND < 0.7

NOTES:

(1) Only analytes identified above detection limit are summarized.
(2) New Hampshire Soil Remediation Standards from the Risk Characterization Management Policy Env-Or 606.19, Soil Remediation Criteria.

* = The regulatory threshold for Cr VI was used because it is the most stringent standard for chromium, except for sample CA-TP-14, which was analyzed for both total chromium and Cr VI.

** - PAHs were detected as part of the SVOC analysis. Results are presented with the PAH results.

J = Estimated value because detection was below practical quantitation limit.

M = Matrix spike recovery was outside the control limits of 75% - 125%. Matrix interference suspected.

NF = No regulatory quideline established

NE = No regulatory guideline established ND < 0.1 = Not detected above quantitation limit (i.e. 0.1 mg/kg) NS = Not sampled for the analysis.

FORMER POLYCLAD LAMINATES SITE 45 TANNERY STREET - FRANKLIN NEW HAMPSHIRE NHDES SITE NO. 199902062

SUMMARY OF ANALYTICAL RESULTS FOR BUILDING MATERIAL SAMPLES

OOMMAN	OI AMALITIOA	L IVEOUL	-10101	DOILDIN		NIAL OAI	··· LLO		
	Regulatory Standard		Building I	Material Sam	ple Location	, Date, and D	epth (feet)		
Parameter	NHDES SRS ⁽¹⁾ (mg/kg) or Standard	CA-CC-1	CA-CC-2	D-1	D-2	D-3	D-4	D-Floor Covering	
	for ACM ⁽²⁾ (% by	6/30/2011	6/30/2011	6/28/2011	6/28/2011	6/28/2011	6/28/2011	6/28/2011	
	volume)	0	0	0	0	0	0	0	
Asbestos Analysis of Bulk Mater	ials (% by Volume) via	ne) via EPA 600/R-93/116 Method using Polarized Light Microscopy							
Asbestos	1	NS	NS	5	ND < 1	ND < 1	ND < 1	NS	
Polychlorinated Biphenyls (mg/k	olychlorinated Biphenyls (mg/kg) EPA Method 8082								
Total PCBs	1	ND < 0.6 ND < 0.6 NS NS NS ND < 0.03							

NOTES:

(1) New Hampshire Soil Remediation Standards from the Risk Characterization Management Policy Env-Or 606.19, Soil Remediation Criteria.
(2) NHDES Env-A 1800

ND < 0.1 = Not detected above quantitation limit (i.e. 0.1 mg/kg) NS = Not sampled for the analysis.

Bold Exceeds laboratory quantitation limit Exceeds NH DES Soil Remediation Standards.

TABLE 7 FORMER POLYCLAD LAMINATES SITE **45 TANNERY STREET - FRANKLIN NEW HAMPSHIRE** NHDES SITE NO. 199902062 SUMMARY OF ANALYTICAL RESULTS FOR SOIL GAS **SAMPLES**

	Regulatory Standard	•	ion, Date, and (feet)
Parameter	Commercial Soil Gas, Vapor Intrusion	CA-SG-2	CA-SG-10
	Screening Levels (2)	6/28/2011	6/28/2011
	(μg/m³)	1	1
⁽¹⁾ Volatile Organics in Air (μg/m³),	Method TO-15		
Dichlorodifluoromethane	NE	235	16
Ethanol	NE	7050	5760
Acetone	NE	651	211
Trichlorofluoromethane	NE	23.6	106
Isopropanol	NE	381	295
Methylene chloride	NE	57.3	ND < 34.7
2-Butanone	NE	30.1	32.7
Tetrahydrofuran	NE	14.2	16.4
n-Hexane	NE	30.9	25.3
Benzene	95	28.4	30
Cyclohexane	NE	7.64	7.71
Heptane	NE	15.8	19.1
Toluene	73,000	154	177
Ethylbenzene	250	8.69	17.2
Total Xylene	1,500	83.1	69.4
1,2,4-Trimethylbenzene	220	12.7	ND < 9.83

Bold Exceeds laboratory quantitation limit

NOTES:

(1) Only analytes identified above detection limit are summarized.
(2) NHDES Vapor Intrusion Guidance Document, July 5, 2011
NE = No regulatory guideline established
ND < 0.2 = Not detected above quantitation limit (i.e. 0.2 mg/kg)

NS = Not sampled for the analysis.

TABLE 8 FORMER POLYCLAD LAMINATES SITE 45 TANNERY STREET - FRANKLIN NEW HAMPSHIRE NHDES SITE NO. 199902062 SUMMARY OF ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES

Regulatory Standard	Sample Location, Date, and Concentration (µg/L)								
NH AGOS ⁽²⁾	CA-1	C	A-2	CA-3	MW-2				
(µg/L)	7/5/2011	7/5/2011	7/14/2011*	7/5/2011	7/5/2011				
ug/L) EPA Method 8	260B								
260	ND < 2	29	NS	ND < 2	ND < 2				
330	4	320	NS	ND < 2	ND < 2				
330	9	710	NS	ND < 2	ND < 2				
260	ND < 2	43	NS	ND < 2	ND < 2				
260	ND < 2	100	NS	ND < 2	ND < 2				
nds(μg/L) EPA Meth	od 8270C								
Various	NS	All ND	NS	NS	NS				
10	NS	21			NS				
2,000	NS	130	ND < 50*	ND < 50	NS				
5	NS	ND < 4	ND < 4*	ND < 4	NS				
100	NS	130		ND < 50	NS				
1,300	NS	230			NS				
15	NS	45	ND < 8*	ND < 8	8				
2	NS	ND < 2	ND < 2*	ND < 2	NS				
100	NS	ND < 50	NS	NS	NS				
50	NS	ND < 50	ND < 50*	ND < 50	NS				
100	NS	ND < 7	ND < 7*	ND < 7	NS				
NE	NS	120	NS	NS	NS				
	Standard NH AGQS ⁽²⁾ (μg/L) Leg/L) EPA Method 8 260 330 260 260 260 Nds(μg/L) EPA Meth Various 10 2,000 5 100 1,300 15 2 100 50 100 100	Standard Sar NH AGQS ⁽²⁾ CA-1 (μg/L) 7/5/2011 Ug/L) EPA Method 8260B 260 ND < 2 330 4 330 9 260 ND < 2 260 ND < 2 260 ND < 2 260 ND < 3 330 Sar 330 Sar 330 Sar 330 Sar 330 Sar 330 ND < 2 340 ND < 2 340	Standard NH AGQS ⁽²⁾	Standard NH AGQS ⁽²⁾ CA-1 CA-2 (μg/L) 7/5/2011 7/5/2011 7/5/2011 7/14/2011* Lug/L) EPA Method 8260B 260 ND < 2 29 NS NS ND < 4 NS ND < 8* ND < 4 ND < 4* ND < 50* ND <	Sample Location, Date, and Concentration (με/NH AGQS ⁽²⁾ (μg/L) NH AGQS ⁽²⁾ (μg/L) CA-1 CA-2 CA-3 7/5/2011 7/5/2011 7/14/2011* 7/5/2011 μg/L) EPA Method 8260B 260 ND < 2				

NOTES:

NE = No regulatory guideline established.

ND < 0.2 = Not detected above quantitation limit (i.e. 0.2 ug/L).

NS = Not Sampled.

Bold Exceeds laboratory quantitation limit.

Exceeds NHDES AGQS

Exceeds NHDES AGQS in unfiltered total metals sample but NOT in filtered dissolved metals sample.

 $^{^{\}left(1\right) }$ Only analytes above detection level are summarized.

⁽²⁾ New Hampshire Code of Administrative Rules Ambient Groundwater Quality Standards (AGQS), effective July 23, 2008.

^{* -} Sample collected on July 14, 2011 was field filtered and is for dissolved metals. All samples collected on July 5, 2011 were not field filtered and are for total metals.

FORMER POLYCLAD LAMINATES SITE **45 TANNERY STREET - FRANKLIN NEW HAMPSHIRE** NHDES SITE NO. 199902062 SUMMARY OF DUPLICATE SAMPLE ANALYSES

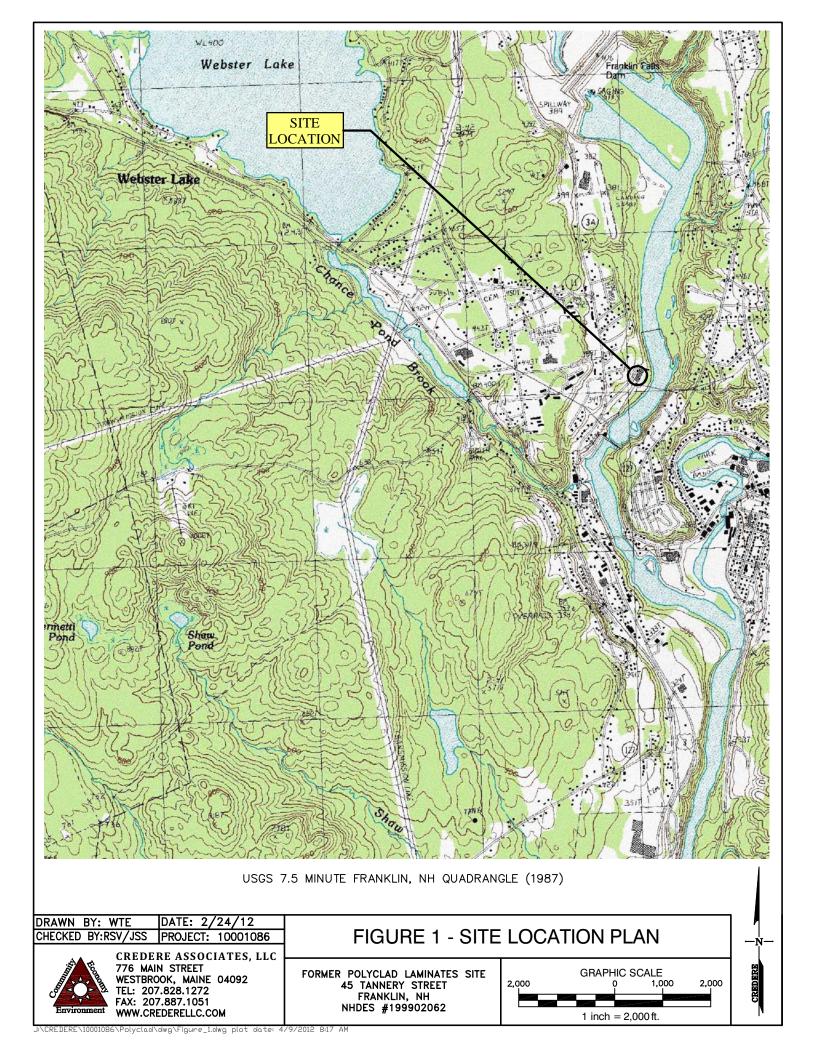
3	OWNINAK I O	PUPLICA	IE SAIVIPLE A	MALISE	<u> </u>	
Parameter	NHDES Threshold ⁽¹⁾	Quantitation Limit (ug/g)	5x Quantitation Limit	Sample (2)	Duplicate	Relative Percent Difference
VOCs						
QA/QC (CA-TP-DUP-1, 06/28/11); duplicate of C	A-TP-14 6-8'				
		All parameters	s non-detect.			
PAHs						
QA/QC (CA-TP-DUP-1, 06/28/11); duplicate of C	A-TP-14 6-8'				
		All parameters	s non-detect.			
Metals						
QA/QC (CA-TP-DUP-1, 06/28/11); duplicate of C	A-TP-14 6-8'				
Barium	1,000	3.0	15.0	47	92	-64.7%
Chromium	130	3.0	15.0	260	300	-14.3%
Copper	NE	3.0	15.0	14	16	-13.3%
Lead	400	0.7	3.5	6.2	7	-12.1%
Zinc	1,000	3.0	15.0	17	20	-16.2%
ТРН						
QA/QC (CA-TP-DUP-2, 06/30/11); duplicate of C	A-TP-9 6'				
		All parameters	s non-detect.			

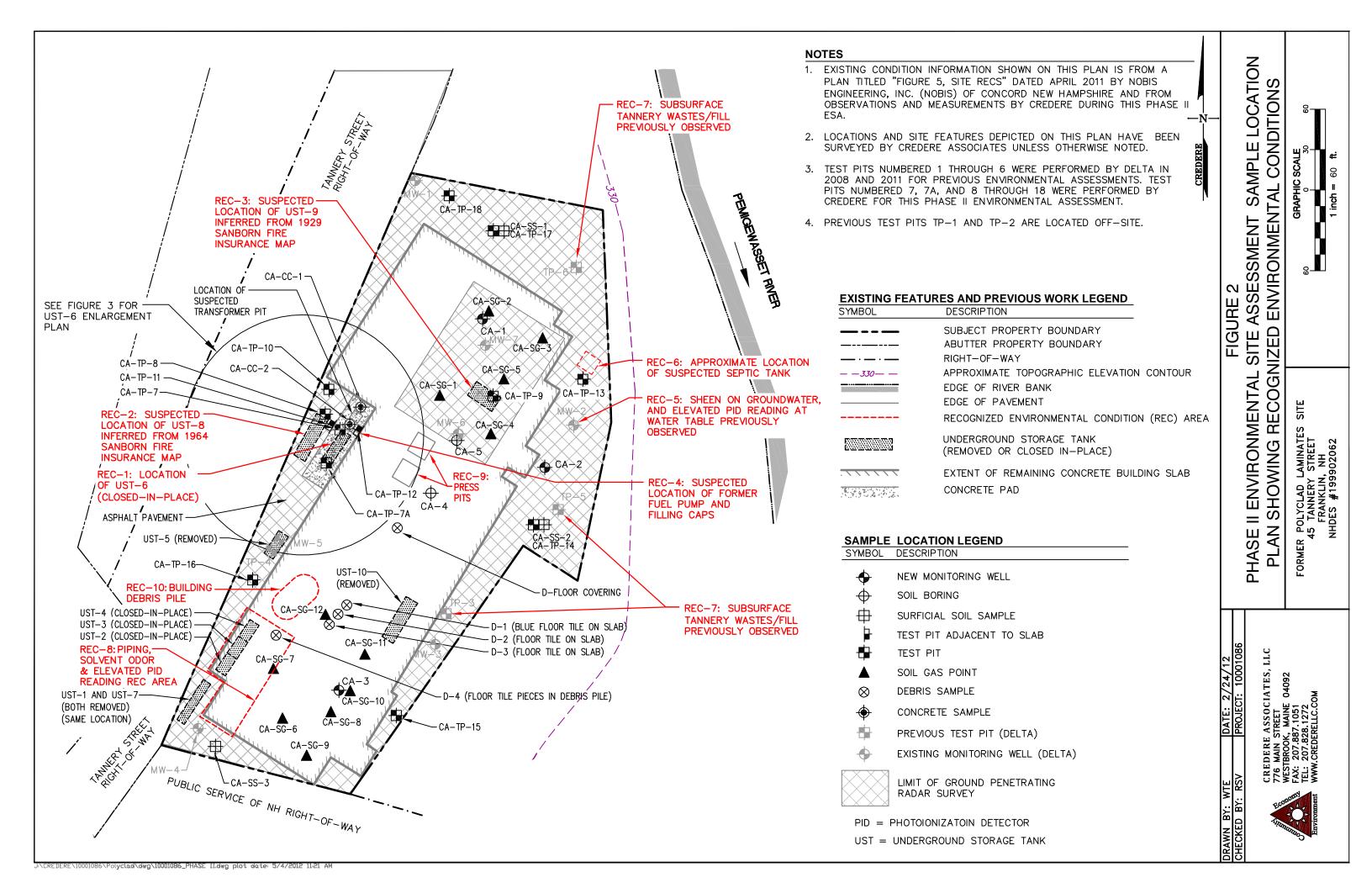
NOTES:

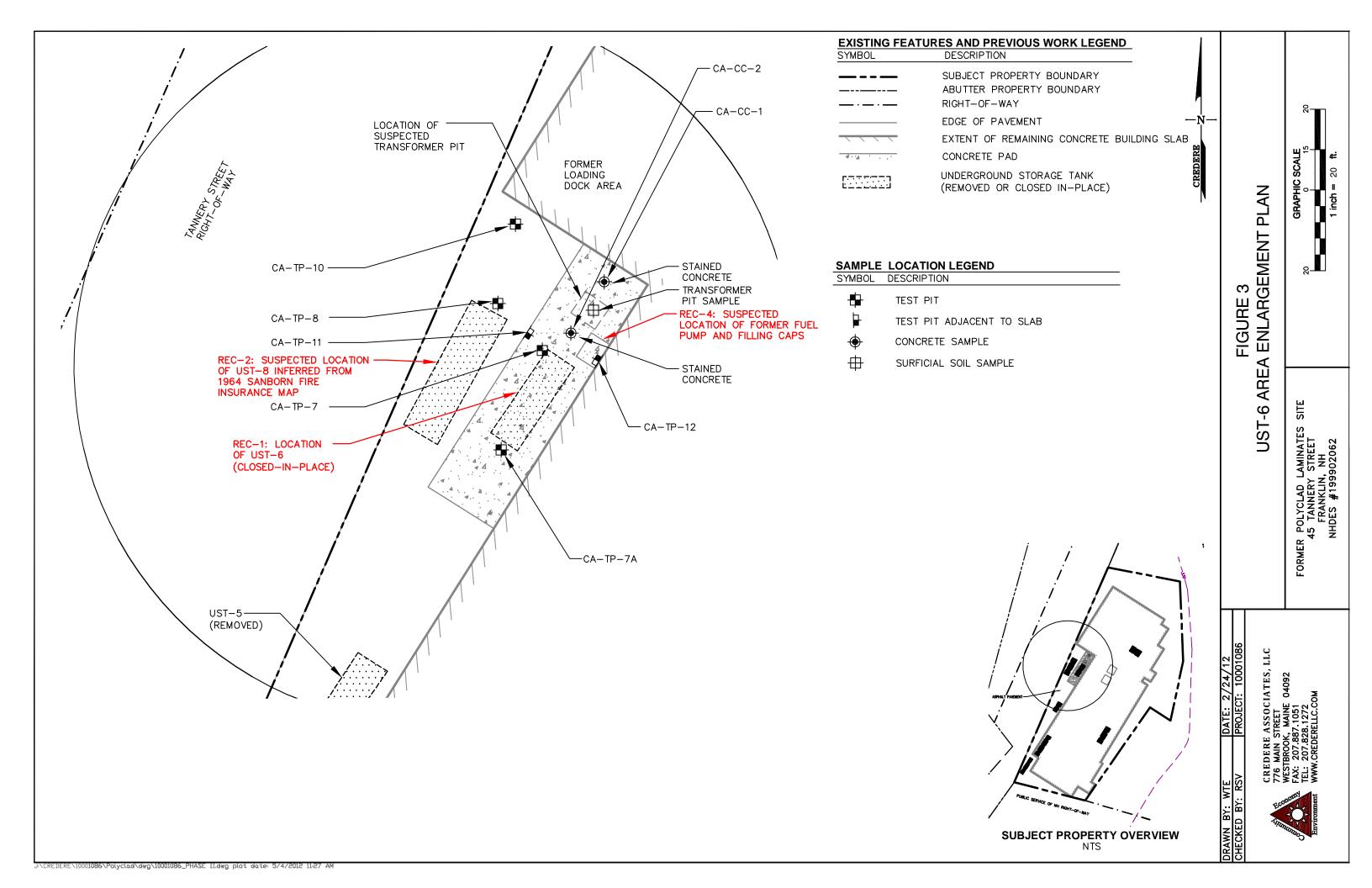
(2) Only analytes above detection level and five times the quantitation limit are summarized herein.

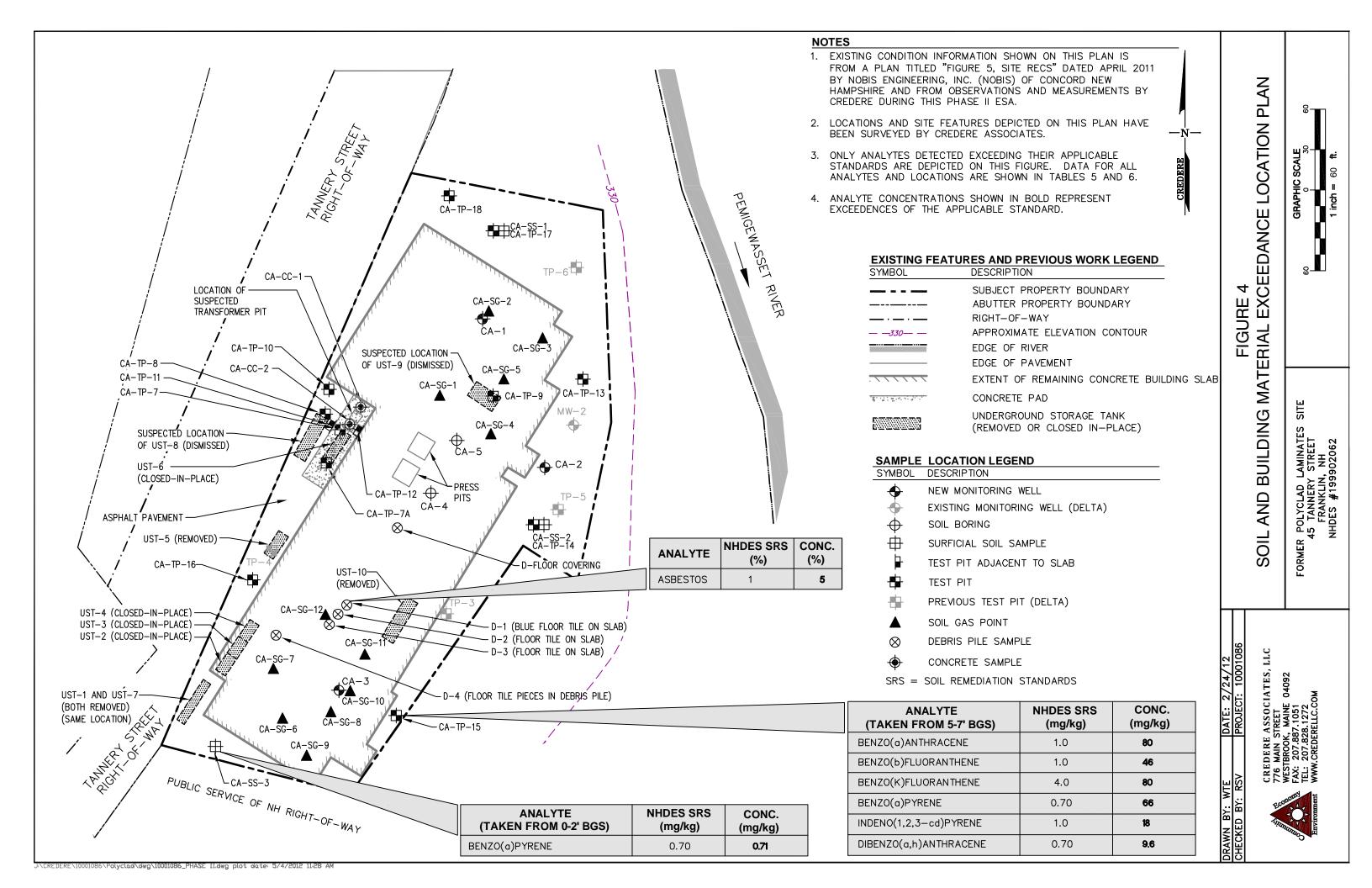
NA - Not applicable

NE - Not established


ND - All analyte concentrations were below the analytical method practical quantitation limit


Exceeds Relative Percent Difference quality control limit of 35% for solid samples as specified in the Project QAPP


⁽¹⁾ New Hampshire Soil Remediation Standards from the Risk Characterization Management Policy Env-Or 606.19, Soil Remediation Criteria and Env-Or 603.3 Ambient Groundwater Quality Standards.


FIGURES

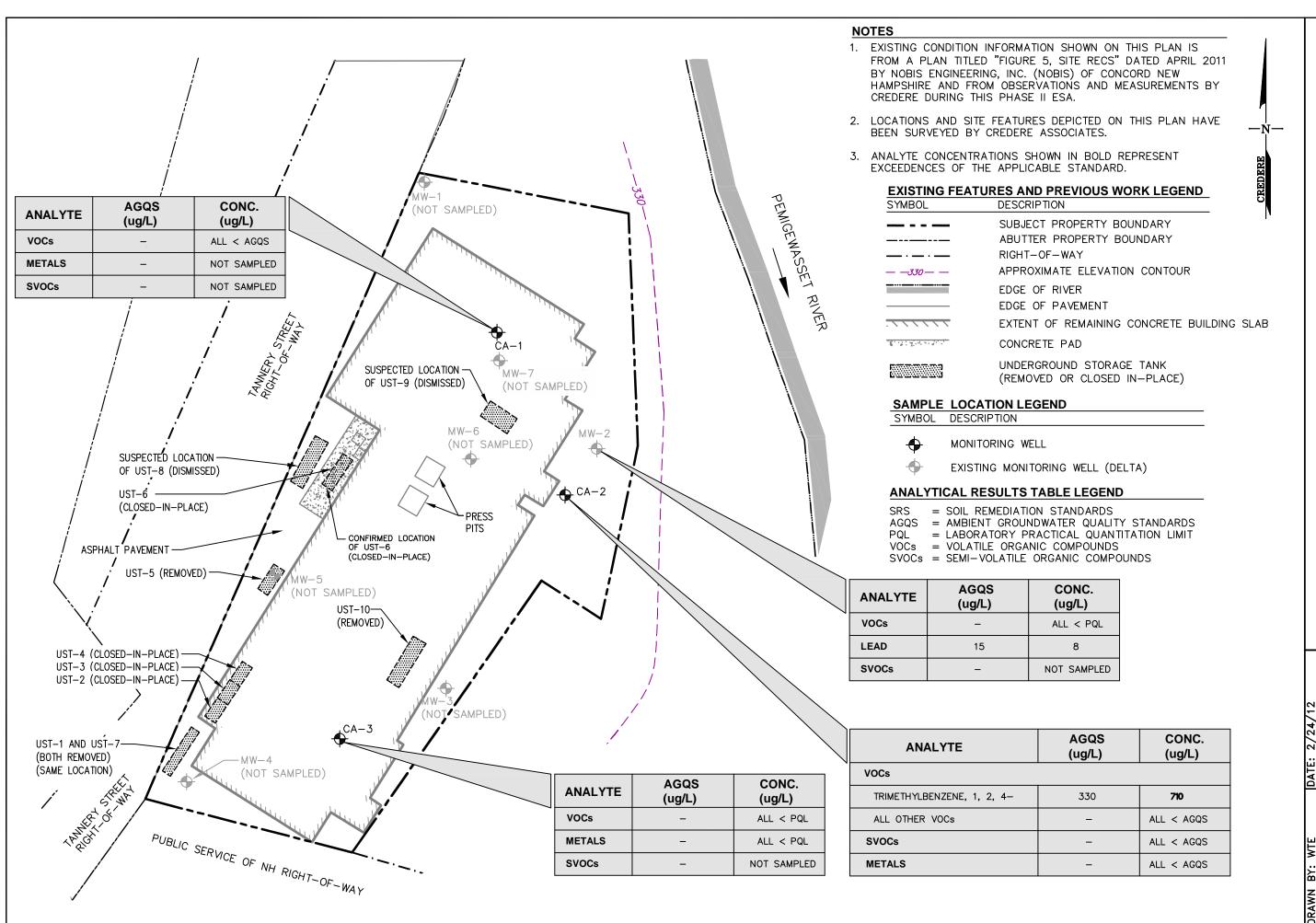
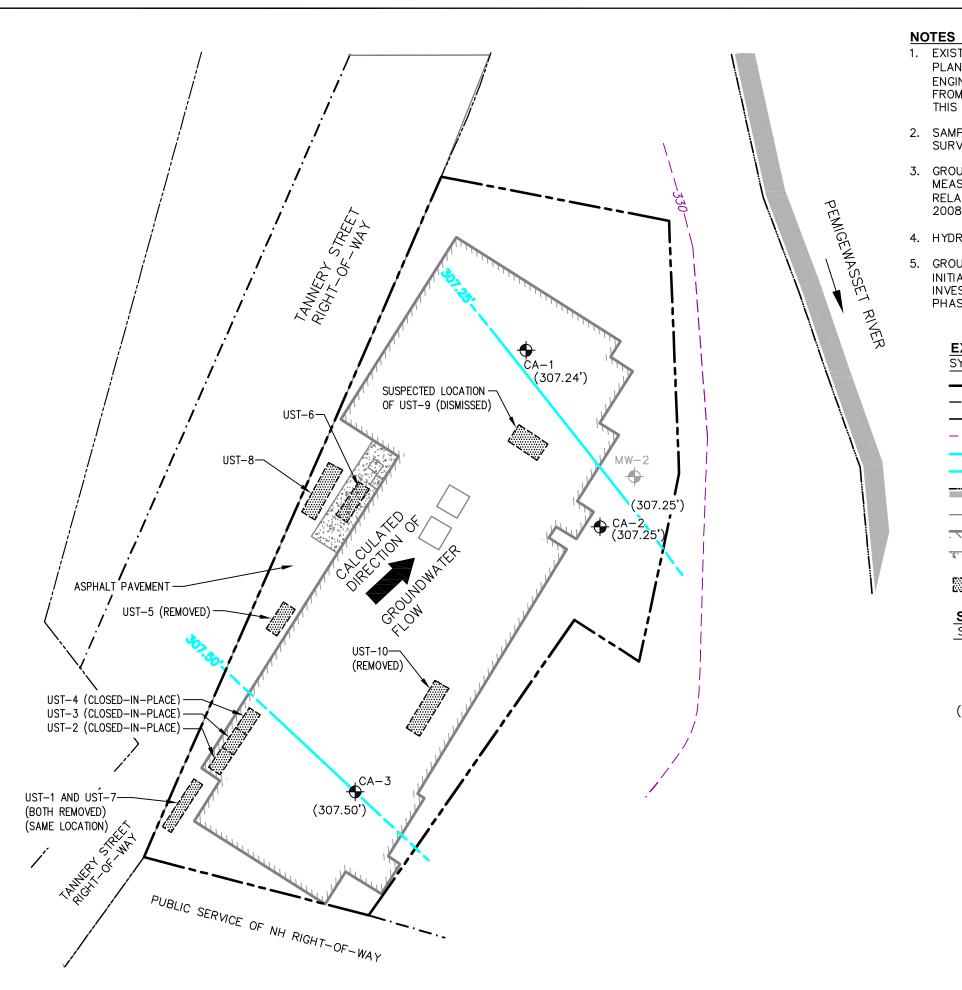


FIGURE 5 SUMMARY OF GROUNDWATER RESULT:

PLAN

S

SCAL


GRAPHIC

SITE

R POLYCLAD LAMINATES : 45 TANNERY STREET FRANKLIN, NH NHDES #199902062

CREDERE ASSOCIATES, LLC 776 MAIN STRET WESTBROOK, MAINE 04092 FAX: 207.887.1051

- 1. EXISTING CONDITION INFORMATION SHOWN ON THIS PLAN IS FROM A PLAN TITLED "FIGURE 5, SITE RECS" DATED APRIL 2011 BY NOBIS ENGINEERING, INC. (NOBIS) OF CONCORD NEW HAMPSHIRE AND FROM OBSERVATIONS AND MEASUREMENTS BY CREDERE DURING THIS PHASE II ESA.
- 2. SAMPLING LOCATIONS DEPICTED ON THIS PLAN HAVE BEEN SURVEYED BY CREDERE ASSOCIATES.
- 3. GROUNDWATER CONTOURS ARE BASED ON ELEVATION MEASUREMENTS TAKEN ON JULY 5, 2011. ELEVATIONS ARE RELATIVE TO BENCHMARK MW-2 (334.89') DEPICTED IN DELTA'S 2008 PHASE II ESA FOR THE SITE.
- 4. HYDRAULIC GRADIENT IS EQUAL TO APPROXIMATELY 0.001 FT/FT.
- 5. GROUNDWATER MONITORING WELL PLACEMENT WAS BASED ON THE INITIAL INFERRED DIRECTION OF GROUNDWATER FLOW AND/OR TO INVESTIGATE RECs AND OTHER CONDITIONS OBSERVED DURING PHASE II PERFORMANCE.

EXISTING FEATURES AND PREVIOUS WORK LEGEND

SYMBOL	DESCRIPTION
	SUBJECT PROPERTY BOUNDARY
	ABUTTER PROPERTY BOUNDARY
—·—·	RIGHT-OF-WAY
— <i>—330</i> — —	APPROXIMATE TOPOGRAPHIC ELEVATION CONTOUR
	CALCULATED GROUNDWATER CONTOUR
	ASSUMED GROUNDWATER CONTOUR
	EDGE OF RIVER BANK
	EDGE OF PAVEMENT
	EXTENT OF REMAINING CONCRETE BUILDING SLAB
<u>ब्रिक्त प्रमुख्य अंजन में ।</u>	CONCRETE PAD
	UNDERGROUND STORAGE TANK (REMOVED OR CLOSED IN—PLACE)

(REMOVED OR CLOSED IN-PLACE)

SAMPLE LOCATION LEGEND

SYMBOL DESCRIPTION

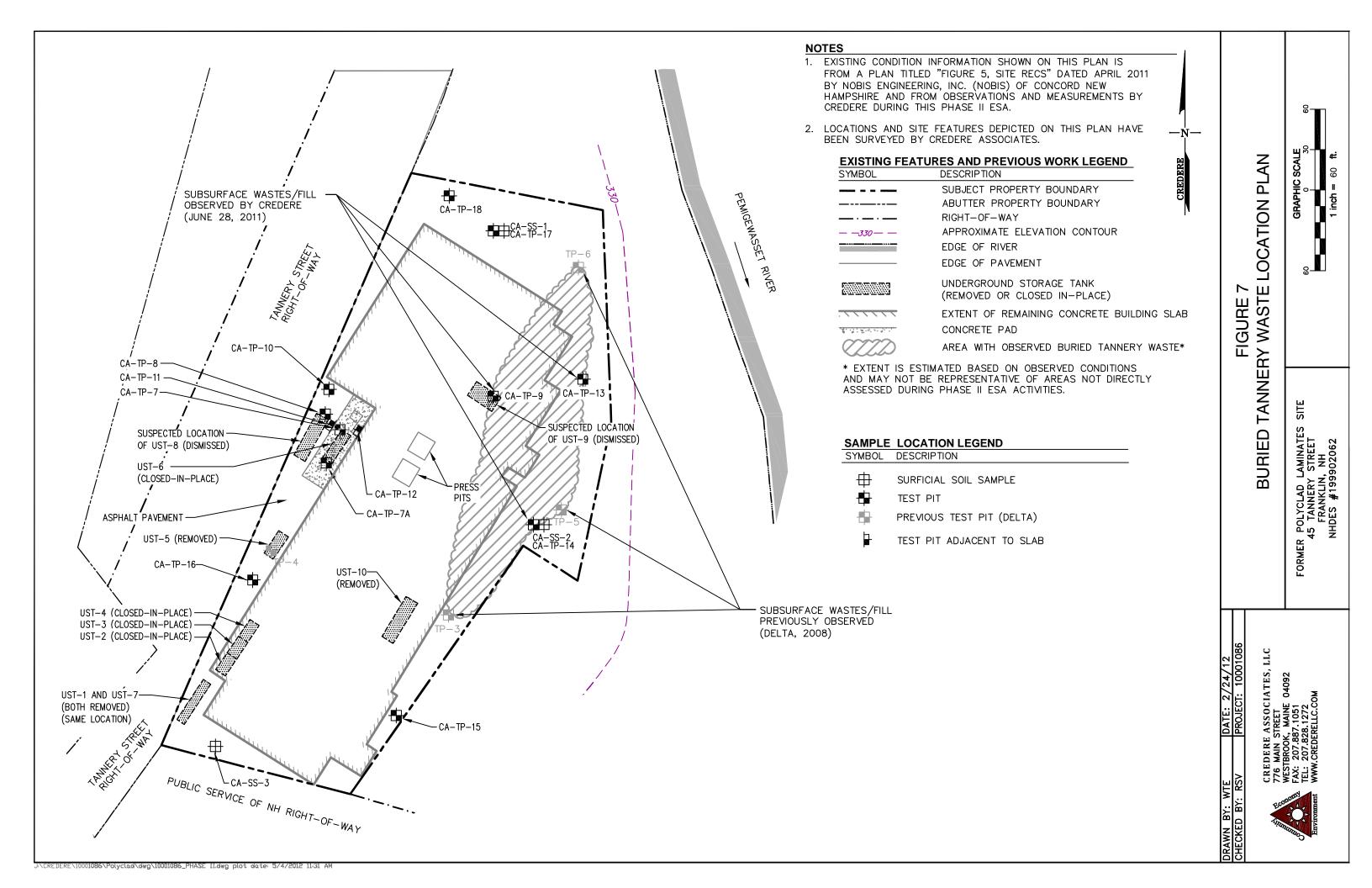
NEW MONITORING WELL

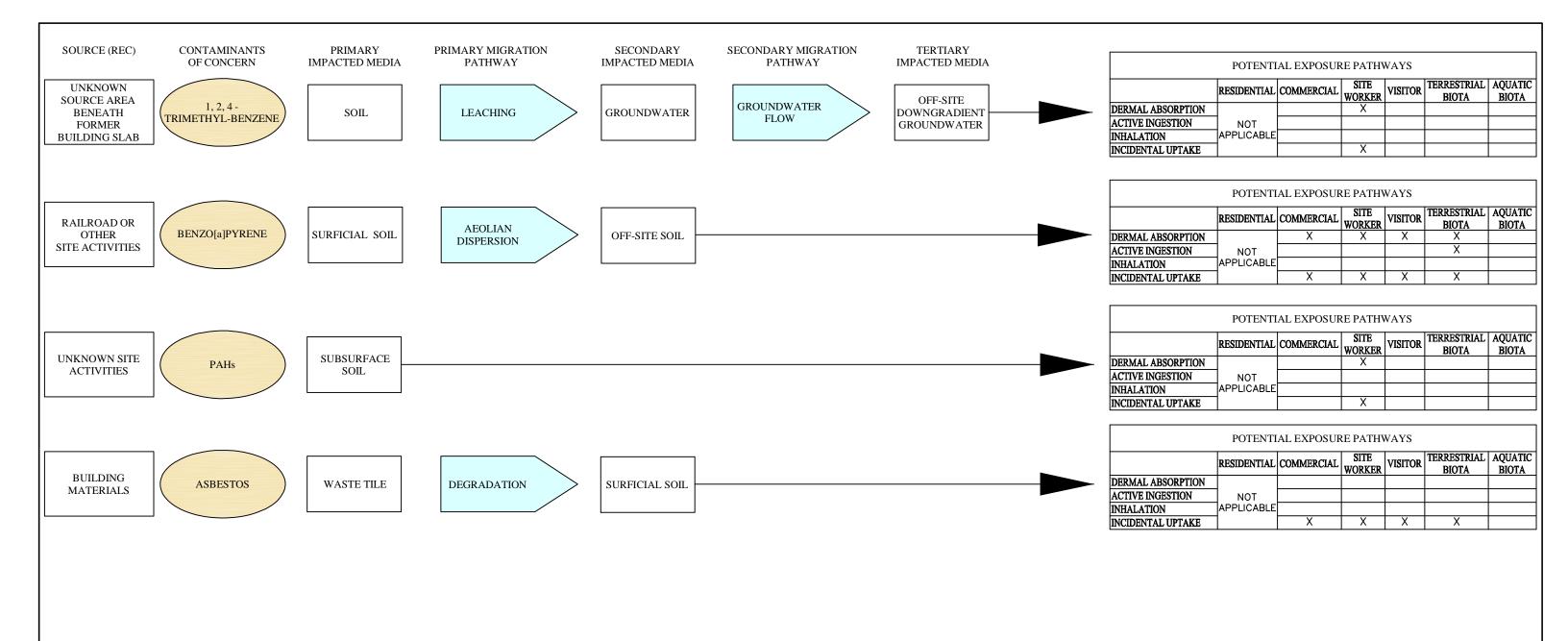
EXISTING MONITORING WELL (DELTA)

GROUNDWATER ELEVATION CALCULATED FROM JULY 5, 2011 DEPTH TO WATER (307.25')

CONTOUR EVATION FIGURE GROUNDWATER 2011 IJ, JULY

PLAN


GRAPHIC SCALE


SITE

R POLYCLAD LAMINATES S 45 TANNERY STREET FRANKLIN, NH NHDES #199902062

FORMER

DRAWN BY: JBO DATE: 2/24/2012
CHECKED BY: RSV/RIP PROJECT: 10001086

CREDERE ASSOCIATES, LLC
776 MAIN STREET
WESTBROOK, MAINE 04092
TEL: 207.828.1272
FAX: 207.887.1051
WWW.CREDERELLC.COM

FIGURE 8
CONCEPTUAL SITE MODEL

FORMER POLYCLAD LANINATES SITE 45 TANNERY STREET FRANKLIN, NH NHDES #199902062

APPENDIX A SITE-SPECIFIC QUALITY ASSURANCE PROJECT PLAN ADDENDUM

Waste Management Division PO Box 95, 29 Hazen Drive Concord, NH 03302

Type of Submittal (Check One-Most Applicable) \Box Remedial Action ☐ Work Scope Remedial Action Plan ☐ Reimbursement Request Bid Plans and Specifications Remedial Action Implementation Report ☐ UST Facility Report Treatment System and POE O&M ☐ AST Facility Report Activity and Use Restriction Emergency/Initial Response Action Temporary Surface Water Discharge Permit Groundwater Quality Assessment Initial Site Characterization Groundwater Management Permit Site Investigation Permit Application Site Investigation Report Renewal Application Supplemental Site Investigation Report **Deed Recordation Documentation GMZ** Delineation Abutter Notification Documentation Source Area Investigation Release of Recordation Data Submittal Data Submittal Annual Summary Report **Annual Summary Report** Unsolicited Site-Specific Quality Assurance Project Plan Addendum

SITE SPECIFIC QUALITY ASSURANCE PROJECT PLAN ADDENDUM

Closure Documentation

Former Polyclad Laminates Property 45 Tannery Street Franklin, New Hampshire NHDES#199902062 Brownfields Grant #BF-96111801

Prepared For:

Lakes Region Planning Commission 103 Main Street, Suite #3 Meredith, NH 03253 Phone: (603) 279-8171 Contact: Mr. Kimon Koulet

Prepared By:

CREDERE ASSOCIATES, LLC

776 Main Street Westbrook, ME 04902 Phone: (207) 828-1272 ext. 35

Contact: Richard Vandenberg, CG, PG

June 27, 2011

Recommended Risk Category (check one)			
Immediate Human Health Risk (Impacte water supply well, etc.)	d 4. Surface Water Impact	7. Alternate Water Available/Low Level Groundwater Contamination (<1,000 X	
2. Potential Human Health Risk (Water supply well within 1,000' or Si within SWPA)	 □ 5. No Alternate Water Available/No Existing Wells in Area □ 6. Alternate Water Available/High Level Groundwater Contamination (>1,000 X 	AGQS) 8. No AGQS Violation/No Source Remaining Closure Recommended	
3. Free Product or Source Hazard	AGQS)		

1. TITLE AND APPROVAL PAGE

SITE-SPECIFIC QUALITY ASSURANCE PROJECT PLAN (SSQAPP) ADDENDUM TO GENERIC QAPP RFA #08166 AND #09036 Revision 0

Site Information:

Former Polyclad Laminates Property
45 Tannery Street, New Hampshire
New Hampshire Department of Environmental Services (NHDES) Site No. 199902062

Funding Source:

Lakes Region Planning Commission's (LRPC's) Brownfields Assessment Program
United States Environmental Protection Agency (EPA) Brownfields Grant # BF96111801

Prepared By:

Richard S. Vandenberg, CG, PG
Credere Associates, LLC
776 Main Street, Westbrook, Maine 04092
(207) 828-1272

Date Prepared: June 27, 2011

Below is a listing of the names, titles, signatures, and signature dates of officials approving this SSQAPP: Ms. Jerry Minor-Gordon Date USEPA Brownfields Project Officer Mr Robert Reinhart Date USEPA Quality Assurance Officer Mr. John Liptak, M.Ed., P.G. Brownfields Project Manager ROBERT PMINICUCALT for Mr. Vincent R. Perelli New Hampshire DES QA Manager June 27, 2011 Mr. Richard S. Vandenberg, CG, PG Date Credere Associates, LLC Project QA Manager June 27, 2011 Mr. Robert I Patten, PE, LEED-AP, LSP Date

Credere Associates, LLC Project Manager

TABLE OF CONTENTS

1. T	FITLE AND APPROVAL PAGE	1
2. I	NTRODUCTION	4
3. F	FINDINGS OF THE PHASE I ESA	5
3.1 3.2 3.3 3.4 3.5	Site Description and History Other documented previous environmental work Cited by Nobis history of tanks at the property Identified Recognized Environmental Conditions other potential Environmental Conditions	5 6 7
4. F	POTENTIAL REDEVELOPMENT SCENARIO	10
5. (CONCEPTUAL SITE MODEL	11
5.1 5.2 5.3	Contaminants of Concern	12
6. S	SAMPLING DESIGN	15
7. F	FIELD ACTIVITY METHODOLOGY	21
7.1 7.2 7.3 7.4 7.5 7.6	GPR Survey and Electronic Tracing	21 22 23
8. F	REGULATORY STANDARDS	24
8.1 8.2 8.3 8.4 8.5 8.6	Soil Groundwater Soil gas ACM Lead-Based Paint PCB Bulk Products	24 24 24
9. F	PROPOSED PROJECT SCHEDULE	26

FIGURES

Figure 1	Site Location Map
Figure 2	Credere Organization and Responsibility Chart
Figure 3	Proposed Phase II Sample Location Plan
Figure 4	Conceptual Site Model

TABLES

Table 1	Potential Contaminants of Concern (imbedded in text)
Table 2	Sample Reference Table

2. INTRODUCTION

The Lakes Region Planning Commission (LRPC) has received a United States Environmental Protection Agency (USEPA) Brownfields Hazardous Substance Assessment Grant to conduct environmental investigations at sites within the 30 member communities of the Lake Winnipesaukee Region. The investigations provide the basis for reuse planning specific to each site's community needs. The assessment of each site will include the completion of Phase I and Phase II Environmental Site Assessments (ESAs) and may also potentially include the development of cleanup and reuse options for selected sites.

On behalf of LPRC's Brownfields Assessment Program, this document is a Site-Specific Quality Assurance Project Plan (SSQAPP) Addendum for the Former Polyclad Laminates Property located at 45 Tannery Street, Franklin, New Hampshire (the Site). **Figure 1** shows the general location of the Site in Franklin and **Figure 2** is Credere's Organization and Responsibility Chart for the project and **Figure 3** is a plan showing the locations of proposed sampling work.

This SSQAPP presents the following information:

- 1. A summary of the pertinent findings of the Phase I ESA
- 2. The potential redevelopment scenario for the Site
- 3. A conceptual site model
- 4. Credere's proposed sampling design including recommended sample locations, and analytical methods for proposed Phase II ESA activities
- 5. Credere's proposed field activity methodology
- 6. Regulatory standards applicable to the Site
- 7. A proposed project schedule

This SSQAPP was prepared to be used in concert with Credere Associates, LLC (Credere) Generic Quality Assurance Project Plan (QAPP) Rev. 2 (USEPA RFA #08166 and #09036) which was prepared for all of Credere's USEPA work in New Hampshire. The quality assurance and quality control (QA/QC) procedures outlined in Credere's Generic QAPP will be followed for this investigation program including sample collection, handling, and analysis, chain of custody, data management and documentation, data validation, and data usability assessments.

3. FINDINGS OF THE PHASE I ESA

A Phase I ESA was completed by Nobis Engineering, Inc. (Nobis) for the Site in April 2011. The Phase I ESA was conducted using EPA Brownfields funds under Brownfields Coalition Assessment Grant #RP-96128501 at the direction of the New Hampshire Department of Environmental Services (NHDES).

The following is a summary of the pertinent findings from the Phase I ESA:

3.1 SITE DESCRIPTION AND HISTORY

The Site is composed of a single vacant 1.97-acre parcel of land located at 45 Tannery Street in Franklin, New Hampshire, that is situated along the Pemigewasset River. The Site consists of a vacant lot with only the former building's concrete slab-on-grade foundation and a small pile of debris. **Figure 3** shows the former site building footprint and other pertinent Site features.

According to Nobis's Phase I ESA report, which was reviewed as a part of the development of this SSQAPP, the Site was first developed in 1892. By approximately 1930, the first building was constructed on the Site. The most recent building was demolished in 2008 after it collapsed due to heavy winter snow cover.

According to the Nobis Phase I ESA report, the Site appears to be have used for railroad purposes when the Boston & Maine and Bristol Rail Road transected the Site beginning in 1892. It is not clear when railroad activities ceased on the Site. However, records do show that the Hingston Leather Company, Inc. and Louis Verza Leather Company were using the Site for tannery activities beginning in the 1950's until the mid to late 1970's. Nobis indicated that there was very little environmental information available for the Site as it pertains to the former tannery operations.

Between 1979 and 1980, Polyclad Laminates, Inc. began operations on the Site. Polyclad Laminates, Inc. manufactured component materials used in multi-layered circuit boards called "pre-preg". The process involved dipping fiberglass cloth in a dip tank filled with epoxy resin. Polyclad Laminates used the Site for the manufacture of pre-preg from between 1979 and 1980 until around 2006.

3.2 OTHER DOCUMENTED PREVIOUS ENVIRONMENTAL WORK CITED BY NOBIS

The Nobis Phase I details the completion of several other investigations, which were completed outside the Brownfields due diligence process, likely as part of a previous effort to sell the Site. Documented previous works include the following:

- 1. A January 12, 1999 Underground Storage Tank (UST) Closure Report UST-1 prepared by Les A. Cartier and Associates, Inc.
- 2. A July 15, 1999 UST Closure Report UST-2, UST-3 and UST-4 prepared by Environmental Science & Engineering (ESE).
- 3. A 2005 Phase I Environmental Site Assessment and Limited Compliance Review prepared by Delta Consultants.
- 4. An April 10, 2008 Phase II Environmental Site Assessment prepared by Delta Consultants.
- 5. An October 15, 2008 UST Closure Report UST-7 and UST-10 prepared Delta Consultants.

The conditions identified by Nobis in **Section 3.4** below cumulatively considered all the above referenced previous investigations. Credere also reviewed and considered this cumulative work as a part of the development of this SSQAPP.

3.3 HISTORY OF TANKS AT THE SITE

The operational history of USTs is an important element in the environmental history of the Site. As result, the information below, as reported by Nobis in the April 2011 Phase I ESA, provides an inventory of the USTs which have been identified at the Site. Additional details concerning UST history can be reviewed in the previously submitted Nobis Phase I ESA.

UST ID	Capacity (gallons)	Material Held	Current Status
UST -1	6,000	Methyl Cellosovle	Removed, 1998
UST-2	4,500	CS 350 Acetone	Closed in-place, 1998
UST-3	4,500	Epoxy Resin	Closed in-place,1999
UST-4	6,000	CS 350 Acetone	Closed in-place, 1999
UST-5	4,000	Gasoline	Removed, date uncertain.
UST-6	12,000	Fuel Oil	Closed in-place, date uncertain
UST-7	13,500	Epoxy Resin	Removed 2008
UST-8	4,000	Fuel Oil	Approximate location from 1964 Sanborn Map
UST -9	4,000	Fuel Oil	Approximate location under slab from 1929 Sanborn Map
UST-10	8,000	Waste Petroleum Distillates	Removed 2008

3.4 IDENTIFIED RECOGNIZED ENVIRONMENTAL CONDITIONS

The following is a summary of the *recognized environmental conditions* (RECs) that were identified by Nobis and reported in their April 2011 Phase I ESA for the Site:

- 1. The presence of a 12,000-gallon fuel oil UST (identified as UST-6) that is located in the vicinity of the loading dock and was closed in-place (date uncertain) represented a REC.
- 2. The potential presence of a reported 4,000-gallon fuel oil UST (identified as UST-8) shown on a Sanborn Map, represented a REC because the presence of this tank has not been confirmed and <u>no</u> documentation regarding closure of the tank or information on the integrity of the tank was identified during the Phase I ESA.
- 3. The potential presence of a reported 4,000-gallon fuel oil (identified as UST-9) shown on a Sanborn Map, represented a REC because the presence of this tank has not been confirmed and <u>no</u> documentation regarding closure of the tank or information on the integrity of the tank was identified during the Phase I ESA.
- 4. Due to the potential for undocumented past releases to the environment, Nobis identified a REC associated with presence of a former gasoline dispenser and a number of filling caps formerly located in the vicinity of former UST-6 because these items may have been associated with additional undocumented USTs in this area, and documentation regarding the removal of this dispenser or the disposition of related piping with respect to potential releases has not been confirmed.
- 5. The presence of a sheen of degraded gasoline previously noted in 2008 in monitoring well MW-2 for which a source was not identified, represents a REC due to the potential for an unidentified source of petroleum contamination to be present at the Site. [Note: According to a Phase II Environmental Site Assessment Report prepared by Delta Consultants on April 10, 2008, previous sampling data collected in 2007 indicates that no VOCs, metals or polychlorinated biphenyls (PCBs) were detected in excess of New Hampshire Soil Remediation Standards (SRS) in a soil sample collected (30 to 32 feet) during drilling of this well and no volatile organic compounds (VOCs) or semi-volatile organic compounds (SVOCs) were detected in excess of Ambient Groundwater Quality Standards (AGQS) in the groundwater sample collected from this well. However, a petroleum sheen was noted during sampling of the groundwater and the tentatively identified compounds (TICs) noted during laboratory analysis revealed that the sheen was likely gasoline.]
- 6. The potential that a subsurface structure identified during a GPR survey east of the former building, which was concluded to be a former concrete septic tank, represents a REC because of the potential for previous undocumented subsurface storage or disposal of hazardous substances and/or petroleum products in and around this structure.

- 7. The presence of buried waste related to the previous usage of the Site as a tannery represents a REC because the understanding of the extent and disposition of the waste (leather waste or unsuitable materials) is limited and may have lead to improper disposal of hazardous substances.
- 8. Nobis concluded that because of the potential for undocumented releases of hazardous substances in the past or in the future, pipes that were previously noted emitting unknown solvent odors and elevated total volatile organic readings in the former chemical mixing room in the southwestern portion of the building, represented a REC because the source of these odors (which may be a formerly closed in-place acetone tank) is not known.
- 9. Two former press pits located within the manufacturing slab that are stained with petroleum represent a REC and they have not been fully assessed.
- 10. A pile of unknown debris located on the southwestern portion of the Site that is consistent with demolition debris represents a REC for its potential to contain waste ACM, lead-based paint [and other contaminants].

3.5 OTHER POTENTIAL ENVIRONMENTAL CONDITIONS

Based on review of the April 2011 Nobis Phase I ESA, Credere offers the following list of other potential environmental conditions:

- 1. Nobis documented that the Site was previously used for railroad activities beginning as early as 1892. Nobis concluded that this past use of the Site represented a *de minimus condition* because any contaminants from this past use would likely be deemed a background condition. Credere agrees with this assertion, but it is our opinion that non-point source background type releases of polycyclic aromatic hydrocarbons (PAHs), which would be considered the primary contaminants of concern, still represent a threat to human health if they exceed applicable NHDES soil standards and should be addressed as a part of future redevelopment of the Site. Therefore, it is our opinion that this past use should be assessed as a part of this Phase II ESA.
- 2. Nobis indicated in the Phase I ESA that a data gap in the form of snow cover was noted during the Site Reconnaissance portion of their work. Given that the ground could not be observed, confirmation of exterior surface conditions is warranted prior commencing Phase II ESA field work because additional RECs may be identified that require assessment. As a result, a supplemental Site Reconnaissance is recommended as the first task of this Phase II ESA.
- 3. A former electrical transformer was located on the west side of the building. No information was noted in the previous reports regarding the potential presence of polychlorinated biphenyl's (PCBs) in the transformer. However, considering the timeframe when this transformer would have been in operation, it may have contained

PCBs. For this reason, the potential presence of PCBs is a concern that should be considered.

4. POTENTIAL REDEVELOPMENT SCENARIO

The City of Franklin has partnered with LRPC to assess the Site so that the City can redevelop the Site into a new Water Department Building or other related municipal use.

5. CONCEPTUAL SITE MODEL

The Conceptual Site Model (CSM) includes a description of source areas and/or RECs, the nature and extent of the identified or suspected releases, potential contaminants of concern (COCs), impacted media, transport mechanisms, and potential human and environmental receptors.

5.1 CONTAMINANTS OF CONCERN

Based on the findings of the Phase I ESA, the following potential COCs were identified for each of the RECs identified at the Site:

	Table 1 - Potential Contaminants of Concern (COCs)											
REC	REC Nickname	COCs	Potential Source									
REC-1	UST-6	Volatile Organic Compounds (VOCs) PAHs Total Petroleum Hydrocarbons (TPH)	Fuel oil releases from the closed in-place 12,000 gallon UST (UST-6)									
REC-2	UST-8	VOCs PAHs TPH	Fuel oil releases from the potential presence of a 4,000 gallon UST (UST-8) that was documented on a 1964 Sanborn Map.									
REC-3	UST-9	VOCs PAHs TPH	Fuel oil releases from the potential presence of a 4,000 gallon UST (UST-9) that was documented on a 1929 Sanborn Map.									
REC-4	Filling Caps and Dispenser near UST-6	VOCs Lead (Pb)	Gasoline from past releases related to the use of filling caps, a dispenser, and undocumented USTs.									
REC-5	Degraded Gasoline in MW-2	VOCs Pb	Gasoline from an undocumented source.									
REC-6	Concrete Septic Tank	VOCs Semi-volatile Organic Compounds (SVOCs) PCBs RCRA 8 Metals (Ag, As, Ba, Cd, Cr, Hg, Pb, and Se) Plus Zn, Cu and Ni)	Tannery and multi-layered board manufacturing operational waste disposed of in the septic system and released to the environment.									
REC-7	Buried Tannery Waste	VOCs PAHs RCRA 8 Metals (Ag, As, Ba, Cd, Cr, Hg, Pb, and Se) Plus Zn, Cu, and Ni	Leaching of contaminants from tannery wastes disposed outside around the building.									
REC-8	Solvent Odor Emitting Pipe in Chemical Mixing Room	VOCs	Acetone releases from a pipe that may lead to a previously closed in-place tank.									

	Table 1 - Potential Contaminants of Concern (COCs)											
REC	REC Nickname	COCs	Potential Source									
REC-9	Press Pits	VOCs SVOCs TPH PCBs RCRA 8 Metals (Ag, As, Ba, Cd, Cr, Hg, Pb, and Se) Plus Zn, Cu, and Ni	Releases of tannery and/or multi-layered board manufacturing waste through the press pits.									
REC-10	Building Waste Debris Pile	Lead Asbestos Containing Materials (ACMs) PCBs	Building materials containing hazardous substances.									
Other	Rail road Use of Site	PAHs	Non-point sources releases associated with past rail road activities on the Site.									
Other	Transformer	PCBs	Former Electric Transformer on the west side of the building.									

5.2 GEOLOGY, STORM WATER FLOW, AND GROUNDWATER FLOW

The Site is located near the west bank of the Pemigewasset River in a developed area of Franklin, New Hampshire. The eastern adjoining property between the Site and river is currently undeveloped. Area topography generally slopes east towards the river. Storm water at the Site likely follows surficial topography and is directed into the river.

Soil boring data contained in reports that were reviewed as a part of the Phase I ESA indicate that soil beneath the Site consists of a mixture of sand and gravel fill material with some areas of tannery waste (hides) noted on the east side of the Site. A fine to medium light brown to dark brown sand horizon is present below the fill horizon. The water table was identified between 28 and 30 feet below the surface.

5.3 DEFINITIONS OF EXPOSURE PATHWAYS AND POTENTIAL RECEPTORS

To aid in a thorough understanding of the environmental concerns present at the Site, a graphical presentation of the identified COCs and potential migration pathways to receptors is included as **Figure 4**. Exposure Pathways and Potential Receptors depicted on the CSM are defined as follows.

Exposure Pathways describe how a human or environmental receptor comes into contact with contaminants which may be present at the Site. Exposure pathways presented in the CSM include the following:

Inhalation: This pathway is primarily associated with groundwater where

petroleum contaminated groundwater is within 30 feet (horizontally or vertically), or non-petroleum contaminated groundwater is within 100 feet (horizontally or vertically) of an occupied structure, or when depth to groundwater is unknown. In addition, this pathway is applicable when receptors may incidentally inhale impacted media in the form of dust, vapor, or

airborne particulates.

Exposure via dermal absorption occurs when receptors are Dermal exposed to chemical concentrations present in soil, groundwater, Absorption:

or surface water through direct contact with the skin.

Active Ingestion: The active ingestion pathway represents exposure which may

> occur through the active ingestion of contaminant concentrations via a drinking water supply well or through agricultural products.

This pathway is applicable when receptors may incidentally Incidental ingest impacted media in the form of dust or airborne particulates. Ingestion

Potential Receptors are categorized by duration of exposure and intensity of use at the Site. The receptor categories for this project described in the CSM include the following:

Commercial receptors are those which are present at the Site for Commercial:

long durations but with low intensity exposure such as indoor

office workers.

Site workers are present at the Site for short durations though Site Worker:

> intensity of use is high, such as during non-routine activities including construction or utility work. Examples include outdoor

commercial workers and construction workers.

Visitors are characterized by low duration, i.e. less than two Visitor:

> hours per day, and low intensity usage such as that which would occur during activities such as walking, shopping, and bird

watching.

Terrestrial and These receptors include flora and fauna which may be exposed to Aquatic Biota:

in their respective land-based or aquatic contaminants

environments.

Lakes Region Planning Commission SSQAPP Addendum Former Polyclad Laminates Property, Franklin, – NHDES#199902062 June 27, 2011

Based on known history of the Site, the identified contaminants of concern may have been released to the environment through surficial and subsurface releases associated with previous industrial usage, filling with tannery waste, the degradation of potentially hazardous building materials, and previous bulk petroleum storage. Primary impacted media at the Site include surficial and subsurface soil, and groundwater.

Contaminants present in surficial soil may migrate through aeolian dispersion and impact off-site receptors, or they may affect subsurface conditions through infiltration and leaching. Similarly, releases which have impacted subsurface soil conditions have the potential to infiltrate and leach to the overburden groundwater aquifer. Following the redevelopment of the Site, impacted groundwater presents a potential risk to indoor air conditions through contaminant migration via vaporization and diffusion.

Human receptors identified for the Site include future commercial workers at the Site, site workers (i.e. construction workers, etc.), and visitors. Also, current and future potential environmental receptors include the Pemigewasset River and terrestrial and aquatic biota.

Exposure pathways to commercial workers at the site and visitors potentially include dermal absorption and incidental ingestion during routine activities. An inhalation exposure pathway also may exist for commercial workers through vapor intrusion. Site construction workers may be exposed through dermal absorption, inhalation, and incidental ingestion during excavation activities. Terrestrial and aquatic biota are potentially exposed through active ingestion of impacted groundwater; however, the active ingestion pathway does not currently nor is expected to pose a potential future pathway for human receptors, as the Site and adjacent properties in the vicinity are served by municipal water.

6. SAMPLING DESIGN

The following section describes the proposed work to be conducted to confirm or dismiss each REC and includes the number of samples that will be collected during the Phase II ESA sampling program along with the proposed analysis. Proposed sample locations are depicted on **Figure 3** and sampling methodologies are described in **Section 7**. Detailed descriptions of laboratory methods are included on attached **Table 2**.

- REC-1: This REC will be assessed by first conducting a ground penetrating radar (GPR) survey of the area thought to contain the closed in-place 12,000-gallon fuel oil UST (UST-6) to determine its exact location. One test pit (CA-TP-7) will be dug immediately adjacent to the tank (Figure 3). During test pit activities, removed soil will be field screened with a properly calibrated photoionization detector (PID) at 1 to 2 foot depth intervals. Multiple test pits may be needed next to the tank to thoroughly evaluate the condition of the soil around it. One soil sample will be collected from the test pit (and interval) exhibiting the highest PID measurement. If PID measurements indicate that little to no residual VOCs are present, then a sample will be collected from adjacent to the tank, but at the same level as the bottom of the tank. For this and all in-place tanks that are being evaluate via test pit work, please note that Credere will consider the position of the tank when digging test pits. If the tank appears to be tipped (i.e. not horizontal), then Credere will direct the digging of the test pit along the deepest side or end. The collected soil sample will be sent to Absolute Resource Associates, LLC (Absolute Resource) of Portsmouth, NH to be analyzed for VOCs, PAHs, and TPH.
- REC-2: This REC will be assessed by first conducting a GPR survey of the area thought to contain the 4,000-gallon fuel oil UST (UST-8) to determine its location. If the tank has not been removed, one test pit (CA-TP-8) will be dug immediately adjacent to the tank to assess the condition of the soil adjacent to the tank (**Figure 3**). Similar to above, multiple test pits may be needed next to the tank to thoroughly evaluate the condition of the soil around it. If the tank appears to have been removed and the tank grave can be discerned, Credere will install the test pit directly in the center of the perceived tank grave. During test pitting, removed soil will be field screened with a properly calibrated PID. One soil sample will be collected from the test pit (and interval) exhibiting the highest PID measurement. If PID measurements indicate that little to no residual VOCs are present, then a sample will be collected from adjacent to the tank, but at the level of the bottom of the tank. The collected soil sample will be sent to Absolute Resource to be analyzed for VOCs, PAHs, and TPH.
- REC-3: This REC will be assessed by first conducting a visual inspection for evidence (e. g. fill, vents, concrete scars) of UST-9, a 4,000-gallon fuel oil UST. If the visual survey proves unsuccessful, a GPR survey will be conducted to locate it. If the tank has not been removed, portions of the concrete slab will be removed and one test pit (CA-TP-9) will be dug immediately adjacent to the tank to assess the condition of the soil

adjacent to the tank (**Figure 3**). Multiple test pits may be needed next to the tank to thoroughly evaluate the condition of the soil around it. If the tank appears to have been removed and the tank grave can be discerned, Credere will install the test pit directly in the center of the perceived tank grave. During test pitting, removed soil will be field screened with a properly calibrated PID at 1 to 2 foot depth intervals. One soil sample will be collected from the test pit (and interval) exhibiting the highest PID measurement. If PID measurements indicate that little to no residual VOCs are present, then a sample will be collected from adjacent to the tank, but at the level of the bottom of the tank. The collected soil sample will be sent to Absolute Resource to be analyzed for VOCs, PAHs, and TPH.

If a tank or evidence of tank is not identified during this work, five shallow soil probes (CA-SG-1 to CA-SG-5) will be installed through the concrete slab to collect soil gas to determine if the vadose zone under the slab has been impacted by contamination from the tank (i.e. looking for light component of fuel oil - naphthalene). The collected soil gas will be analyzed with a properly calibrated PID equipped with an 11.7 electron volt lamp. If this work reveals that volatile organics are present, one soil gas sample will be sent to Columbia Analytical for VOC analysis to identify the number and type of VOCs present. In this scenario, Credere will then install a boring (CA-1) adjacent to the soil gas probe exhibiting the highest result. During drilling, if field screening results indicate that soil contamination appears to extend down to the water table, then a groundwater monitoring well would be installed at this location. A groundwater sample will be collected to assess the groundwater for VOCs. In the absence of detectable concentrations of VOCs and other direct evidence of a tank, Credere will rely on groundwater quality data collected from MW-2 (which will be sampled as a part of assessing REC-5) to assess the potential for a source area of contamination to be present as part of this REC.

The REC associated with the 'fill caps and dispenser' will be assessed by first REC-4: conducting a GPR survey and/or electronic line tracing to determine if any tanks remain associated with this equipment. If this proves unsuccessful, then the filling caps will be dug up and manually traced. If a tank or tanks are identified associated with the fill caps, two test pits (CA-TP-10 and CA-TP-11) will then be dug adjacent to the tanks in a fashion similar to that described for REC-1, REC-2, and REC-3. For the purposes of this investigation, Credere has assumed that two tanks will be found and one test pit will be dug next to each. However, Credere also anticipates that one additional test pit will be dug in the location of the former dispenser (CA-TP-12). During test pitting, removed soil will be field screened with a properly calibrated PID at 1 to 2 foot intervals. Only the soil sample collected from each test pit (and interval) exhibiting the highest PID measurement will be sent to the laboratory. If PID measurements indicate that little to no residual VOCs are present, then one sample will be collected from the fill/native soil interface below the dispenser or the perceive level of bottom of any tank or tank grave(s). All collected soil samples will be sent to

Absolute Resource and analyzed for VOCs and lead. If no evidence of tanks are identified in this area, then only the one test pit (CA-TP-12) will be dug.

- REC-5: The REC associated with the degraded gasoline identified in existing monitoring well MW-2 will be assessed in the following fashion:
 - 1) Collect a groundwater sample from existing monitoring well MW-2 using low flow sampling techniques and analyze it for VOCs and dissolved lead.

Depending on the results of work conducted to assess REC-3, one of the following two paths will be taken to further evaluate REC-5 if the presence of degraded gasoline is confirmed in monitoring well MW-2.

- 2) Credere will evaluate field data collected from soil probes (CA-SG-1 to CA-SG-5) and monitoring well CA-1 to help locate the potential gasoline source for the MW-2 contamination. The results of this evaluation will be included in the Phase II ESA along with a specific recommendation for future work, if needed.
- 3) If the soil probes and upgradient monitoring well work was not completed as a part of the assessment of REC-3, then Credere will install five soil gas probes (CA-SG-1 to CA-SG-5) to locate the gasoline source under the building slab upgradient from MW-2, if it is present. Monitoring well CA-1 will be installed in the perceived area of highest VOC contamination based on field screening. CA-1 will be installed upgradient of MW-2 even if the soil gas results do not show the presence of a soil gas source under the building. As indicated as a part of the investigation of REC-3, one soil gas sample collected from the soil probes and will be sent to the laboratory for VOCs analysis. In addition, one soil sample will be collected from CA-1 and submitted to the laboratory for analysis of TPH, VOCs, and lead by EPA 200.7/6010 and one groundwater sample will be collected from CA-1 and submitted to the laboratory for VOCs and dissolved lead by EPA 200.7/6010.
- REC-6: The REC associated with the suspected concrete septic tank will be assessed by first conducting a GPR survey to locate the tank. Once the tank is located, a test pit (CA-TP-13) will be dug immediately adjacent to the tank. Multiple test pits may be needed next to the tank to thoroughly evaluate the condition of the soil around it. During test pitting, removed soil will be field screened with a properly calibrated PID and X-Ray Fluorescence Meter (XRF) at 1 to 2 foot depth intervals. However, only one soil sample will be collected from the test pit (and interval) exhibiting the greatest evidence of contamination [visually, olfactory, PID and/or XRF measurement]. In the absence of evidence of contamination, the sample will be collected from adjacent to the tank, but at the level of the bottom of the tank. The collected soil sample will be sent to Absolute Resource to be analyzed for VOCs, SVOCs, PCBs and RCRA 8 Metals plus Zn, Cu, and Ni. In addition, if present, one (1) sample of sludge will be collected from the tank and analyzed for VOCs, SVOCs, PCBs, and RCRA 8 Metals plus Zn, Cu, and Ni. This sample will be field screened as described above.

The test pit work will help assess if there are pipes directed towards an old leachfield or discharge area. Additional geophysical work may be conducted to trace out the observed discharge line. At the terminus of the discharge, a boring (CA-2) will be drilled by T&K Drilling. During drilling, soils will be screened in the field via a properly calibrated PID and XRF. These samples will be visually inspected for evidence of contamination. In addition, the soil sample exhibiting the highest PID measurement or greatest visual extent of contamination, during drilling will be sent to the laboratory for analysis of VOCs, SVOCs, PCBs, and RCRA 8 metals. The boring will be finished in the water table and a monitoring well will be constructed to allow for the collection of a groundwater sample at this location. Groundwater will be collected from this location and will be analyzed for VOC, SVOCs, and dissolved RCRA 8 Metals plus Zn, Cu, and Ni. However, no PCB samples will be collected from the groundwater because we do not expect this parameter to dissolve in groundwater.

REC-7: The REC related to the presence of buried tannery waste (hides) will be assessed by first conducting a GPR survey to define, if possible, the horizontal extent of waste on the Site. Following the completion of GPR, up to five test pits (CA-TP-14 to CA-TP-18) will be dug to confirm the GPR results and to define the vertical limits of waste observed. Two of these test pits will be dug near the northern property boundary to determine if these wastes extend off-site. During test pitting, soil will be visually screened and evaluated with a properly calibrated PID and XRF. One representative soil sample from each test pit will be collected for laboratory analysis. Soil in direct contact with tannery waste will be selected to represent a worst case scenario. Samples will be sent to the Absolute Resource for VOCs, PAHs, and RCRA 8 Metals plus Zn, Cu and Ni.

REC-8: The REC associated with the pipes in the former chemical mixing room that was previously emitting solvent odors will be assessed by installing six (6) sub-slab soil gas probes (CA-SG-6 to CA-SG-11) to determine if past or present solvents being emitted are impacting the vadose zone beneath the concrete slab with VOCs. Locations CA-SG-6 to CA-SG-11 will be installed to evaluate this REC. Representative soil gas will be removed from each soil gas point and screened in the field with a properly calibrated PID. The sample with the highest PID measurement will sent to the laboratory for VOC analysis to determine the number and type of VOCs present. In addition, any piping present on-Site noted near closed in-place UST#2 would be field screened with a PID for evidence of solvent emission. If this data shows that the source of the solvent odors is likely a previously closed in-place tank, then a recommendation to remove the tank will be made in the Phase II ESA Report. A soil boring and monitoring well (CA-3) will be installed to assess the impact to Site soil and groundwater adjacent to the soil gas probe location that exhibited the highest field screening results. CA-3 will be installed at the location shown on Figure 3 if no vapor source is identified during the soil probe work. This work will include appropriate

field screening as described above and the collection of one (1) soil sample and one (1) groundwater sample for laboratory VOC analysis.

- REC-9: The REC associated with the press pits will be assessed by advancing two (2) soil shallow borings (CA-4 and CA-5) through the concrete bottom of the pits. Soil samples will be collected directly under the concrete slab to determine if substances added to the pit have released to the soil beneath the pits. Collected samples will be field screened with a PID and grab samples will be collected from both borings and laboratory analyzed for TPH, VOCs, RCRA 8 Metals plus Zn, Cu, and Ni, SVOCs, TPH, and PCBs.
- REC-10: The REC associated with the debris pile identified on the concrete slab by Nobis will be assessed by collecting representative building material samples (Debris-1, etc.) and analyzing them for lead, asbestos, and PCBs. To accomplish this work, Credere will retain the services of Absolute Resources because the pile likely contains asbestos and sampling of the waste must be accomplished in accordance with NHDES requirements.
- OTHER: Due to snow cover present during Nobis's Phase I Site Reconnaissance, the first task of this Phase II ESA will be to perform a supplemental Site Reconnaissance so that the ground can be viewed for evidence of RECs. If additional RECs are identified, the work plan will be revised and reapproved.

The former use of the Site for rail road activities will be assessed in two parts:

- 1) Credere will review available topographic maps and other historic sources to determine the former location of the rail road activities on-Site, and
- 2) Collect three (3) surficial samples (CA-SS-1, CA-SS-2, and CA-SS-3) from this area and analyzing them for PAHs. The locations shown on **Figure 3** are approximate and once research is completed the location of these surficial soil samples will be moved to the former rail-road right-of-way. If it cannot be location of the former right-of-way determined, the locations depicted on **Figure 3** will be sampled.

The former use of the of a potential PCB containing transformer on the west side of the Site building will be assessed by collecting two concrete samples of the transformer pad from immediately adjacent to the former transformer's location and analyzing them for PCBs.

Credere considered the collection of a background soil sample from the Site for metals and PAH analysis, but in order to be valid this would have to be from an area likely not impacted by previous site activities. Because all areas of the Site may have been impacted by previous historical site uses, no background sample is specified for this Phase II ESA. A background study with nearby off-site sampling may be recommended if the soil appear to be impacted by metals and/or PAHs within expected background ranges. However, during soil sampling work

Lakes Region Planning Commission SSQAPP Addendum Former Polyclad Laminates Property, Franklin, – NHDES#199902062 June 27, 2011

the on-site geologist will be evaluating all collected soil samples for evidence of anthropogenic and native minerals that may present in samples because they could affect the laboratory results. These findings of this work will be discussed in our Phase II Report. Additional detail on what the field geologist will be looking for in soil samples is discussed in **Section 7**.

Table 2 includes the number and type of samples that are proposed be collected, cross-referenced with the appropriate standard operating procedure (SOP) that will be used from Credere's Generic QAPP. The data collected from these activities will serve as the basis for evaluating the Site conditions and will determine if any additional subsurface investigation and/or remedial actions are necessary. **Figure 3** shows the proposed locations where media will be collected. Requirements relative to Chain of Custody, Data Management and Documentation, Data Validation, and Data Usability Assessments contained in the Generic QAPP will be followed.

7. FIELD ACTIVITY METHODOLOGY

Field activity methodologies for assessing the RECs and other potential environmental concerns are summarized in the following subsections. Field activities will be conducted in accordance with the SOPs included in Credere's Generic QAPP Rev. 2 (USEPA RFA #08166 and #09036) and the rationale discussed in **Section 6**. Where field observations and/or field screening results indicate the presence of additional source areas or potentially impacted media, additional exploration locations or samples may be added to determine the horizontal and/or vertical extent of contamination. The number and locations of these additional soil samples or exploration locations will be dependent on field data, site constraints and professional judgment. All decisions regarding delineation will be recorded in the field logbook, and all locations will be documented. All soil samples obtained for the purposes of contamination delineation will be collected and field-analyzed in accordance with Credere's standard SOPs outlined on **Table 2**. If Credere determines these additional sample locations should be tested for analytes not described in **Table 2**, the USEPA QA Manager will be contacted, and pending the outcome of the communication, an email update will be provided to the USEPA describing the additional sample analysis, methods and SOPs.

7.1 GPR SURVEY AND ELECTRONIC TRACING

DigSmart of Maine, Inc. will conduct the GPR survey and will perform the work in accordance with the CREDERE SOP #007 provided in the generic QAPP.

7.2 SOIL BORINGS, TEST PITTING, SURFICIAL SOIL SAMPLING, AND FIELD SCREENING

Soil samples will be collected from soil borings and test pits in accordance with NHDES SOP HWRB-11 for soil sampling. Soil borings will be completed using hollow stem auger methodologies. During soil boring advancement, soil samples will be continuously collected in 2-foot split spoon samplers. During test pitting, soil samples will be collected from each approximate 2-foot depth interval. Each soil sample will be individually logged, and evidence of contamination will be noted. If changes in strata occur (e.g. a transition from sand to clay), the sample may be appropriately divided or additional samples may be collected and individually logged. To assist with the data evaluation, the field geologist will note the presence of materials that may affect laboratory soil sample results on the logs. These materials include:

- Presence or absence of mineral soils (i.e. pyrite or other likely arsenic bearing minerals as well as abundant micas)
- Presence or absence of asphalt
- Presence or absence of coal clinkers, coal ash or wood ash

Each collected soil sample will then be field screened for total VOCs using a photoionization detector (PID) in accordance with NHDES SOP HWRB-12. The PID will be calibrated with a 100 part per million by volume (ppm_v) isobutylene gas and a response factor of 1.0. Soil

samples collected for laboratory analysis of VOCs will be collected and preserved in accordance with NHDES SOP VOCs/Soil-2000.

Each soil sample will also be field screened for RCRA-8 metals with an Innov-X® Alpha 4000 portable X-ray fluorescence meter (XRF) in accordance with Maine DEP SOP DR#025. Because this is a screening level event to determine which, if any, metals are present in Site soil, samples will be screened directly in the collected polybags. Prior to XRF screening, sample bags will be kneaded to homogenize the soil.

Soil samples will be collected in accordance with NHDES SOP HWRB-11. Surficial soil samples from soil borings will be collected from the 0 to 2 foot below ground surface (bgs) interval. Surficial soil samples collected from hand dug locations will be collected from the 0 to 1 foot bgs interval. In each case, asphalt and base materials, landscaping materials, and other organic detritus will be removed prior to sampling.

Subsurface soil samples will be selected based on the sampling rationale discussed in **Section 6**. In general, subsurface soil samples will be selected based on the highest PID field screening result for VOCs, where visual or olfactory observations of contamination are observed, or from the depth of the water table interface if no other indicators of contamination are noted.

7.3 MONITORING WELL INSTALLATION AND SURVEY

7.3.1 Monitoring Well Installation and Development

As discussed in **Section 6**, selected soil borings will be completed as groundwater monitoring wells per EPA SOP EPASOP#2048. Unless Site conditions (e.g. shallow bedrock or confining layers) warrant modified well construction, each monitoring well will be installed using 2.0-inch PVC well materials including a well point or cap installed to span the water table, 10 feet of 0.010-inch slotted pipe, and solid pipe to grade. Washed No. 1 size silica sand will be placed around the slotted pipe to an elevation approximately two (2) feet above the slotted pipe to establish a well annulus. At least one (1) foot of bentonite chips will be placed on top of each well annulus to prevent stormwater infiltration into the wells. Each well will then be completed to grade with a flush mounted road box protected by a minimum of a 1-foot by 1-foot concrete pad. Each monitoring well will be developed by over pumping and agitation, and then allowed to equilibrate for at least two weeks prior to sampling.

7.3.2 Rod and Level Survey

Following installation, each monitoring well will be surveyed with a rod and level to determine the top of well and ground elevation at each location in accordance with ASTM E 1364-95. The monitoring wells will be tied to the existing monitoring well network at the Site and the west adjoining property.

7.4 GROUNDWATER SAMPLING

Prior to sampling, the depth to groundwater will be measured (and the presence of free floating product will be noted) in each groundwater monitoring well in accordance with NHDES SOP HWRB-1 to allow for the calculation of groundwater elevations and the determination of groundwater flow direction and gradients. Each monitoring well will then be sampled using low-flow sampling techniques and dedicated equipment in accordance with NHDES SOP HWRB-9. Each groundwater sample will be collected directly in laboratory glassware and will be submitted for off-site laboratory analysis.

7.5 SOIL GAS SAMPLING

NHDES's July 2006 Vapor Intrusion Guidance will be consulted for the installation of soil gas points and collection of representative soil gas samples. However, because this work is for evaluating sources of contaminants, not evaluating for vapor intrusion, we plan to deviate from the guidance and install points just beneath the concrete slab which is closer to the suspected source elevation. Probes will be situated 1 to 2 feet beneath the slab. Probes will be installed with a properly decontaminated hand held hammer drill. Once in place, probes will be sealed in place with modeling clay. To ensure that valid soil gas samples are collected as part of assessment, the use of a tracer compound may be used to assess for surface/annular seal leaks around the top of the soil gas probe. Before representative samples are collected between 1 and 5 purge volumes of soil gas will be removed from each probe. Samples will be evaluated in the field with a properly calibrated PID. Laboratory samples will be send to Columbia Analytical Laboratories for TO-15 Analysis for VOCs.

7.6 BUILDING MATERIAL DEBRIS SURVEYS

A NHDES certified asbestos inspector will be contracted to perform an asbestos survey of the debris pile at the Site. During the asbestos survey, samples will be collected from each suspect media (i.e. piping insulation, flooring, ceiling tiles) in accordance with NHDES Certified Administrative Rule ENV-1800: Asbestos Management Control. Asbestos samples will be submitted to a State approved laboratory for asbestos analysis by polarized light microscopy (PLM) by USEPA 600/R-93/116.

Based on the age of the building, there is the potential for lead-based paint and PCB building materials to have been used in the former building and may be present in the remaining debris pile. As a result, the building debris pile will be sampled for lead and PCBs using the laboratory analysis listed on **Table 2**.

8. REGULATORY STANDARDS

Sample results will be compared to the applicable state and/or federal standards/guidelines described below.

8.1 SOIL

Concentrations in soil samples will be compared to New Hampshire's Soil Remediation Standards (SRS) detailed in NHDES Env-Or 600 Contaminated Site Management. Where guidelines are not available, soil concentrations will be compared to other appropriate regulatory standards and guidelines, e.g., USEPA Regional Screening Levels (RSL) for Chemical Contaminants at Superfund Sites, RSL Table Updated April 2009 for soil. If standards or guidelines do not exist, action levels will be triggered if the sample analytical results exceed available published background levels. Please note that concentrations of total chromium identified at the Site will be compared to the SRS for hexavalent chromium as this elemental oxidation state is the applicable toxilogical driver.

8.2 GROUNDWATER

Groundwater sample results will be compared to the New Hampshire Ambient Groundwater Quality Standards (AGQS) detailed in NHDES Env-Or 600 Contaminated Site Management and USEPA Maximum Contaminant Levels (MCLs) for Drinking Water. In the event that no AGQS or MCLs exist for a particular contaminant, results will be compared to the USEPA Region 9 RSLs.

8.3 SOIL GAS

Soil gas sample results will not be compared to any NHDES or EPA standard because the results are being used to determine if a source or sources of VOCs are present beneath the slab. Moreover, no building currently exists at the Site or within 100 feet of the slab so data collected will only be used to determine the type of VOCs present and to locate borings and monitoring wells.

8.4 ACM

Asbestos sampling will be completed in accordance with NHDES Certified Administrative Rule ENV-1800: Asbestos Management Control. Levels of asbestos greater than or equal to 1% by volume as determined by weight, visual evaluation, and/or point count analysis within representative bulk samples obtained from the Site will result in the definition of such bulk materials as ACM.

8.5 LEAD-BASED PAINT

Concentrations of lead in paint as determined through the use of a XRF analyzer will be compared to a limit of 1.0 mg/cm² or 0.5% by weight. All construction work involving exposure or potential exposure to lead is covered by the Occupation Safety and Health Administration's Lead in Construction Standard 29 CFR 1926.62.

8.6 PCB BULK PRODUCTS

Building materials that have been analyzed to contain concentrations of total PCBs equal to or in excess of 50 ppm are defined as a PCB bulk product waste in accordance with 40 CFR 761.3. These materials are regulated for disposal under 40 CFR 761.62. Materials that have been analyzed to contain total PCBs at a concentration of equal to or greater than 1 ppm but less than 50 ppm are not regulated by the Toxic Substance Control Act (TSCA) for disposal as long as they remains in use. However, if this material is removed from use, such as through demolition, they must be disposed of at a facility that is licensed to accept this waste. Building materials which have been analyzed to contain total PCBs at a concentration of less than 1 ppm are unrestricted for future use and/or disposal.

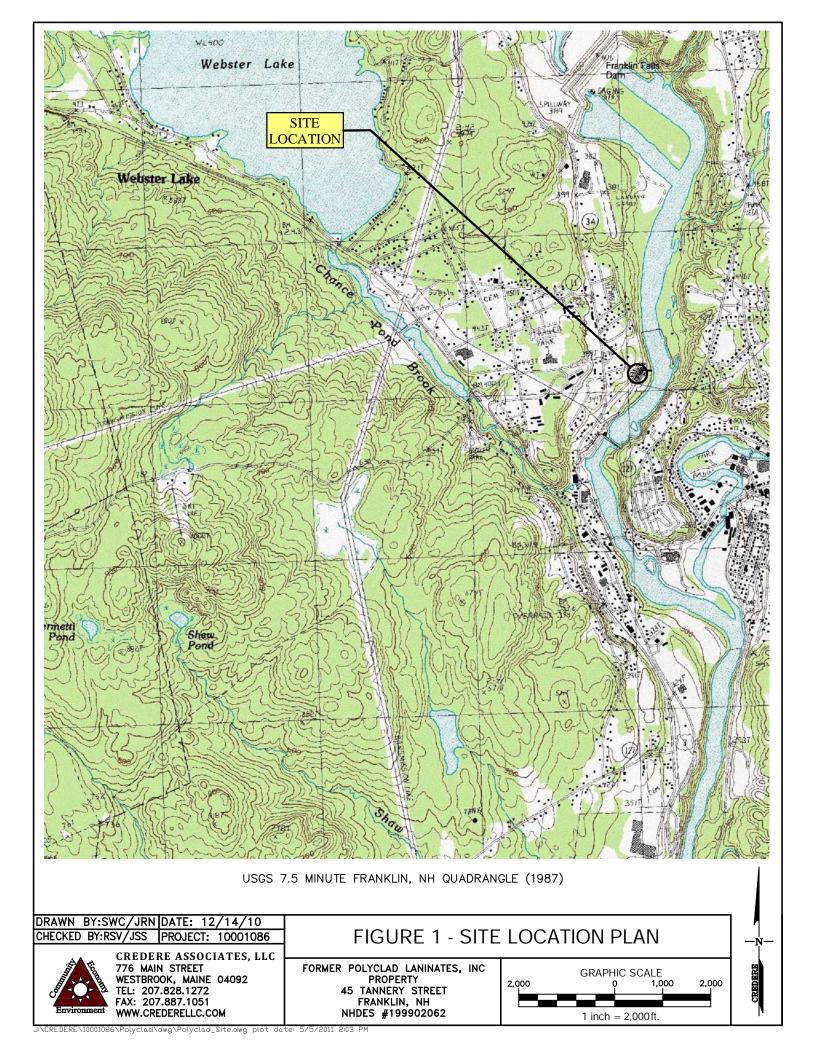
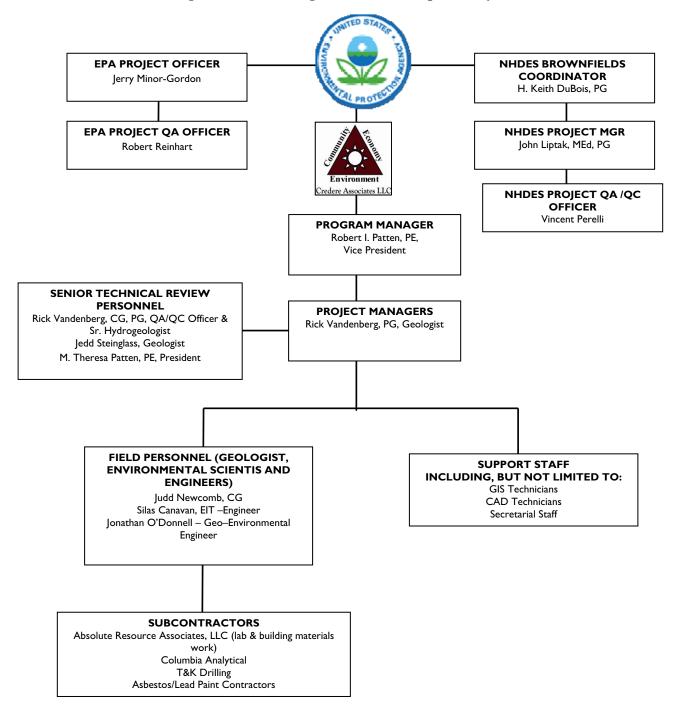
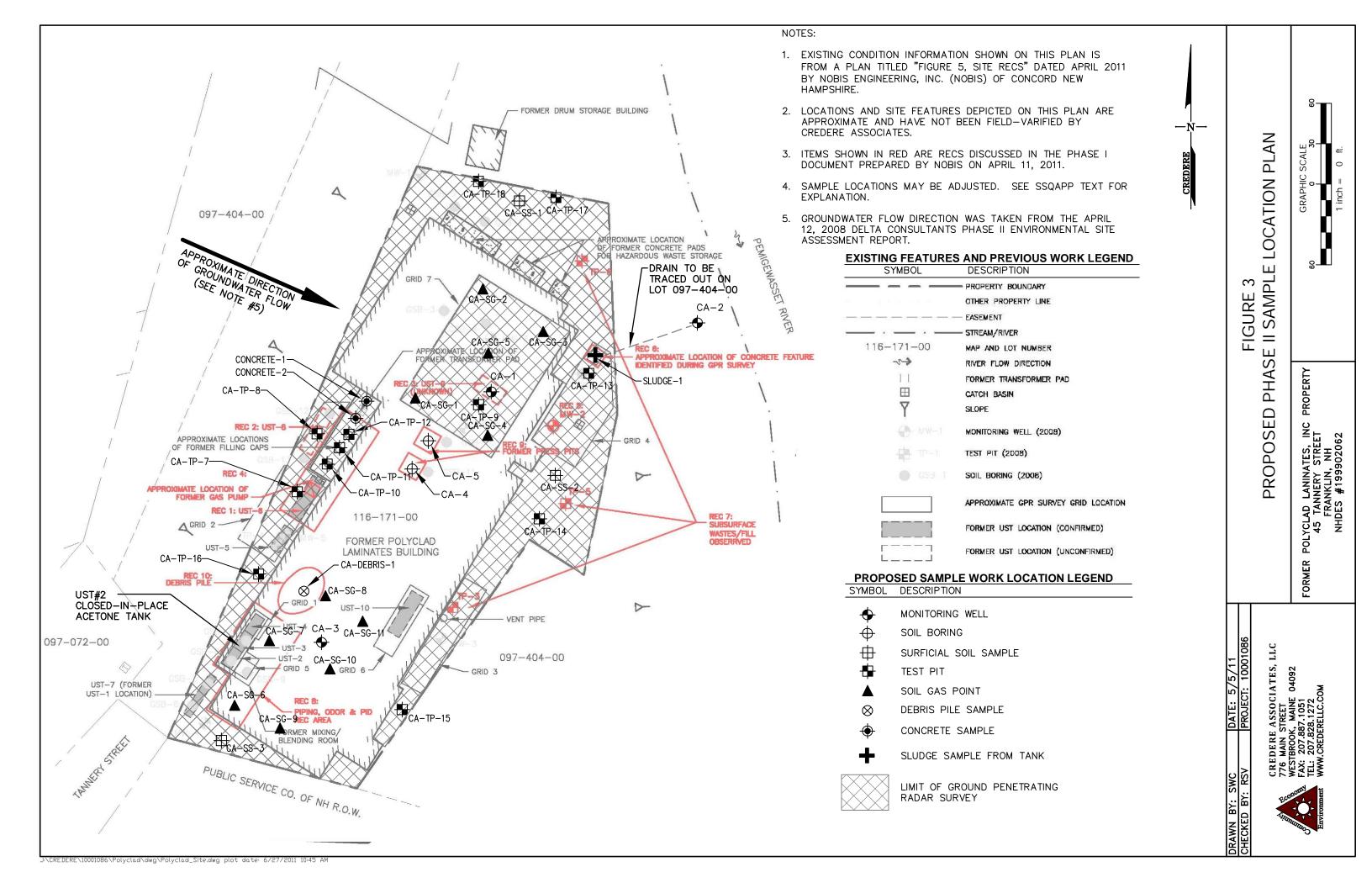
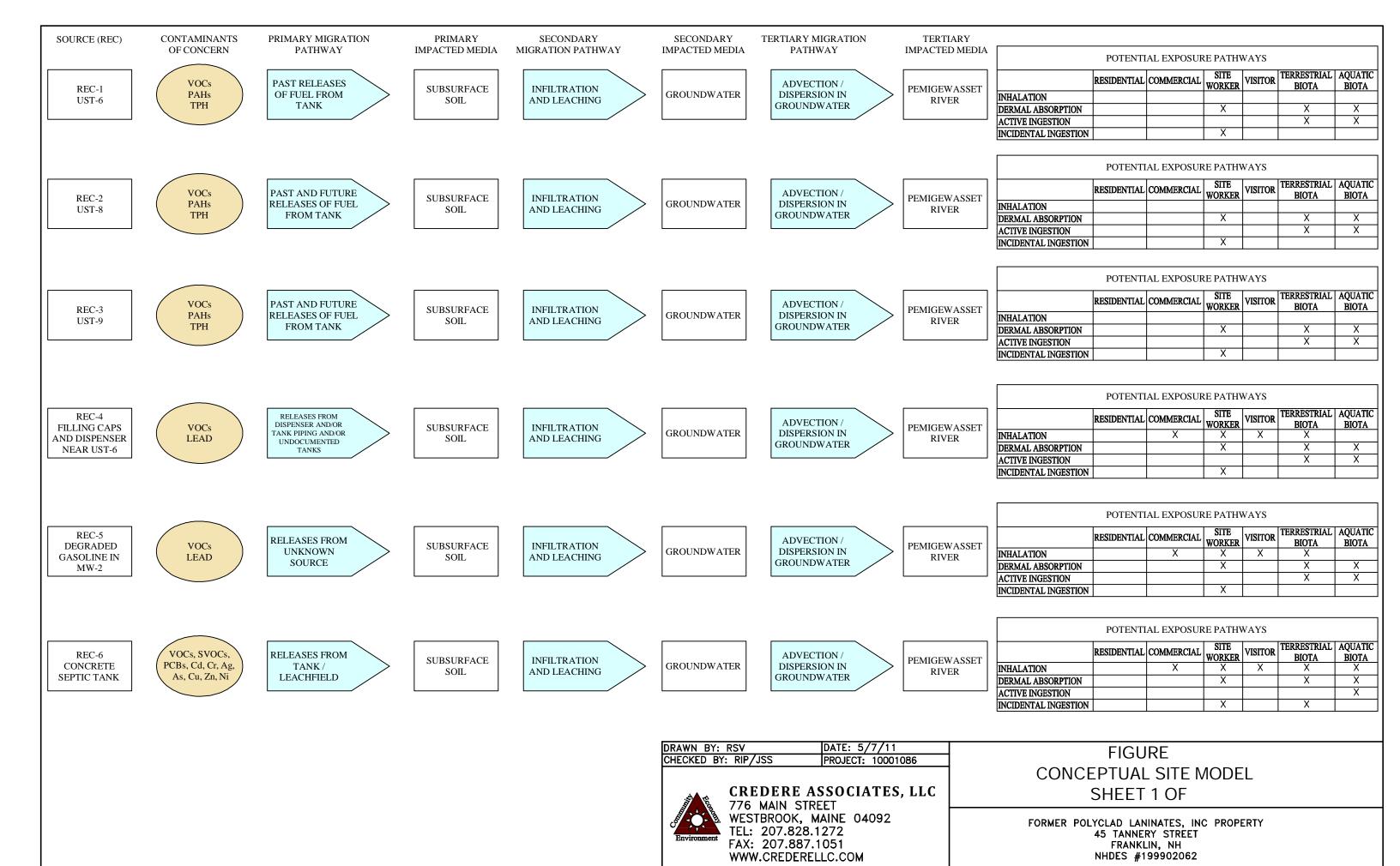
9. PROPOSED PROJECT SCHEDULE

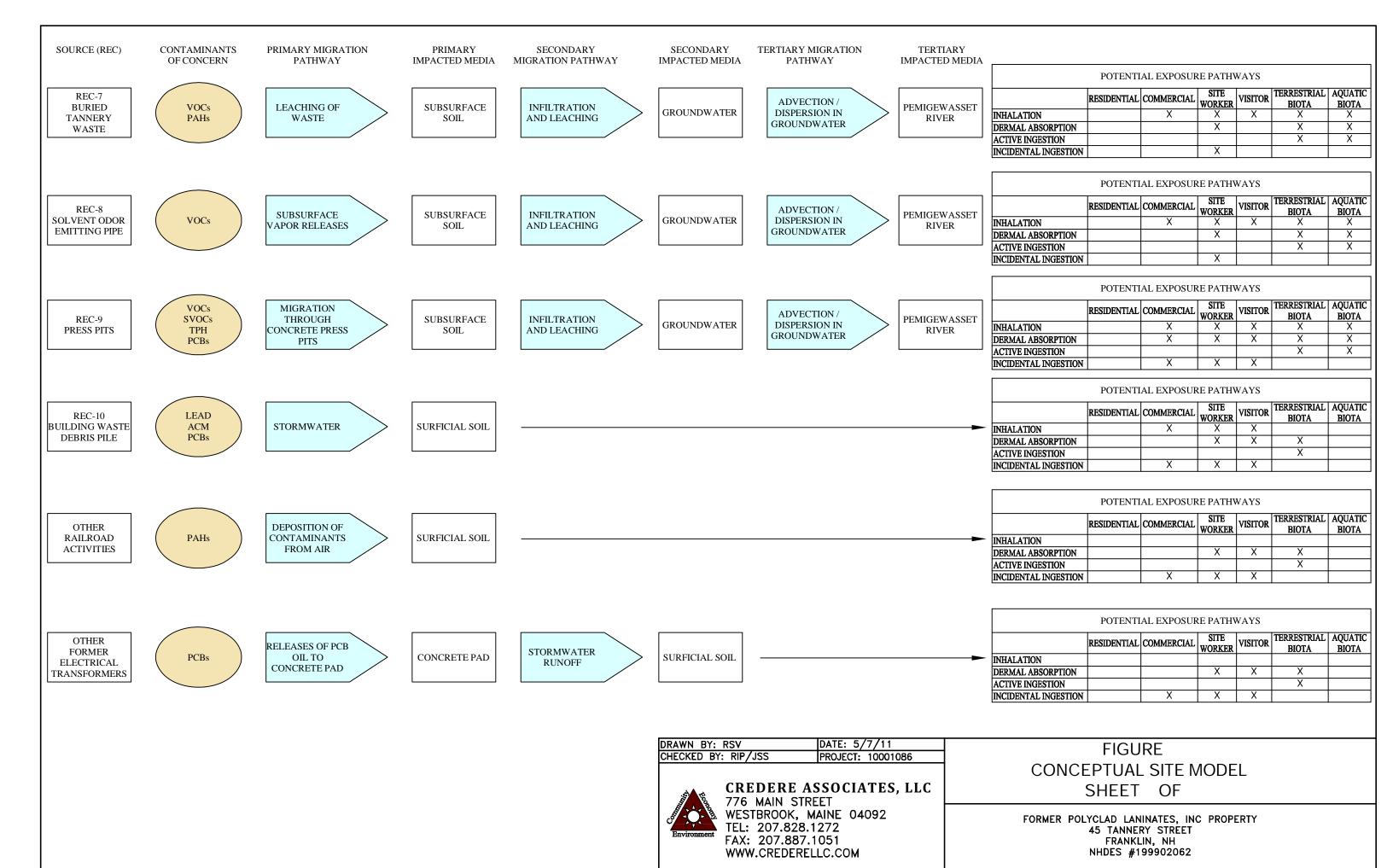
The following schedule is proposed for the Phase II ESA activities at the Site:

DATE	ACTION
Week of June 27, 2011	Finalize SSQAPP
Week of June 28, 2011	Implement Field Program
Week of July 7, 2011	Receive Laboratory Analytical Data
Week of July 30, 2011	Submit Draft Phase II ESA Report
Week of August 14, 2011	Submit Final Phase II ESA Report

FIGURES

Figure 1	Site Location Mag
8	Credere Organization and Responsibility Char
Figure 3	Proposed Phase II Sample Location Plan
Figure 4	Conceptual Site Mode


Figure 2: Credere Organization and Responsibility Chart

J:\CREDERE\10001086\Polyclad\dwg\Polyclad_Site.dwg plot date: 6/27/2011 10:51 AM

J:\CREDERE\10001086\Polyclad\dwg\Polyclad_Site.dwg plot date: 6/27/2011 10:51 AM

TABLES

Table 1	
Table 2	Sample Reference Table

Media to be Collected	Proposed Sample IDs	Associated RECs	Sample Design	Sample Depth (ft bgs)	Field SOPs to be Used	Field Analysis/ Observations	No. of Samples for Analysis	No. of Field Dups	Analytical Method	Sample Container information & Preservative (per location)	Lab SOPs	Laboratory To be Used				
Surficial	CA-SS-1 CA-SS-2 CA-SS-3	OTHER	Three surficial soil samples will be collected to determine if former rail road operations have impacted the Site.	0-1	Credere-004 HWRB-11 HWRB-12 HWRB-15 HWRB-17 DR#012 DR#024 DR#025	Visual & Olfactory PID Headspace XRF Screening		Soil samples will be duplicated at a rate of 5% per the generic QAPP for a total of one (1) based on the proposed total number of samples indicated in this table.	- PAHs by EPA Method 8270	PAHs - 4 oz. amber glass with Teflon-lined cap	RL-13					
Test Pits)	CA-TP-7*	REC-1	One subsurface sample will be collected during test pit work to determine if the closed in-place 12,000 gallon tank (UST-6) has impacted the subsurface soil beneath the Site.				1									
Borings & T	CA-TP-8*	REC-2	One subsurface sample will be collected during test pit work to determine if the 4,000 gallon tank (UST-8) remains in place and if any releases have impacted the subsurface soil beneath the Site.	Soil field screened every 2-foot interval during drilling of borings and at every 1 to 2 feet during test	Credere-004 HWRB-11		Visual & Olfactory	Visual & Olfactory PID Headspace XRF Screening	PID Headspace	Visual & Olfactory PID Headspace	1	Soil samples will be duplicated at a rate of 5% per	- TPH by EPA Method 8015 - VOCs by EPA Method 8260 - PAHs by EPA Method 8270	TPH - 4 oz. amber glass VOCs - (1) 40 ml VOA w/5 ml methanol, (1) 40 ml VOA for % solids PAHs - 4 oz. amber glass with Teflon-lined cap	RL-7 RL-9 RL-13	Absolute Resource Associates (formerly Resource Laboratories)
Subsurface Soil (Soil Bo	CA-TP-9* or CA-1	REC-3	One subsurface sample will be collected during test pit work to determine if the 4,000 gallon tank (UST-9) remains in place and if any releases have impacted the subsurface soil beneath the Site. If evidence of a tank is not identified during this work, five soil gas probes will be installed and field screen to determine if any VOC sources are present beneath the building. All soil gas samples will be field screened, but one soil gas sample will be collected and sent to the laboratory for analysis to confirm the volatile organics that were measured in the field.		ry HWRB-15 at HWRB-17 VOCs/SOIL-2000 on, DR#012 DR#024 DR#025	HWRB-17 VOCs/SOIL-2000 DR#012 DR#024	HWRB-15 HWRB-17 VOCs/SOIL-2000 DR#012 DR#024				PID Headspace	1	the generic QAPP for a total of one (1) based on the proposed total number of samples indicated in this table.			
	CA-TP-10* CA-TP-11* CA-TP-12*	REC-4	Up to 3 subsurface samples will be collected during test pit work to assess any tank present connected to the "cap and fill" and gasoline dispenser.				3		- VOCs by EPA Method 8260 - Lead by EPA 200.7/6010	VOCs - (1) 40 ml VOA w/5 ml methanol, (1) 40 ml VOA for % solids -Lead - 4 oz. glass with Teflon-lined cap	RL-9 RL-5					

Media to be Collected	Proposed Sample IDs	Associated RECs	Sample Design	Sample Depth (ft bgs)	Field SOPs to be Used	Field Analysis/ Observations	No. of Samples for Analysis	No. of Field Dups	Analytical Method	Sample Container information & Preservative (per location)	Lab SOPs	Laboratory To be Used	
n page 1)	TP-13* CA-2	REC-6	Two subsurface samples are anticipated as a part of test pit and boring work that will be conducted and aimed at assessing the suspect concrete septic tank and the terminus of the discharge from the tank.	Soil field screened every 2-foot interval during drilling of borings and at every 1 to 2 feet during test pitting. Laboratory samples collected at	val	Visual & Olfactory PID Headspace XRF Screening		2		- RCRA 8 Metal plus Zn, Cu, and Ni by EPA Method 6010 - PAHs by EPA Method 8270	VOCs - (1) 40 ml VOA w/5 ml methanol, (1) 40 ml VOA for % solids Metals - 4 oz. glass with Teflon-lined cap PAHs - 4 oz. amber glass with Teflon-lined cap PCBs - 4 oz glass with Teflon lined cap	RL-9 RL-5 RL-7 RL-13 RL-4	
Continued fromings & Test Pits)	CA-TP-14* CA-TP-15* CA-TP-16* CA-TP-17* CA-TP-18*	REC-7	Up to five (5) subsurface soil samples are anticipated during test pit work aimed at delineating the extent of buried tannery waste at the Site.				Up to 5	Soil samples will be duplicated at a rate of 5% per the generic OAPP for a	- VOCs by EPA Method 8260 - RCRA 8 Metal plus Zn, Cu, and Ni by EPA Method 6010	VOCs - (1) 40 ml VOA w/5 ml methanol, (1) 40 ml VOA for % solids Metals - 4 oz. glass with Teflon-lined cap PAHs - 4 oz. amber glass with Teflon-lined cap	RL-9 RL-5 RL-13		
Soil (CA-3	REC-8	Six (6) soil gas probes are anticipated to evaluate this REC (see soil gas sampling below) and if the result indicate a source of VOCs under the building slab, then a boring will installed through the slab at the perceived center of the vapor source. A groundwater well will be installed and sampled appropriately.				1	total of one (1) based on the proposed total number of samples indicated in this table.		VOCs - (1) 40 ml VOA w/5 ml methanol, (1) 40 ml VOA for % solids	RL-9		
Subsurface (Soi	CA-4 CA-5	REC-9	Two shallow borings will be advanced through the former press pits to assess the condition of the soil directly beneath the concrete slab.				2		 VOCs by EPA Method 8260 RCRA 8 Metal plus Zn, Cu, and Ni by EPA Method 6010 SVOCs by EPA Method 8270 	TPH 4 oz. glass with Teflon-lined cap VOCs - (1) 40 ml VOA w/5 ml methanol, (1) 40 ml VOA for % solids Metals - 4 oz. glass with Teflon-lined cap SVOCs - 4 oz. amber glass with Teflon-lined cap PCBs - 4 oz glass with Teflon lined cap	RL-7 RL-9 RL-5 RL-13 RL-4		

Media to be Collected	Proposed Sample IDs	Associated RECs	Sample Design	Sample Depth (ft bgs)	Field SOPs to be Used	Field Analysis/ Observations	No. of Samples for Analysis	No. of Field Dups	Analytical Method	Sample Container information & Preservative (per location)	Lab SOPs	Laboratory To be Used
Gas	CA-SG-1 CA-SG-2 CA-SG-3 CA-SG-4 CA-SG-5	REC-3	Five(5) soil gas probes (CA-SG-1 to CA-SG-5) are anticipated to evaluate this REC and if the results indicate a source of VOCs VOCs under the building slab other than the former closed in place acetone tank near the chemical mixing building, then a boring will installed through the slab at the perceived center of the vapor source. A groundwater well will be installed and sampled appropriately. One soil gas sample will be sent to the laboratory to confirm the field screening results and determine the volatile organic compunds that were measured in the field. The sample that will be sent to the laboratory will be determined in the field.	1 to 2 feet below the	WMD-06-01 Credere-004 DR#027	PID	1	1		VOCs - (1) 40 ml VOA w/5 ml methanol, (1) 40 ml VOA for % solids	VOA-TO15	– Columbia Analytical
Soil	CA-SG-6 CA-SG-7 CA-SG-8 CA-SG-9 CA-SG-10 CA-SG-11	REC-8	Six (6) soil gas probes (CA-SG-6 to CA-SG-11) are anticipated to evaluate this REC and if the result did a source of VOCs under the building slab other than the former closed in place acetone tank near the chemical mixing building, then a boring will installed through the slab at the perceived center of the vapor source. A groundwater well will be installed and sampled appropriately. One soil gas sample will be sent to the laboratory to confirm the field screening results and determine the volatile organic compunds that were measured in the field. The sample that will be sent to the laboratory will be determined in the field.	concrete slab	DR#012 HWRB-15		1	1		VOCs - (1) 40 ml VOA w/5 ml methanol, (1) 40 ml VOA for % solids	VOA-TO15	Columbia i marjaca

^{*}Test pit number have been carried on from the previous work (i.e. Credere's numbers start at 7)

Media to be Collected	Proposed Sample IDs	Associated RECs	Sample Design	Field SOPs to be Used	Field Analysis/ Observations	No. of Samples for Analysis	No. of Field Dups	No. of Trip Blanks	Analytical Method	Sample Container information & Preservative (per location)	Lab SOPs	Laboratory To be Used				
	CA-1	REC-3	As a part of assessing REC-3, if contamination extends into groundwater as noted by field screeing a monitoring well will be installed and sampled for VOCs.	Credere-004	Credere-004	Credere-004 HWRB-1				1			- VOCs by EPA Method 8260	VOCs - (2) 40 ml VOA with HCL	RL-9	
iter	MW-2	REC-5	As a part of assessing REC-5 existing monitoring well MW-2 will be assessed for free floating product and will be sampled to determine if it still contains degraded gasoline.				Visual & Olfactory	1			- VOC s by EPA Method 8260 - Lead by EPA 200.7/6010	VOCs - (2) 40 ml VOA with HCL Lead - 1 liter platic bottle, nitric perserved	RL-9 RL-5			
Groundwater	CA-2	REC-6	As a part of assessing REC-6, if contamination at the septic tank discharge location extends into groundwater as noted by field screeing, a monitoring well will be installed and sampled for VOCs.	HWRB-3 HWRB-9 HWRB-15 HWRB-17 DR#012	Field Parameters: Temperature, PH, Dissolved Oxygen, Turbidity, Conductivity, Oxidation-Reduction Potentional		Groundwater samples will be duplicated at a rate of 5% per the generic QAPP for a total of one (1) based on the proposed total number of samples indicated in this table.	f 1	- VOCs by EPA Method 8260 - SVOCs by EPA Method 8270 -Dissolved RCRA 8 Metal plus Zn, Cu, and Ni by EPA Method 6010	VOCs - (2) 40 ml VOA with HCL PAHs - 1 Liter amber bottle, unpreserved Metals - 1 liter platic bottle, nitric perserved	RL-9 RL-13 RL-5	Absolute Resource Associates (formerly Resource Laboratories)				
	CA-3	REC-8	A monitoring well may be installed to assess the condition of the groundwater in the general area of this REC, or in the area of high soil gas conditions. The installed monitoring well will be sampled for VOCs.			1			- VOC s by EPA Method 8260	VOCs - (2) 40 ml VOA with HCL	RL-9					

Media to be Collected	Proposed Sample IDs	Associated RECs/NCs	Sample Design	Field SOPs to be Used	Field Analysis/ Observations	No. of Samples for Analysis	No. of Field Dups	Analytical Method	Sample Container information & Preservative (per location)	Lab SOPs	Laboratory To be Used
Building Materials	Debris-	REC-10	An asbestos survey will be conducted to evaluate the "ASTM Non-scope" consideration related to potential ACMs in the debris pile at the Site.	According to NH DES Env-A-1800	Visual Inspection and Bulk Sampling	According to NH DES Env-A-1800	According to NH DES Env-A- 1800	Polarized Light Microscopy byEPA 600/R-93/116	Plastic bags, labeled (no preservation)	Included in SSQAPP Addendum No. 4	ProScience Laboratories (subcontractor to Absolute Resource Associates
	Debris-		Painted debris will be screened with the XRF for lead-based paint.	DR#024 DR#025 Credere-004	XRF Screening	up to 10	NA	EPA Method 6200	NA	NA	NA
	Debris-		One (1) representative bulk sample will be collected from the building debris pile.	EPA SOP No. 2011 for Chip, Wipe, and Sweep Sampling; EIASOP_POROUSS AMPLING1; Credere-004	Visual Inspection and Bulk Sampling	1	1	PCBs via EPA Method 8082 using extraction Method 3540	PBCs - 4 oz. glass with Teflon-lined cap, no preservative	RL-4	Absolute Resource Associates (formerly Resource Laboratories)
	Debris-		An asbestos survey will be conducted to evaluate the "ASTM Non-scope" consideration related to potential ACMs in the debris pile at the Site.	According to NH DES Env-A-1800	Visual Inspection and Bulk Sampling	According to NH DES Env-A-1800	According to NH DES Env-A- 1800	Polarized Light Microscopy byEPA 600/R-93/116	Plastic bags, labeled (no preservation)	Included in SSQAPP Addendum No.	ProScience Laboratories (subcontractor to Absolute Resource Associates

Table 2: Sample Reference Former Polyclad Laminates Property 45 Tannery Street Franklin, New Hampshire NHDES #199902062

Media to be Collected	Proposed Sample IDs	Associated RECs/NCs	Sample Design	Field SOPs to be Used	Field Analysis/ Observations	No. of Samples for Analysis	No. of Field Dups	Analytical Method	Sample Container information & Preservative (per location)	Lab SOPs	Laboratory To be Used
Materials	Debris-	REC-10	Painted debris will be screened with the XRF for lead-based paint.	DR#024 DR#025 Credere-004	XRF Screening	up to 10	NA	EPA Method 6200	NA	NA	NA
Building	Concrete -1 Concrete -2	OTHER	from the concrete around the former transformer	EPA SOP No. 2011 for Chip, Wipe, and Sweep Sampling; EIASOP_POROUSS AMPLING1; Credere-004	Visual Inspection and	2	1	PCBs via EPA Method 8082 using extraction Method 3540	PBCs - 4 oz. glass with Teflon-lined cap, no preservative	RL-4	Absolute Resource Associates (formerly Resource Laboratories)

Table 2: Sample Reference Former Polyclad Laminates Property 45 Tannery Street Franklin, New Hampshire NHDES #199902062

Media to be Collected	Proposed Sample IDs	Associated RECs	Sample Design	Sample Depth (ft bgs)	Field SOPs to be Used	Field Analysis/ Observations	No. of Samples for Analysis	No of Field Diins	Analytical Method	Sample Container information & Preservative (per location)	Lab SOPs	Laboratory To be Used
Sludge	SLUDGE-1	REC-6	One sludge sample will be collected from the septic tank to assess the contents for hazardous substances.	Bottom of Tank	Credere-004 HWRB-11 HWRB-12 HWRB-15 HWRB-17 VOCs/SOIL-2000 DR#012 DR#122	Visual & Olfactory PID Headspace XRF Screening	1	No duplicate will be collected because only one sludge sample is proposed.	- RCRA 8 Metal plus Zn, Cu, and Ni by EPA Method 6010 - PAHs by EPA Method 8270	VOCs - (1) 40 ml VOA w/5 ml methanol, (1) 40 ml VOA for % solids Metals - 4 oz. glass with Teflon-lined cap PAHs - 4 oz. amber glass with Teflon-lined cap PCBs - 4 oz glass with Teflon lined cap	RL-9 RL-5 RL-7 RL-13 RL-4	Absolute Resource Associates, LLC

APPENDIX B SITE PHOTOGRAPHS

Picture 1

View of western portion of the Site, facing northeast, where potential UST was identified during GPR survey, presumed to be closed-in-place UST-6.

Picture 2

View of location of former fuel dispenser on western portion of the Site, facing northeast.

Phase II Environmental Site Assessment Former Polyclad Laminates Site Franklin, New Hampshire NHDES Site No. 199902062

Picture 3

View of fill building demolition debris in Test Pit CA-TP-8 on western portion of the Site.

Picture 4

View of sub-slab soil gas sampling at sampling location SG-5, located within northern portion of former Site building footprint.

Phase II Environmental Site Assessment Former Polyclad Laminates Site Franklin, New Hampshire NHDES Site No. 199902062

Picture 5

View of location of asbestos-containing floor tiles on former building slab, indicated by white arrows, facing southeast.

Picture 6

View of tannery hides visible in Test Pit CA-TP-13, located on northeastern portion of the Site.

Phase II Environmental Site Assessment Former Polyclad Laminates Site Franklin, New Hampshire NHDES Site No. 199902062

Picture 7 View of tannery hides visible in Test Pit CA-TP-13, located on northeastern

portion of the Site.

Picture 8

View of tannery waste in soil from test pit CA-TP-14, located on northeastern portion of the Site.

Phase II Environmental Site Assessment Former Polyclad Laminates Site Franklin, New Hampshire NHDES Site No. 199902062

APPENDIX C TEST PIT LOGS

776 Main Street, Westbrook, Maine 04092 - 207-828-1272

	TEST	PIT	DΑ	TA:
--	------	-----	----	-----

PROJECT NAME:	Former Polyclad Laminates Site	DATE: 6/28/2011
---------------	--------------------------------	-----------------

PROJECT NUMBER: 10001086

SAMPLE LOCATION ID: CA-TP-7 ACTIVITY:

START: 1300
END: 1430

CREDERE REPRESENTATIVE: Jonathan O'Donnell

CONTRACTOR/FOREMAN: J.A. Eaton Inspections/Jeff Eaton

NOTES:

Test pit on western side of closed-in-place UST (presumed to be UST-6). Ductile iron pipe parallel and adjacent to UST prevented advancement of test pit beyond 8 feet below ground surface (bgs). No laboratory sample collected from this test pit.

DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm)	SOIL DESCRIPTION / NOTES
1	0-2	S-1	Slightly moist	0.0	Red-brown, medium to coarse SAND and Gravel. No volatile organic odor.
2	No sa	ample from	2 to 3 feet	bgs.	
3	3-5	S-2	Slightly moist	0.0	
5 6	5-7	S-3	Slightly moist	0.0	Side of UST observed.
7	7-8	S-4	Slightly moist	0.0	Pipe adjacent to UST Side.
8					End of Exploration at 8' bgs.
	ppm,, - ı	hoto-Ionizatio parts per mill nitted for lab	ion by volur	ne ysis	

CREDERE ASSOCIATES, LLC TEST PIT SAMPLING LOG 776 Main Street, Westbrook, Maine 04092 - 207-828-1272

TEST	PIT	DΑ	TA:
DDO II	ECT	. NIV	

PROJECT NAME:	Former Polyclad Laminates Site	DATE: <u>6/30/2011</u>
PROJECT NUMBER:	10001086	
SAMPLE LOCATION ID:	CA-TP-7A	ACTIVITY: START: 1535

END:

1720

CREDERE REPRESENTATIVE: Judd Newcomb

CONTRACTOR/FOREMAN: J.A. Eaton Inspections/Jeff Eaton; T & K Drilling/Sean McGarry

NOTES:

Test pit on southern side of closed-in-place UST (presumed to be UST-6) because test pit TP-7 was stopped due to a pipe near the UST western side. Test pit TP-7A advanced to 10 feet bgs using the excavator. Samples from 10 to 16 feet bgs collected by split-spoon sampler via a drill rig because the limit of the excavator's reach was approximately 10 feet.

DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm)	SOIL DESCRIPTION / NOTES
0 1 2 3	4	S-1	Dry	0.5	Light-brown, fine to medium SAND and Gravel. No volatile organic odor.
5	6	S-2	Dry	1.4	Top of UST at 4 feet bgs. Observed 3" fill pipe (broken off during excavation) and UST full of sand. No volatile organic odor. Side of UST # 6 visible (4 to 10' bgs).
7	8	S-3	Dry	1.3	
8	9	S-4	Dry	1.4	
9	9.5	S-5	Dry	1.3	
10	10-12*	S-6	Dry	1.9	, , , , , , , , , , , , , , , , , , ,
12	12-14	S-7	Dry	1.1	Medium dense, light-brown, fine to medium SAND and Gravel. No volatile organic odor.
14	14-16	S-8	Dry	0.4	
16	ppm _v - p	noto-lonizatio parts per mill nitted for lab	ion by volun	ne ysis	End of Exploration at 16' bgs.

776 Main Street, Westbrook, Maine 04092 - 207-828-1272

TEST	PIT	DΑ	TA:

PROJECT NAME:	Former Polyclad Laminates Site	DATE:	6/28/2011	

PROJECT NUMBER: 10001086

SAMPLE LOCATION ID: CA-TP-8 ACTIVITY:

CA-TP-8 START: 0900
END: 0955

CREDERE REPRESENTATIVE: Jonathan O'Donnell

CONTRACTOR/FOREMAN: J.A. Eaton Inspections/Jeff Eaton

NOTES:

Test pits CA-TP-8, CA-TP-10, and CA-TP-11 were advanced in the area reported to contain UST # 8. This area appears to be an former loading dock that had an asphalt paved area that slopes down to the north, but is now filled with demolition debris.

DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm)	SOIL DESCRIPTION / NOTES
1	0-2	S-1	Dry	1.2	Building demolition debris. Crushed concrete masonry unit, metal scrap,
3	2-4	S-2	Dry	ND	and sand. No volatile organic odor.
4					Asphalt paving layer at 4.5 feet bgs.
5	4-6	S-3	Dry	1.1	Red-brown, medium to coarse SAND and Gravel starting at 4.5' bgs.No volatile organic odor.
6					10 inch clay pipe observed at 6.5 feet bgs.
7	6-8*	S-4	Dry	ND	
8	8-9	S-5	Dry	ND	
9					End of Exploration at 9' bgs.
	ppm _v - p	oto-Ionizatio arts per milli nitted for labo	on by volum	ne /sis	

776 Main Street, Westbrook, Maine 04092 - 207-828-1272

TES	T PI	T D	AT	A:

PROJECT NAME: Former Polyclad Laminates Site DATE: 6/30/2011

PROJECT NUMBER: 10001086

ACTIVITY:
SAMPLE LOCATION ID:

CA-TP-9

ACTIVITY:
START: 1345
END: 1520

CREDERE REPRESENTATIVE: Judd Newcomb

CONTRACTOR/FOREMAN: J.A. Eaton Inspections/Jeff Eaton

NOTES:

Located beneath northern end of former building slab, in between patch in concrete and area of metal GPR anomaly identified by DigSmart. Test pit advanced to investigate possible former UST.

DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm)	SOIL DESCRIPTION / NOTES	
1	2	S-1	Dry	1.3	Medium dense, light-brown, medium to coarse SAND and Gravel. No volatile organic odor.	
3	4	S-2	Dry	1.8	Thin layers of tannery hides present from 2 to 6 feet bgs.	
4 5	6*	S-3	Dry	2.4		
7	8	S-4	Dry	2.0	Asphalt pieces at approximately 8 feet bgs.	
8					End of Exploration at 8' bgs.	
	PID - Photo-Ionization Detector ppm _v - parts per million by volume * - Submitted for laboratory analysis					

776 Main Street, Westbrook, Maine 04092 - 207-828-1272

TEST	PIT	DA	TA:

PROJECT NAME:	Former Polyclad Laminates Site	DATE:	6/28/2011	

PROJECT NUMBER: 10001086

| ACTIVITY: | SAMPLE LOCATION ID: | CA-TP-10 | START: | 1000 | END: | 1000

CREDERE REPRESENTATIVE: Jonathan O'Donnell

CONTRACTOR/FOREMAN: J.A. Eaton Inspections/Jeff Eaton

NOTES:

Test pits CA-TP-8, CA-TP-10, and CA-TP-11 were advanced in the area reported to contain UST # 8. This area appears to be an former loading dock that had an asphalt paved area that slopes down to the north, but is now filled with demolition debris.

DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm)	SOIL DESCRIPTION / NOTES
1	0-2*	S-1	Dry	ND	Building demolition debris. Crushed CMU, metal scrap, and sand. No volatile organic odor.
3	2-4	S-2	Dry	ND	
5	4.5-6	S-3	Dry	ND	Asphalt paving layer at 4.5 feet bgs.
7	6-8	S-4	Dry	ND	Red-brown, medium to coarse SAND and Gravel from 4.5 to 9 feet bgs. No volatile organic odor.
8	8-9	S-5	Dry	ND	
9					End of Exploration at 9' bgs.
	ppm _v - p * - Subm	oto-lonizatio arts per milli itted for labo concrete mas	on by volum oratory analy	ne /sis	

776 Main Street, Westbrook, Maine 04092 - 207-828-1272

TEST	PIT	DA	TA:
------	-----	----	-----

PROJECT NAME: Former Polyclad Laminates Site DATE: 6/28/2011

PROJECT NUMBER: 10001086

SAMPLE LOCATION ID: CA-TP-11 ACTIVITY: START: 1100 END: 1215

CREDERE REPRESENTATIVE: Jonathan O'Donnell

CONTRACTOR/FOREMAN: J.A. Eaton Inspections/Jeff Eaton

NOTES:

Test pits CA-TP-8, CA-TP-10, and CA-TP-11 were advanced in the area reported to contain UST # 8. This area appears to be an former loading dock that had an asphalt paved area that slopes down to the north, but is now filled with demolition debris.

DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm)	SOIL DESCRIPTION / NOTES	
1	0-2	S-1	Dry	ND	Building demolition debris. Crushed CMU, metal scrap, and sand. No volatile organic odor.	
2	No sa	ample from	2 to 3 feet	bgs.	Asphalt paving layer at 3 feet bgs.	
3	3-4.5	S-2	Dry	ND		
5	4.5-6.5	S-3	Dry	ND	Red-brown, medium to coarse SAND and Gravel. No volatile organic odor.	
7 8	6.5-9*	S-4	Dry	ND		
9	ppm _v - բ * - Subn	noto-Ionizatio parts per mill nitted for lab concrete n	ion by volun oratory anal	ysis	End of Exploration at 9' bgs.	

776 Main Street, Westbrook, Maine 04092 - 207-828-1272

TEST	DIT	DA	TA.
IESI	rıı	UΑ	IA:

PROJECT NAME: Former Polyclad Laminates Site DATE: 6/30/2011

PROJECT NUMBER: 10001086

ACTIVITY: SAMPLE LOCATION ID: CA-TP-12 START: 0935 END: 1010

CREDERE REPRESENTATIVE: Judd Newcomb

CONTRACTOR/FOREMAN: J.A. Eaton Inspections/Jeff Eaton

NOTES:

Test pit advanced through bottom of concrete sump surrounded by stained concrete, believed to be the former location of a fuel dispenser. Bottom of the sump was broken with excavator, and the est pit advanced further by hand using a clean shovel.

FIELD ANALYSIS DATA:

DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm)	SOIL DESCRIPTION / NOTES
1	2	S-1	Wet	ND	Wet, black, organic detritus (material from interior of 2' deep concrete sump). No volatile organic odor. Concrete bottom of sump at 2 feet bgs.
2	3*	S-2	Wet	1.2	Red-brown, medium to coarse SAND and Gravel. Wet. Staining beneath concrete at 2 feet bgs. No volatile organic odor.
3	4	S-3	Wet	0.5	
4					End of Exploration at 4' bgs.

PID - Photo-Ionization Detector $\ensuremath{\mathsf{ppm}_{\mathsf{v}}}\xspace$ - parts per million by volume - Submitted for laboratory analysis

776 Main Street, Westbrook, Maine 04092 - 207-828-1272

TEST	DIT	DA	TΛ	
IESI	rii	UΑ	IΑ	Ē

PROJECT NAME:	Former Polyclad Laminates Site	DATE:	6/28/2011
---------------	--------------------------------	-------	-----------

PROJECT NUMBER: 10001086

ACTIVITY:
SAMPLE LOCATION ID:

CA-TP-13

ACTIVITY:
START: 1450
END: 1505

CREDERE REPRESENTATIVE: Jonathan O'Donnell

CONTRACTOR/FOREMAN: J.A. Eaton Inspections/Jeff Eaton

NOTES:

Test pit on northeastern portion of the Site, in area where the GPR survey indicated that buried wastes may be present.

DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm)	SOIL DESCRIPTION / NOTES
1	0-2	S-1	Dry	ND	Red-brown, medium to coarse SAND and Gravel. No volatile organic odor.
3	2-4*	S-2	Dry	ND	
4	4-5	S-3	Dry	ND	Red-brown, medium to coarse SAND and Gravel mixed with thin layers of tannery hides present from 4 to 5 feet bgs. No volatile organic odor.
5	No sa	ample from	5 to 6 feet	bgs.	Medium dense, red-brown, medium to coarse SAND and Gravel. No volatile organic odor.
7	6-8	S-4	Dry	ND	
8					End of Exploration at 8' bgs.
	ppm _v - p	noto-lonizatio parts per milli nitted for labo	on by volum	ne /sis	

776 Main Street, Westbrook, Maine 04092 - 207-828-1272

TEST	DIT	DA	TΛ	
IESI	rii	UΑ	IΑ	Ē

PROJECT NAME:	Former Polyclad Laminates Site	DATE:	6/28/2011
---------------	--------------------------------	-------	-----------

PROJECT NUMBER: 10001086

ACTIVITY: SAMPLE LOCATION ID: CA-TP-14/CA-SS-2 START: 1510 END: 1550

CREDERE REPRESENTATIVE: Jonathan O'Donnell

CONTRACTOR/FOREMAN: J.A. Eaton Inspections/Jeff Eaton

NOTES:

Test pit on northeastern portion of the Site, in area where the GPR survey indicated that buried wastes may be present.

DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm)	SOIL DESCRIPTION / NOTES			
1	0-2**	S-1	Dry	ND	Red-brown, medium to coarse SAND and Gravel. No volatile organic odor.			
3	2-4	S-2	Dry	ND				
5	4-6	S-3	Dry	ND	Red-brown, medium to coarse SAND and Gravel mixed with thin layers of tannery hides present from 4 to 8 feet bgs. No volatile organic odor.			
7	6-8*	S-4	Dry	ND				
8 End of Exploration at 8' bgs. PID - Photo-lonization Detector ppm _v - parts per million by volume * - Submitted for laboratory analysis								

776 Main Street, Westbrook, Maine 04092 - 207-828-1272

TES	T PI	T D	AT	A:

PROJECT NAME: Former Polyclad Laminates Site DATE: 6/28/2011

PROJECT NUMBER: 10001086

ACTIVITY:
SAMPLE LOCATION ID:

CA-TP-15

CA-TP-15

ACTIVITY:
START: 1555
END: 1625

CREDERE REPRESENTATIVE: Jonathan O'Donnell

CONTRACTOR/FOREMAN: J.A. Eaton Inspections/Jeff Eaton

NOTES:

Test pit on southeastern portion of the Site to assess possible buried tannery waste.

DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm)	SOIL DESCRIPTION / NOTES
1	0-2	S-1	Dry	ND	Red-brown, medium to coarse SAND and Gravel. No volatile organic odor.
3	2-4	S-2	Dry	ND	
4	No sa	ample from	4 to 5 feet	bgs.	
5 6	5-7*	S-3	Dry	ND	Red-brown, medium to coarse SAND and Gravel. Appears native. No volatile organic odor.
7				I	End of Exploration at 7' bgs.
	ppm _v - p	noto-lonizatio parts per mill nitted for lab	ion by volun	ne Iysis	

776 Main Street, Westbrook, Maine 04092 - 207-828-1272

TEST	DIT	DA	TΛ	
IESI	rii	UΑ	IΑ	Ē

PROJECT NAME: Former Polyclad Laminates Site DATE: 6/28/2011

PROJECT NUMBER: 10001086

ACTIVITY: SAMPLE LOCATION ID: CA-TP-16 START: 1635 END: 1705

CREDERE REPRESENTATIVE: Jonathan O'Donnell

CONTRACTOR/FOREMAN: J.A. Eaton Inspections/Jeff Eaton

NOTES:

Test pit on southwestern portion of the Site to assess possible buried tannery waste.

DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm)	SOIL DESCRIPTION / NOTES						
1	0-2*	S-1	Dry	ND	Red-brown, medium to coarse SAND and Gravel. No volatile organic odor.						
3	2-4	S-2	Dry	ND							
4	No s	ample from	4 to 5 feet	bgs.							
5 6	5-7	S-3	Dry	ND	Red-brown, medium to coarse SAND and Gravel. Appears native. No volatile organic odor.						
7					End of Exploration at 7' bgs.						
8											
9											
10											
12											
13											
14											
	ppm _v - p	hoto-Ionizati parts per mill mitted for lab	ion by volur	ne lysis							

776 Main Street, Westbrook, Maine 04092 - 207-828-1272

|--|

PROJECT NAME: Former Polyclad Laminates Site DATE: 6/28/2011

PROJECT NUMBER: 10001086

SAMPLE LOCATION ID: CA-TP-17/CA-SS-1 ACTIVITY: START: 1415 END: 1440

CREDERE REPRESENTATIVE: Jonathan O'Donnell

CONTRACTOR/FOREMAN: J.A. Eaton Inspections/Jeff Eaton

NOTES:

Test pit north of building foundation.

DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm)	SOIL DESCRIPTION / NOTES
1	0-2**	S-1	Dry	ND	Red-brown, medium to coarse SAND and Gravel. No volatile organic odor.
3	2-4	S-2	Dry	ND	
5	4-7*	S-3	Dry	ND	Red-brown, medium to coarse SAND and Gravel. Soil appears native. No volatile organic odor.
7					End of Exploration at 7' bgs.
	DID 5:	ata la 2 - 4	a Data i		
	g - "mag	oto-lonizatio arts per milli iitted for labo ected as surf	on by volum	ne /sis nple CA-S\$	S-2

776 Main Street, Westbrook, Maine 04092 - 207-828-1272

|--|

PROJECT NAME: Former Polyclad Laminates Site DATE: 6/28/2011

PROJECT NUMBER: 10001086

ACTIVITY:
SAMPLE LOCATION ID:

CA-TP-18

ACTIVITY:
START: 1440
END: 1450

CREDERE REPRESENTATIVE: Jonathan O'Donnell

CONTRACTOR/FOREMAN: J.A. Eaton Inspections/Jeff Eaton

NOTES:

Test pit north of building foundation.

DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm)	SOIL DESCRIPTION / NOTES
0	0-1.5	S-1	Dry	ND	Asphalt upper three inches (kept separate from soil samples).
2	1.5-3	S-2	Dry	ND	Red-brown, medium to coarse SAND and Gravel. No volatile organic odor.
3	3-5*	S-3	Dry	ND	
4	3-3	0-3	Біу	ND	
5					End of Exploration at 5' bgs.
	ppm _v - p	noto-lonizatio parts per mill nitted for lab	ion by volun	ne ysis	

776 Main Street, Westbrook, Maine 04092 - 207-828-1272

TEST PIT DATA:

PROJECT NAME: Former Polyclad Laminates Site DATE: 7/5/2011

PROJECT NUMBER: 10001086

SAMPLE LOCATION ID:

CA-SS-3

ACTIVITY:
START: 1155
END: 1205

CREDERE REPRESENTATIVE: Jonathan O'Donnell

CONTRACTOR/FOREMAN: None

NOTES:

Surficial soil sample south of building foundation.

DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm)	SOIL DESCRIPTION / NOTES
0	0-2	S-1*	Dry	ND	Grass and Organic in upper two inches. Organic material seperated from sample. Red-brown, medium to coarse SAND. No volatile organic odor.
					End of Exploration at 5' bgs.
2					
3					
4					
5					
	ppm _v - p	noto-lonizati parts per mill nitted for lab	lion by volun	ne	

APPENDIX D SOIL BORING LOGS

S	776 Mair Westbroo	ok, Maine 04092		Geologic Log SITE INFORMATION Project Number/Client: 10001086/Former Polyclad Laminates Site Site Location: 45 Tannery Street, Franklin, NH NHDES Site#: Date Start/Finish: 199902062 06-29-11 Credere, LLC Representative:	Screen Le	h (feet) fr	WELL SPECIFICATIONS rom TOW: 35	S				
(s	776 Mair Westbroo	o Street ok, Maine 04092		Project Number/Client: 10001086/Former Polyclad Laminates Site Site Location: 45 Tannery Street, Franklin, NH NHDES Site#: Date Start/Finish: 199902062 06-29-11	Screen Le	h (feet) fr	rom TOW: 35					
(s	776 Mair Westbroo	o Street ok, Maine 04092		10001086/Former Polyclad Laminates Site Site Location: 45 Tannery Street, Franklin, NH NHDES Site#: Date Start/Finish: 199902062 06-29-11	Screen Le							
(s	776 Mair Westbroo	o Street ok, Maine 04092		Site Location: 45 Tannery Street, Franklin, NH NHDES Site#: Date Start/Finish: 199902062 06-29-11		ngth (feet						
(s	Westbroom	ok, Maine 04092		45 Tannery Street, Franklin, NH NHDES Site#: Date Start/Finish: 199902062 06-29-11		ngth (feet						
(s	t			NHDES Site#: Date Start/Finish: 199902062 06-29-11	TOW Elev		t): 10					
(s		_1		199902062 06-29-11	TOW Elev							
S	CA-	_1		199902062 06-29-11	I	. (feet):	335.26 Ground Ele	vation:	NM			
S	CA-	1										
S	CA-	_1		TOTOGOTO, LLO REPIESUITATIVE:	Well Mate	rial.						
S	CA-	_1					I DVG CL I D: I D:					
S	CA-	_1		Jonathan O'Donnell	Z PVC - N		h PVC Slotted Pipe and Ris	er				
S	CA-	_1		CONTRACTOR			LING EQUIPMENT					
S	CA-	_1		Drilling Contractor:	Equipmen	t:						
S	CA.			T&K Drilling	4 1/4" ID F	Iollow St	em Auger					
				Foreman:	Casing Dia	meter:						
				Sean McGarry	NA							
				, , , , , , , , , , , , , , , , , , ,	Casing Ma	toricl.						
				Drilling Method:		пегіаі:						
				Auger	NA							
	Sample In	formation			1	1 1	Equipment Installe	ed				
			~	1		T.G.~~		lush				
၁			E . ©	Soil Description and Classification	Strata	USCS		nt well	ŧ.			
ž	묲	Blows (/0.5')	<u>1</u>	Son Description and Classification	Suaid	Code		oox	Ĕ			
Pen/Rec (In.)	(In.) Depth (Ft.)	(, 0)	PID (ppm,) (RF=1.0)		1			$\overline{}$	Depth			
<u>P</u>	ਦ ਕਿੱ ਦ	_	<u> </u>					1				
				D 1 "					ND			
				Dense, brown, medium to coarse		1	2 inch	1,725,37				
24/12	12 0-2	10-19-16-10	ND	SAND and Gravel. No petroleum or	1	1 1	2-inch expansion plug	230				
				volatile odor.	1	1 1	expansion plug	32.5	1			
				volutile odor.			(2) A	74-0-9				
					1	1 1		1000	2			
				Medium dense, brown, medium to	1	1 1	F. 5. 200	932	-			
24/19	19 2-4	10-7-7-8	ND	coarse SAND and Gravel. Slight	1	1 1						
/		10 , , 0		aromatic odor.	1	1 1	(3)3	74-3	3			
				aromane odor.			200	4.00				
					1	1	2-inch	40.5	4			
				Medium dense, brown, medium to	1	1 1	PVC riser	2503	4			
24/17	17 4-6	4-4-6-6	ND	coarse SAND and Gravel. Slight			100	1				
∠ -1 /1/	1, 4-0	1-1- 0-0	-0 ND	ND	_	İ		Backfill:	17.	5		
				aromatic odor.	1	1 1	Auger	59.7%				
	+ +					1 1	Cuttings	7-00				
				Medium dense, brown, medium to	/el		833	100	6			
24/15	15 6-8	4-5-7-7	ND	coarse SAND and Gravel. Slight	į į	1 1	Page Sec	937				
2 −7/13	15 0-6	1 -5-1-1	עויו		5	1 1			7			
				aromatic odor.	ਰੂ		(3)3	24-3				
					æ	1	22.5	4.5				
				Medium dense, brown, medium to	ρι	1 1	000	400	8			
24/10	10 0 10	7770	NID		, ž	ے	33	25.53				
24/18	18 8-10	7-7-7-9	ND	coarse SAND and Gravel. Slight	57	\mathbf{SP}		1.00	9			
				aromatic odor.	Je J	1	28	77	,			
	\rightarrow				Poorly Graded Sand and Gravel	1 1		59.70				
				Medium dense, brown, medium to	Ē	1 1	350	100	10			
04/16		4.7.0.0	NID		÷	1 1		1.50				
24/13	13 10-12	4-7-8-9	ND	coarse SAND and Gravel. Slight	Ģ	1 1		233	11			
				aromatic odor.	P ₀	1 1		200	11			
						1 1		3.03				
	1 7			Madissa dansa b		1	263	14.5	12			
				Medium dense, brown, medium to	1	1 1		400				
24/18	18 12-14	8-8-7-9	ND	coarse SAND and Gravel. Slight	1	1 1	23	38.80	12			
				aromatic odor.	1	1 1	100	4.00	13			
						1 1	200	177				
					1	1 1	596	(3)	14			
								1000				
	17 14-16	6-7-8-13	ND	coarse SAND and Gravel. Slight			397	750				
				_		1		252	15			
24/17				aromane odor.		1	200	100				
					1	1		300	16			
				Medium dense, brown, medium to	1	1 1	10.5	363	10			
		11-12-13-15	ND			1		100				
24/17	17 16 19	11-12-13-13	ND	2		1	1000	202	17			
	17 16-18			aromatic odor.		1	322	200				
24/17	17 16-18	l				لــــــــــــــــــــــــــــــــــــــ	100	1000	18			
24/17	17 16-18			Daring Continued B 2 62								
	4/				4/17 14-16 6-7-8-13 ND Medium dense, brown, medium to coarse SAND and Gravel. Slight aromatic odor. Medium dense, brown, medium to	4/17 14-16 6-7-8-13 ND Medium dense, brown, medium to coarse SAND and Gravel. Slight aromatic odor. Medium dense, brown, medium to coarse SAND and Gravel. Slight aromatic odor.	4/17 14-16 6-7-8-13 ND Medium dense, brown, medium to coarse SAND and Gravel. Slight aromatic odor. Medium dense, brown, medium to coarse SAND and Gravel. Slight aromatic odor. Medium dense, brown, medium to coarse SAND and Gravel. Slight aromatic odor.	4/17 14-16 6-7-8-13 ND Medium dense, brown, medium to coarse SAND and Gravel. Slight aromatic odor. Medium dense, brown, medium to coarse SAND and Gravel. Slight	4/17 14-16 6-7-8-13 ND Medium dense, brown, medium to coarse SAND and Gravel. Slight aromatic odor. Medium dense, brown, medium to coarse SAND and Gravel. Slight aromatic odor. Medium dense, brown, medium to coarse SAND and Gravel. Slight aromatic odor.			

Soils described using "Modified Burmister Method"

TOW Elevation - Elevation of top of well PVC riser, based on TOW elevation of MW-2 at 334.89 feet

Well Depth shown is actual installed depth. Depth measured during groundwater sampling may reflect a loss of depth due to sedimentation. NM - Not Measured

*Sample submitted for laboratory analysis.

Graphically shows depth of the water table inferred from field observations during soil boring activities.

Boring No: CA-1

						Geologic Log							
						SITE INFORMATION		7	WELL SPECIFICATIONS				
	. D.	E				Project Number/Client:	Well Dept		rom TOW: 35				
١.		in the		Associates, LLC		10001086/Former Polyclad Laminates Site							
.5			776 Mai	n Street ook, Maine 04092		Site Location:	Screen Le	ngth (fee	t): 10				
7	7	4	westbro	ok, Maine 04092		45 Tannery Street, Franklin, NH							
E	nviror	ment				NHDES Site#: Date Start/Finish:	TOW Elev	v. (feet):	335.26 Ground Elevation:	NM			
						199902062 06-29-11							
						Credere, LLC Representative:	Well Mate	erial:					
						Jonathan O'Donnell	2" PVC - N	ND10-inc	h PVC Slotted Pipe and Riser				
						CONTRACTOR		DRILI	LING EQUIPMENT				
			~ .			Drilling Contractor:	Equipmen	ıt:					
		(CA	_1		T&K Drilling	4 1/4" ID I	Hollow St	em Auger				
						Foreman:	Casing Dia	ameter:					
						Sean McGarry Drilling Method:	NA						
						Casing Ma	aterial:						
_													
		S	ample Iı	nformation					Equipment Installed				
		l	1		£			USCS		-			
_	le)ec	۱ ۔	Plows (A 5)	.0)	Soil Description and Classification	Strata	Code		pth			
pt	Sample No.	Pen/Rec (In.)	E in	Blows (/0.5')	PID (ppm,) (RF=1.0)			Coue		Depth			
≅ Depth	San No.	Pen/ (In.)	Depth (Ft.)		PI (R			<u> </u>					
18						Medium dense, brown, medium to				18			
	0.10	24/17	10.20	6 0 10 12	NID								
19	S-10	24/17	18-20	6-8-10-13	ND	coarse SAND and Gravel. Slight				19			
						aromatic odor.			2-inch				
20		1	1				1		PVC riser	20			
20						Medium dense, brown, medium to				20			
2-	S-11	24/17	20-22	6-8-9-9	ND	coarse SAND and Gravel. Slight			Backfill: Auger				
21						aromatic odor.			Cuttings	21			
									33 83				
22						Medium dense, brown, medium to			650	22			
	S-12	24/16	22-24	9-9-10-10	ND	coarse SAND and Gravel. Slight							
23	5-12	24/10	22-24	9-9-10-10	עאַז	aromatic odor.				23			
						aromade odor.							
24						B 1 " ']		Bentonite	24			
						Dense, brown, medium to coarse							
25	S-13	24/9	24-26	6-14-23-27	ND	SAND and Gravel. Slight aromatic				25			
						odor.				20			
26		1	-				-			26			
∠0						Dense, brown, medium to coarse				40			
	S-14*	24/16	26-28	19-19-17-17	ND	SAND and Gravel. Slight aromatic			▼ B380				
27						odor.			96	27			
28		1	End of sa	ampling at 28'	. Boring	advanced to 35 feet for installation of	well.		Clean Sand	28			
									Filter pack				
29										29			
									2-inch PVC	•			
30									0.010 slotted	30			
30									pipe	30			
31										21			
31										31			
_													
32									K9 = X1	32			
33	33												
34	34												
35	Well Set at 35'												
33						wen set at 33				33			

Soils described using "Modified Burmister Method"

TOW Elevation - Elevation of top of well PVC riser, based on TOW elevation of MW-2 at 334.89 feet

Well Depth shown is actual installed depth. Depth measured during groundwater sampling may reflect a loss of depth due to sedimentation.

NM - Not Measured

 $*Sample \ submitted \ for \ laboratory \ analysis.$

Graphically shows depth of the water table inferred from field observations during soil boring activities.

Boring No: CA-1

						Geologic Log						
		10				SITE INFORMATION		,	WELL SPECIFICATIONS			
4	Simme A	Ecomo		Associates, LLC		Project Number/Client: 10001086/Former Polyclad Laminates Site	Well Dept		rom TOW: 35 (field mean	suremei	nt)	
COL	-C	- 1	776 Main Westbro	n Street ok, Maine 04092		Site Location: 45 Tannery Street, Franklin, NH	Screen Le	ngth (fee	t): 10			
E	nviron	ment				NHDES Site#: Date Start/Finish: 199902062 06-29-11	TOW Ele	v. (feet):	334.82 Ground Elev	ation:	NM	
						Credere, LLC Representative: Jonathan O'Donnell	Well Material: 2" PVC - 0.010-inch PVC Slotted Pipe and Riser					
						CONTRACTOR	2 1 10 1		LING EQUIPMENT			
			~ A	2		Drilling Contractor: T&K Drilling	Equipmen	ıt:	tem Auger			
			$C\mathbf{A}$			Foreman:	Casing Di					
						Sean McGarry	NA					
						Drilling Method: Auger	Casing M NA	aterial:				
		Sa	ample Ir	nformation	_				Equipment Installed	_		
• Depth	Sample No.	Pen/Rec (In.)	Depth (Ft.)	Blows (/0.5')	PID (ppm,) (RF=1.0)	Soil Description and Classification	Strata	USCS Code	mount	Flush mount well box		
0						Medium dense, brown, medium to			2-inch	200	0	
1	S-1	24/10	0-2	5-6-5-4	ND	coarse SAND and Gravel. No petroleum or volatile odor.			expansion plug		1	
2						I GAND IG IN					2	
3	S-2	24/14	2-4	4-2-2-2	ND	Loose, coarse SAND and Gravel. No petroleum or volatile odor.					3	
4						Loose, brown, medium to coarse					4	
5	S-3	24/8	4-6	3-2-2-3	ND	SAND and Gravel. No petroleum or volatile odor.					5	
6	G 43	0.4/1.1		2222	10.0	Loose, brown, medium to coarse	avel		2-inch PVC riser		6	
7	S-4*	24/11	6-8	2-2-3-2	10.2	SAND and Gravel. No petroleum or volatile odor.	nd Gr		Backfill: Auger		7	
8						Very loose, brown, medium to coarse	and a		Cuttings		8	
9	S-5	24/13	8-10	1-1-1-1	7.9	SAND and Gravel. No petroleum or volatile odor.	Poorly Graded Sand and Gravel	SP			9	
10						Very loose, brown, medium to coarse	ly Gr				10	
11	S-6	24/12	10-12	1-1-1-1	1.2	SAND and Gravel. No petroleum or volatile odor.	Poor				11	
12						Very loose, brown, medium to coarse	1			10.00 A	12	
13	S-7	24/15	12-14	1-1-1-2	ND	SAND and Gravel. No petroleum or volatile odor.					13	
14						Loose, brown, medium to coarse	1				14	
15	S-8	24/9	14-16	1-1-4-5	ND	SAND and Gravel. No petroleum or volatile odor.					15	
16						Loose, brown, medium to coarse			100	16		
17	S-9	24/13	16-18	7-3-4-3	ND	SAND and Gravel. No petroleum or volatile odor.					17	
18				ı		Boring Continued on Page 2 of 2	1	ı	100	(September 1	18	

Soils described using "Modified Burmister Method"

TOW Elevation - Elevation of top of well PVC riser, based on TOW elevation of MW-2 at 334.89 feet

Well Depth shown is actual installed depth. Depth measured during groundwater sampling may reflect a loss of depth due to sedimentation.

REF - Refusal, 100 blows and less than 1 " of depth gained.

NM - Not Measured
*Sample submitted for laboratory analysis.

Graphically shows depth of the water table inferred from field observations during soil boring activities.

CA-2 **Boring No:**

Page 1 of 2

						Geologic Log							
						SITE INFORMATION	1		WELL SPECIFICATIONS				
Ш	E	E				Project Number/Client:	Well Dept		rom TOW: 35 (field measurem	ent)			
	THE A	allo		Associates, LLC		10001086/Former Polyclad Laminates Site			·				
6		- 1	776 Mai	n Street ook, Maine 04092		Site Location:	Screen Le	ngth (fee	t): 10				
\mathbf{Z}	7	-	Westbic	ok, Manie 04072		45 Tannery Street, Franklin, NH							
E	nviron	ment				NHDES Site#: Date Start/Finish:	TOW Elev	v. (feet):	334.82 Ground Elevation:	NM			
						199902062 06-29-11							
_						Credere, LLC Representative:	Well Mate						
						Jonathan O'Donnell	2" PVC - 0		PVC Slotted Pipe and Riser				
						CONTRACTOR			LING EQUIPMENT				
			\sim \sim			Drilling Contractor:	Equipmen						
			CA	- Z		T&K Drilling Foreman:	4 1/4" ID I Casing Dia		em Auger				
						Sean McGarry	NA	ameter:					
						Drilling Method:	Casing Ma	atorial:					
						Auger	NA	ateriar.					
		S	ample Iı	nformation				Equipment Installed					
					u,)			USCS		_			
	ole	Şec	ے ا	Blows (/0.5')	ndd (0.)	Soil Description and Classification	Strata	Code		bth			
Depth	Sample No.	Pen/Rec (In.)	Depth (Ft.)	Pions (/0.2.)	PID (ppm,) (RF=1.0)			Code		Depth			
Dě	San No.	Pe (Ir	ĬĐ	ļ	PI (R				DOME OF THE REAL PROPERTY.				
18						Very loose, brown, medium to coarse				18			
	S-10	24/9	18-20	3-1-2-1	ND	SAND and Gravel. No petroleum or							
19	5-10	∠ + /フ	10-20	3-1-2-1	עאַז	volatile odor.			2-inch	19			
			<u> </u>	<u> </u>		voianie odoi.]		PVC riser	<u> </u>			
20				1		Madium dansa buayun madit-				20			
	C 11	24/14	20.22	5 9 24 24	ND	Medium dense, brown, medium to			Backfill:				
21	S-11	24/14	20-22	5-8-24-24	ND	coarse SAND and Gravel. No			Auger Cuttings	21			
						petroleum or volatile odor.			Cutungs	-			
22	+ + + + + + + + + + + + + + + + + + + +						1		25.73	22			
				1		Dense, brown, medium to coarse							
23	S-12	24/11	22-24	25-26-23-REF	ND	SAND and Gravel. No petroleum or				23			
<u> </u>				1		volatile odor.				23			
24				 			1		Bentonite	24			
24				1		Very dense, brown, medium to coarse				24			
2-	S-13	24/16	24-26	16-25-33-24	ND	SAND and Gravel. No petroleum or			(50) - (50)				
25				ĺ		volatile odor.			[3.5]	25			
				ļ			4						
26				ĺ		Dense, brown, medium to coarse				26			
	S-14	24/12	26-28	23-19-11-6	ND	SAND and Gravel. No petroleum or							
27			25			volatile odor.				27			
						. Olatile odol.	1		▼ 168 1880				
28				1		Medium dense, brown, medium to				28			
	S-15	24/18	28-30	5-11-7-7	ND	coarse SAND and Gravel. No							
29	5-15	2-7/10	20-30	3-11-1-1	עויי					29			
				<u> </u>		petroleum or volatile odor.]		Clean Sand	<u></u>			
30						Madisus dans bases as P	1		Filter pack	30			
	0.16	24/7	20.22	4754	NT	Medium dense, brown, medium to							
31	S-16	24/7	30-32	4-7-5-4	ND	coarse SAND and Gravel. No			SE SE	31			
				1		petroleum or volatile odor.			2-inch PVC 0.010 slotted				
32		1	End of s	ampling at 32'	. Boring	advanced to 35 feet for installation of	well.	•	pipe	32			
	End of sampling at 32'. Boring advanced to 35 feet for installation of well.												
33	33												
55	NOTE: Strong aromatic odor in water drained from drilling augur during withdrawal of auger.												
34	NO IE	. onong	aiomali	o odor in water	GIGIII I GUI	Grinning dagar during withdrawal Of at	agui.			34			
J-7										34			
35	5 Well Set at 35' 35												
33						vien get at 33				33			

Soils described using "Modified Burmister Method"

TOW Elevation - Elevation of top of well PVC riser, based on TOW elevation of MW-2 at 334.89 feet

Well Depth shown is actual installed depth. Depth measured during groundwater sampling may reflect a loss of depth due to sedimentation.

REF - Refusal, 100 blows and less than 1 " of depth gained.

NM - Not Measured

*Sample submitted for laboratory analysis.

Graphically shows depth of the water table inferred from field observations during soil boring activities.

Boring No: CA-2

						Geologic Log						
		11				SITE INFORMATION	WELL SPECIFICATIONS					
Com	THE PARTY OF THE P	Economy	776 Mai	Associates, LLC n Street ook, Maine 04092		Project Number/Client: 10001086/Former Polyclad Laminates Site Site Location: 45 Tannery Street, Franklin, NH	Well Dept Screen Le	h (feet) f	rom TOW: 35 (field m		nt)	
E	nviron	ment				NHDES Site#: Date Start/Finish: 199902062 06-29-11	TOW Ele	v. (feet):	335.25 Ground El	evation:	NM	
						Credere, LLC Representative: Jonathan O'Donnell	Well Material: 2" PVC - 0.010-inch PVC Slotted Pipe and Riser					
						CONTRACTOR			LING EQUIPMENT			
			~ .			Drilling Contractor:	Equipmen	ıt:				
				_3		T&K Drilling			tem Auger			
		•				Foreman:	Casing Di	ameter:				
						Sean McGarry	NA					
						Drilling Method:	Casing M	aterial:				
-		C	1.7	6 4.		Auger	NA	1 1	E			
		S	ample Ir	nformation	_	4			Equipment Install			
• Depth	Sample No.	Pen/Rec (In.)	Depth (Ft.)	Blows (/0.5')	PID (ppm,) (RF=1.0)	Soil Description and Classification	Strata	USCS Code	F	Depth		
1	S-1	24/11	0-2	4-14-17-18	ND	Dense, brown, medium to coarse SAND and Gravel. No petroleum or volatile odor.			2-inch expansion plug	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	
3	S-2*	24/11	2-4	23-12-26-21	ND	Dense, brown, medium to coarse SAND and Gravel. No petroleum or volatile odor.	d Gravel			g.	3	
5	S-3	24/12	4-6	12-21-24-20	ND	Dense, brown, medium to coarse SAND and Gravel. No petroleum or volatile odor.	Poorly Graded Sand and Gravel	SP	2-inch PVC riser Backfill: Auger		5	
7	S-4	24/9	6-8	39-24-35-14	1.2	Very dense, brown, medium to coarse SAND and Gravel. No petroleum or volatile odor.	Poorly Gr		Cuttings	g,	7	
9	S-5	24/13	8-10	3-4-5-7	ND	Loose, coarse SAND and Gravel. No petroleum or volatile odor.					9	
10 11	S-6	24/13	10-12	8-6-11-9	ND	Medium dense, light brown fine SAND. No petroleum or volatile odor.					10	
13	S-7	24/14	12-14	7-10-12-12	ND	Medium dense, light brown fine SAND. No petroleum or volatile odor.	ded Sand	γ			12	
14 15	S-8	24/13	14-16	10-11-13-15	ND	Medium dense, light brown fine SAND. No petroleum or volatile odor.	Well Graded Sand	SW			14	
16 17	S-9	24/16	16-18	10-12-15-14	ND	Medium dense, light brown fine SAND. No petroleum or volatile odor.					16 17	
18				l		Boring Continued on Page 2 of 2	l				18	

Soils described using "Modified Burmister Method"

TOW Elevation - Elevation of top of well PVC riser, based on TOW elevation of MW-2 at 334.89 feet Well Depth shown is actual installed depth. Depth measured during groundwater sampling may reflect a loss of depth due to sedimentation. NM - Not Measured

*Sample submitted for laboratory analysis.

Graphically shows depth of the water table inferred from field observations during soil boring activities.

CA-3 **Boring No:**

Page 1 of 2

Credere Associates, LLC Tro Main Street Tr							Geologic Log											
Project Number/Client: Ontologo-Sprome Polyclad Laminates Site Site Location: Site Location: Site Location: Site Location: Site Tannery Street, Franklin, NH NIDDES Sitest: Date Start/Finish: NIDDES Sitest: Date Start/Finish: Ontologo-Sprome Polyclad Laminates Site Site Location: Site Tannery Street, Franklin, NH NIDDES Sitest: Date Start/Finish: Ontologo-Sprome One-2-pil: TOW Elev. (feet): 335.25 Ground Elevation: One-2-pil:			TIONS	LL SPECIFICA	v			\neg										
CA-3	ent)					Well Dant		Ī				100	A.	lu l				
Name Name	.iii)	asarciilei	iciu meas	. 1377. 33 (11	ii (ICCI) II	ch Depu				Associates, LLC	Credere	COL						
Sample Information				10	noth (feet	Screen I o				in Street	776 Mai	Y a	Y	4				
State Stat				10	agan (icel	oct cen Lei			;	ook, Maine 04092	Westbro	1		0				
1990/2062 06-29-11 1990/2062 06-29-11 1990/2062 1900/2	NM	votion	und Ele-	225 25 🗗	(foct).	TOW El						ment	nviror	4				
Croft, 1.C. Representative:	INIVI	vauon:	mu Eleva	333.43 Gro u	. (reet):	TOW Elev						cii t		•				
Sample Sample Information Seminary Solution Seminary State Seminary Sample Information Seminary S								_										
CONTRACTOR DRILLING EQUIPMENT Drilling Contractor: Text Drilling Contractor: Text Drilling Contractor: Text Drilling Contractor: Text Drilling Contractor: Text Drilling Contractor: Text Drilling Contractor: Text Drilling Method: August Alst TD Hollow Stem Auger Casing Dameter: August Casing Material: Augu																		
Diriling Contractor: Equipment Installed Equipment Installed Install		r				2" PVC - 0		Ľ										
Text Drilling			T	IG EQUIPMEN	DRILL			L										
Sample Information											~ .							
Sample Information				Auger	Iollow St	4 1/4" ID F	Prilling			_3	' A							
Sample Sample Sample Information Strata USCS Code Strata USCS Code Information Strata USCS Information Strata USCS Information Strata USCS Information Strata USCS Information Sample Information Sample Information Sample Information Info					ameter:	Casing Dia	an:)										
Sample Information Strata Soli Description and Classification Strata USCS Code						NA	IcGarry	5										
Sample Information Strata USCS Code					terial:	Casing Ma	g Method:)										
Soil Description and Classification Strata USCS Code																		
18		d	installed	Equipment I				\equiv										
18	æ				USCS	G	D		Ę			၁		i				
18	pd Ta					Strata	Description and Classification	0.1	l dd	Blows (/0.5")	ч	Ş.	əle	ч				
18	Depth				Jour			II.	ا م	Dions (/0.5)	t, pt	ت ق	Ī.	þť				
18								ජ			D F	Pe (In	S Z	ă				
S-10 24/15 18-20 14-15-17-17 ND Dense, light brown fine SAND. No petroleum or volatile odor.	18	177	253					T						18				
19 S-10 24/15 18-20 14-15-17-17 ND petroleum or volatile odor.	i	50.00	200				se, light brown fine SAND. No					l						
20	19	1	25%	2-inch)	NI	14-15-17-17	18-20	24/15	S-10	10				
20	19	1	157.5				penoieum or voiame odor.		´									
S-11 24/16 20-22 9-10-15-16 ND Medium dense, light brown fine SAND. No petroleum or volatile odor.	<u> </u>	933	50 Mm					_	<u> </u>	ļ								
S-11 24/16 20-22 9-10-15-16 ND Medium dense, light brown fine SAND. No petroleum or volatile odor.	20	975	243	Backfill-										20				
SAND. No petroleum or volatile odor. SAND. No petroleum or volatile odor.	i	30.43	936				edium dense, light brown fine	.	N.TI	0.10.15.16	20.22	24/16	C 11					
22 24/15 22-24 15-15-17-19 ND Dense, light brown fine SAND. No petroleum or volatile odor.	21	4.5	255				_	ا ر	NI	9-10-15-16	20-22	24/16	2-11	21				
S-12 24/15 22-24 15-15-17-19 ND Dense, light brown fine SAND. No petroleum or volatile odor. Bentonite		13.5	0.53				r											
S-12 24/15 22-24 15-15-17-19 ND Dense, light brown fine SAND. No petroleum or volatile odor. Bentonite		(X-X)	435			-		-	<u> </u>					22				
23 S-12 24/15 22-24 15-15-17-19 ND petroleum or volatile odor. 24 S-13 24/17 24-26 5-10-12-15 ND Medium dense, light brown fine SAND. No petroleum or volatile odor. 26 S-14 24/15 26-28 14-15-14-15 ND Medium dense, light brown fine SAND. No petroleum or volatile odor. 28 S-15 24/16 28-30 3-6-8-10 ND Medium dense, light brown fine SAND. No petroleum or volatile odor. 30 S-16 24/15 30-32 3-3-4-5 ND Loose, light brown fine SAND. No petroleum or volatile odor. 21 Loose, light brown fine SAND. No petroleum or volatile odor. 22 S-15 24/16 28-30 3-3-4-5 ND Loose, light brown fine SAND. No petroleum or volatile odor. 23 S-16 24/15 30-32 3-3-4-5 ND Loose, light brown fine SAND. No petroleum or volatile odor.	22	1000	30										22					
petroleum or volatile odor. 24		100	330				se, light brown fine SAND. No	ا ه	NII	15-15-17-10	22.24	24/15	S_12					
24 24 24 24 24 24 24 24	23	100	(8)				petroleum or volatile odor.	´	111	13-13-17-19	22-24	24/13	5-12	23				
S-13 24/17 24-26 5-10-12-15 ND Medium dense, light brown fine SAND. No petroleum or volatile odor.	ľ	343.5					-											
S-13 24/17 24-26 5-10-12-15 ND Medium dense, light brown fine SAND. No petroleum or volatile odor.	24	28/3/4	9030	Bentonite				-t	†					24				
S-13 24/17 24-26 3-10-12-15 ND SAND. No petroleum or volatile odor. 26 S-14 24//15 26-28 14-15-14-15 ND Medium dense, light brown fine SAND. No petroleum or volatile odor. 28 S-15 24/16 28-30 3-6-8-10 ND Medium dense, light brown fine SAND. No petroleum or volatile odor. 30 S-16 24/15 30-32 3-3-4-5 ND Loose, light brown fine SAND. No petroleum or volatile odor. 31 S-16 24/15 30-32 3-3-4-5 ND Loose, light brown fine SAND. No petroleum or volatile odor. 32 End of sampling at 32'. Boring advanced to 35 feet for installation of well.	24	1000	5000				- 4: f: f:							27				
SAND. No petroleum or volatile odor. SAND. No petroleum or volatile odor. Medium dense, light brown fine SAND. No petroleum or volatile odor. S-14 24/15 26-28 14-15-14-15 ND Medium dense, light brown fine SAND. No petroleum or volatile odor. Medium dense, light brown fine SAND. No petroleum or volatile odor. Loose, light brown fine SAND. No petroleum or volatile odor. Loose, light brown fine SAND. No petroleum or volatile odor. Loose, light brown fine SAND. No petroleum or volatile odor. Loose, light brown fine SAND. No petroleum or volatile odor.		3000	500				_	S	NI	5-10-12-15	24-26	24/17	S-13					
S-14 24//15 26-28 14-15-14-15 ND Medium dense, light brown fine SAND. No petroleum or volatile odor. S-15 24/16 28-30 3-6-8-10 ND Medium dense, light brown fine SAND. No petroleum or volatile odor. S-16 24/15 30-32 3-3-4-5 ND Loose, light brown fine SAND. No petroleum or volatile odor. End of sampling at 32'. Boring advanced to 35 feet for installation of well.	25	100	923				O. No petroleum or volatile odor.		·					25				
S-14 24//15 26-28 14-15-14-15 ND Medium dense, light brown fine SAND. No petroleum or volatile odor. S-15 24/16 28-30 3-6-8-10 ND Medium dense, light brown fine SAND. No petroleum or volatile odor. S-16 24/15 30-32 3-3-4-5 ND Loose, light brown fine SAND. No petroleum or volatile odor. End of sampling at 32'. Boring advanced to 35 feet for installation of well.	i		1700															
S-14 24/15 26-28 14-15-14-15 ND Medium dense, light brown fine SAND. No petroleum or volatile odor. 28 29 S-15 24/16 28-30 3-6-8-10 ND Medium dense, light brown fine SAND. No petroleum or volatile odor. 30 S-16 24/15 30-32 3-3-4-5 ND Loose, light brown fine SAND. No petroleum or volatile odor. 31 S-16 24/15 30-32 3-3-4-5 ND Loose, light brown fine SAND. No petroleum or volatile odor. 32 End of sampling at 32'. Boring advanced to 35 feet for installation of well.	26		100			1								26				
SAND. No petroleum or volatile odor. SAND. No petroleum or volatile odor. Medium dense, light brown fine SAND. No petroleum or volatile odor. S-15 24/16 28-30 3-6-8-10 ND Medium dense, light brown fine SAND. No petroleum or volatile odor. Loose, light brown fine SAND. No petroleum or volatile odor. Loose, light brown fine SAND. No petroleum or volatile odor. End of sampling at 32'. Boring advanced to 35 feet for installation of well.	i	-886	- 666				edium dense light brown fine							-				
28 S-15 24/16 28-30 3-6-8-10 ND Medium dense, light brown fine SAND. No petroleum or volatile odor. 30 S-16 24/15 30-32 3-3-4-5 ND Loose, light brown fine SAND. No petroleum or volatile odor. 31 End of sampling at 32'. Boring advanced to 35 feet for installation of well.		10000	260.00				_)	NI	14-15-14-15	26-28	24//15	S-14	27				
S-15 24/16 28-30 3-6-8-10 ND Medium dense, light brown fine SAND. No petroleum or volatile odor. S-16 24/15 30-32 3-3-4-5 ND Loose, light brown fine SAND. No petroleum or volatile odor. End of sampling at 32'. Boring advanced to 35 feet for installation of well.	27		333				o. No petroleum or volatile odor.							27				
S-15 24/16 28-30 3-6-8-10 ND Medium dense, light brown fine SAND. No petroleum or volatile odor. 30 S-16 24/15 30-32 3-3-4-5 ND Loose, light brown fine SAND. No petroleum or volatile odor. 31 End of sampling at 32'. Boring advanced to 35 feet for installation of well.		= (S)	100						<u> </u>									
30 S-16 24/15 30-32 3-3-4-5 ND Loose, light brown fine SAND. No petroleum or volatile odor. SAND. No petroleum or volatile odor. Loose, light brown fine SAND. No petroleum or volatile odor. End of sampling at 32'. Boring advanced to 35 feet for installation of well.	28	0.31	300											28				
SAND. No petroleum or volatile odor. SAND. No petroleum or volatile odor. Loose, light brown fine SAND. No petroleum or volatile odor. Loose, light brown fine SAND. No petroleum or volatile odor. End of sampling at 32'. Boring advanced to 35 feet for installation of well.	i		900				edium dense, light brown fine		3.77	2 (0 10	20.20	24/16	0.15					
30 S-16 24/15 30-32 3-3-4-5 ND Loose, light brown fine SAND. No petroleum or volatile odor. 32 End of sampling at 32'. Boring advanced to 35 feet for installation of well.	29	- See	(55)				. 0	ا ر	NI	3-6-8-10	28-30	24/16	5-15	29				
30 S-16 24/15 30-32 3-3-4-5 ND Loose, light brown fine SAND. No petroleum or volatile odor. 31 End of sampling at 32'. Boring advanced to 35 feet for installation of well.	, <i></i>		63	Clean Sand			penotean or volume odor.											
S-16 24/15 30-32 3-3-4-5 ND Loose, light brown fine SAND. No petroleum or volatile odor. 32 End of sampling at 32'. Boring advanced to 35 feet for installation of well.		5/	88			1		-	 	-		-		20				
31 S-16 24/15 30-32 3-3-4-5 ND petroleum or volatile odor. 32 End of sampling at 32'. Boring advanced to 35 feet for installation of well.	30		192											30				
31 petroleum or volatile odor. 32 End of sampling at 32'. Boring advanced to 35 feet for installation of well. 33	L	5.34	383				se, light brown fine SAND. No	5 L	NII	3_3 / 5	30.32	24/15	S_16					
32 End of sampling at 32'. Boring advanced to 35 feet for installation of well. 33	31		2.76	2 inst DVC			petroleum or volatile odor.	_	141	3-3-4-3	30-32	27/13	5-10	31				
End of sampling at 32'. Boring advanced to 35 feet for installation of well.	l		-															
33	32	- 35/	133			well	ced to 35 feet for installation of	ing '	Rer	ampling at 32'	End of e			32				
	34	- (St)	083			17 CII.	cca to 55 feet for mistaliation of	ıng t	. Dor	amping at 32	Enu or S			34				
		-	500											-				
34	33													33				
34		300	253															
100 1100	34	= 100												34				
35 Well Set at 35'	35						Set at 35'							35				
Weil det at 33	33						nei ai 55							33				

Remarks:
Soils described using "Modified Burmister Method"

TOW Elevation - Elevation of top of well PVC riser, based on TOW elevation of MW-2 at 334.89 feet

Well Depth shown is actual installed depth. Depth measured during groundwater sampling may reflect a loss of depth due to sedimentation. NM - Not Measured

*Sample submitted for laboratory analysis.

Graphically shows depth of the water table inferred from field observations during soil boring activities.

Boring No: CA-3

Stratification lines represent approximate boundaries between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

Page 2 of 2

						Geologic Log					
	70	- 11				WELL SPECIFICATIONS					
	Simula	Ecome		Associates, LLC		SITE INFORMATION Project Number/Client: 10001086/Former Polyclad Laminates Site	Well Dept		rom TOW:	N/A	
٥		-	776 Main Westbro	n Street ok, Maine 04092		Site Location: 45 Tannery Street, Franklin, NH	Screen Le	ngth (fee	t):	N/A	
F	Enviror	ment				NHDES Site#: Date Start/Finish: 199902062 06-29-11				Ground Elevation:	NM
						Credere, LLC Representative: Jonathan O'Donnell CONTRACTOR	Well Mate		N/A		
								LING EQUI	PMENT		
			CA	_1		Drilling Contractor: T&K Drilling Foreman:		Hollow St	em Auger		
					Casing Di	ameter:					
					NA						
						Drilling Method: Auger	Casing Ma	aterial:			
		S	ample Ir	nformation		rugoi	11/1		Equip	nent Installed	
					3			USCS			
Depth	Sample No.	Pen/Rec (In.)	Depth (Ft.)	Blows (/0.5')	PID (ppm,) (RF=1.0)	Soil Description and Classification	Strata	Code			Depth
0				-			•	•			0
1											1
2											2
3									3		
4	N- C	1:	- f 0	4- 10 f4 h-l		f D	:115	-4h-4h-		4	
5	NOS	ampini	g 110111 0 1			surface. Purpose of boring was to asses at 10 feet below ground surface.	s son bene	aui uie		stalled	5
6										No Monitoring Well Installed	6
7										toring ¹	7
8										o Moni	8
9										Z	9
10						Loose, brown, medium to coarse	pur				10
11	S-1*	24/12	10-12	1-2-2-3	ND	SAND and Gravel. Slight aromatic odor.	Poorly Graded Sand	<u>.</u>			11
12	S-2	24/16	12-14	3-4-2-4	ND	Loose, brown, medium to coarse SAND and Gravel. Slight aromatic	dy Gra	SP			12
13	3-2	24/10	12-14	3-4-2-4	ND	odor.	Poor				13
14						End of sampling at 14'					14

Remarks:
Soils described using "Modified Burmister Method"

NM - Not Measured

 $*Sample \ submitted \ for \ laboratory \ analysis.$

CA-4 **Boring No:**

						Geologic Log						
	~					WELL SPECIFICATIONS						
	annit.	Ecome		Associates, LLC		SITE INFORMATION Project Number/Client: 10001086/Former Polyclad Laminates Site	Well Dept		rom TOW:	N/A		
O		-	776 Main Westbro	n Street ok, Maine 04092		Site Location: 45 Tannery Street, Franklin, NH	Screen Le	ngth (fee	t):	N/A		
E	nviron	ment				NHDES Site#: Date Start/Finish: 199902062 06-29-11	TOW Ele	v. (feet):	N/A	Ground Elevation:	NM	
						Credere, LLC Representative: Jonathan O'Donnell	Well Mate	erial:	N/A			
н						CONTRACTOR	DRILLING EQUIPMENT					
			CA	5		Drilling Contractor: T&K Drilling	Equipment: 4 1/4" ID Hollow Stem Auger					
				-5		Casing Di	ameter:					
						NA						
						Drilling Method:	Casing Ma	aterial:				
						Auger	NA					
		S	ample Ir	nformation					Eauin	nent Installed		
					~	1			P		1	
Depth	Sample No.	Pen/Rec (In.)	Depth (Ft.)	Blows (/0.5')	PID (ppm,) (RF=1.0)	Soil Description and Classification	Strata	USCS Code			Depth	
0							•				0	
1											1	
2											2	
3										3		
4										4		
5	No S	ampling	g from 0 t			surface. Purpose of boring was to asses at 10 feet below ground surface.	s soil bene	ath the		alled	5	
6										'ell Inst	6	
7										No Monitoring Well Installed	7	
8										Monita	8	
9										Š	9	
10						Medium dense, brown, medium to	p				10	
11	S-1	24/12	10-12	1-5-6-4	ND	coarse SAND and Gravel. Slight aromatic odor.	ıded San	6.			11	
12	S-2*	24/13	12-14	4-6-6-7	ND	Medium dense, brown, medium to coarse SAND and Gravel. Slight aromatic odor.	Poorly Graded Sand	SP			12	
14		l			l	End of sampling at 14'	<u> </u>				14	

Remarks:
Soils described using "Modified Burmister Method"

NM - Not Measured

 $*Sample \ submitted \ for \ laboratory \ analysis.$

CA-5 Boring No:

APPENDIX E GROUNDWATER SAMPLING LOGS

LOW FLOW SAMPLING LOG CREDERE ASSOCIATES

SAMPLE LOCATION ID:	15 1201	DATE: 7 / 5					41/40	Tol	NAME:	PROJECT					
MELL DATA: MELL DEPTH (ft): 34		LOCATION ACTI					0001086		PROJECT NUMBER:						
WELL DEPTH (ft): 34							-1	D: <u>CA</u>	OCATION II	SAMPLE L					
WELL DEPTH (ft): 34			3 , 1677 :		View Control				TA:	NELL DA					
MATER DEPTH (ft):	ND. PROBE FIVATED PROBE	WATER LEVEL EQUIPM [] ELECT. COND. PRO [] FLOAT ACTIVATED	OP OF CASING	[] TO	RICAL	[]HISTO	2	34.42							
PVC	: TRANSDUCER	[] PRESSURE TRANS	11/4/2017	[]				28.02	EPTH (ft):	WATER DI					
PURGING SAMPLING [] PERISTALTIC PUMP PH PH PH PH PH PH PH		L MOUTH VOC:	AMBIEN	INTACT: [⊭]YES	CASING	CURE: ĴYES	D: SE	LOCKE	TERIAL:	[≫] PVC					
PURGING SAMPLING [] [] PERISTALTIC PUMP [] pH [] SUBMERSIBLE [] Specific Conductivity [] DISSILLED W DEIONIZED W DEION									NT DATA:	EQUIPME					
PUMP ON:PUMP OFF: STABLE FLOW RATE (ml/min): [] MEASURED [] TIME	D: VATER WATER 'ATER ON	FLUIDS USED: DISTILLED WATER DEIONIZED WATER POTABLE WATER TSP SOLUTION ALCONOX SOLUTIO	METER ID	ctivity	olved Oxyg	[] Spe [] Diss [] ORF	IBLE PUMP IP ID HDPE E ID LDPE	PERISTAL' SUBMERS BLADDER HAND PUM DEDICATE NEW HDPI DEDICATE NEW LDPE FILTER							
TIME TEMP (°C) PH (COND. (mS) (mV) (mg/l) (ntu) COMMENTS 1440 15.13 5.36 .190 116.7 6.44 N ENOUGH TREED (NO OPER (3) 1444 13.71 5.96 .181 130.6 7.11 (5 CALLONS) TURBID. 1450 13.37 C. 26 .175 126.5 13.50 (10 CALLONS) TURBID. 1456 14 07 (33 .172 125.8 10.74 331 (14 CALLONS) AUTHOR) SAMPLE DATA: SAMPLE BOTTLE ID PRESERVATION SAMPLE CONTAINER LABORATORY TIME LOCATION METHOD # TYPE ANALYSIS						10.00		TA:	ALYSIS DAT	FIELD ANA					
TIME (°C) PH (ms) (mV) (mg/l) (ntu) COMMENTS 1440 15.13 5.36 190 116.7 6.44 N Brown TJERD(NO OPORT (3) 1444 13.71 5 90 181 130.6 9.11 (5 CALLONS) TJERGINO OPORT (3) 1450 13.37 C. 26 .115 1265 13.50 (10 CALDONS) TJERGINO (1466 14 0.7 6.44 0.7) 1450 13.37 C. 26 .115 1265 13.50 (10 CALDONS) TJERGINO (1466 14 0.7 15 0.7 15 0.7 15 0.7 1450 14 0.7 C. 33 .172 125.8 10.74 331 (14 0.44 0.7) 4 11-14 744 747 74 74 74 74 74 74 74 74 74 74] ESTIMATED] MEASURED [] ESTI	I 1	TE (ml/min):_	FLOW RA	STABLE	<u>:</u>	PUMP OFF		PUMP ON:					
13.71 5 9 C 181 130 C 9.11 (5 CALLONS) TORISID 1450 13.37 C 2 C .115 126 5 13.50 (10 CALLONS) TORISID 146 C 14 of C 33 .172 125.9 10.74 331 (14 GALLONS) GUARDAY GALLONS GAMPLE DATA: SAMPLE BOTTLE ID PRESERVATION SAMPLE CONTAINER LABORATORY ANALYSIS		COMMENTS						pН		TIME					
1450 13.37 (26 , 115 1265 13.52 (10 Carbors) Torsio (1466 14 off (53 , 172 125.8 10.74 331 (14 ballons) Guidans) Guidans (14 ballons) Guidans (14 ballons) Guidans (15 ballons) Guidan	3 GALLONS)	40/NO 09012 (3 GALL	V BROWN TUEBO		6.44	116.7	1190	5.06	15.13	1440					
SAMPLE DATA: SAMPLE BOTTLE ID TIME LOCATION METHOD 10.74 331 (14 624 225) 441-474, 7		Tursis	(5 CALLONS)		9.11	130_6	1181	590	13.71	1444					
SAMPLE DATA: SAMPLE BOTTLE ID TIME LOCATION METHOD 10.74 331 (14 GALLANS) GALLANS) GAMPLE CONTAINER LABORATORY ANALYSIS		s) Tuesio	(10 Calbus)		13.50	1265	:115	626	13.37	1450					
SAMPLE BOTTLE ID PRESERVATION SAMPLE CONTAINER LABORATORY TIME LOCATION METHOD # TYPE ANALYSIS	IESS TURSIO	NS) Sul-14 Tuy 1855 7	(14 bill on		10.74	125.8	.172	l 53	14.07	1456					
SAMPLE BOTTLE ID PRESERVATION SAMPLE CONTAINER LABORATORY TIME LOCATION METHOD # TYPE ANALYSIS						,									
SAMPLE BOTTLE ID PRESERVATION SAMPLE CONTAINER LABORATORY TIME LOCATION METHOD # TYPE ANALYSIS															
TIME LOCATION METHOD # TYPE ANALYSIS															
Voca olyly)			ER						LOCA	TIME CA-7					
NOTES:	- 26,							- 274		IOTES:					

SAMPLER

LOW FLOW SAMPLING LOG CREDERE ASSOCIATES

PROJECT	NAME:	RI	4 CLA	D			Credere Associates LLC DATE: 7 / 5 / / (
PROJECT	NUMBER:	10	00108	2			LOCATION ACTIVITY
SAMPLE L	OCATION I	D: C/	1-2				START: <u>/350</u> END:
WELL DA	TA:			W. Tarana			
WELL DEF		34.4		[≿] MEAS [] HISTC	RICAL	[`] T(DP OF WELL WATER LEVEL EQUIPMENT USED: DP OF CASING [次] ELECT. COND. PROBE ROM GRADE [] FLOAT ACTIVATED PROBE
WATER D	EPTH (ft):	B27.	57	[] MEAS [] HISTO		[]_	[] PRESSURE TRANSDUCER
WELL MATE PVC [] SS	TERIAL:	WELL LOCKE []Y	ED: SE ES [OTECTIVE (CURE:] YES] NO	CASING	CONCRET INTACT: [] YES [] NO	E COLLAR AMBIENT AIR VOC: PPM WELL MOUTH VOC: PPM
EQUIPME	NT DATA:					10-2000	
PURGING [SAMPLING	PERISTAL SUBMERS BLADDER HAND PUM DEDICATE NEW HDP DEDICATE NEW LDPF FILTER	BIBLE PUMP MP ED HDPE E CO LDPE E			etivity	DECONTAMINATION FLUIDS USED: [] DISTILLED WATER [] DEIONIZED WATER [] POTABLE WATER [] TSP SOLUTION [] ALCONOX SOLUTION [] NONE [] []
FIELD AN	ALYSIS DA	TA:					
PUMP ON	<u> </u>	PUMP OF	<u> </u>	STABLI	E FLOW RA	TE (ml/min)	[] MEASURED [] ESTIMATED
TIME	TEMP (°C)	pН	COND. (mS)	ORP (mV)	D.O. (mg/l)	TURBID. (ntu)	COMMENTS
1355	3.83	6.16	.203	6.40	10.85		V. HOH ONE OF BLACK OPANS TERRID (3 CHZ)
1400	14.67	5.97	.204	-13.6	1.39		(6 Galbus) DOOR SAME
1405	13.27	4.11	.199	-60.9	0.04	39.7	(4 GALLONS) OROVE STILL
14/0	19.12	643	1774	-65.B	0.50		(to GMIONS)
1415	14.06	6.19	.195	-81.9	- 3.28		115 aniana Clearer
1420	14.10	6.59	0.196	<71.7	0.71	29.7	(18 gal) clearer
				6			
SAMPLE I SAMP TIME 1420	LOC/	NOITA	PRESERV METH FIND LICI	OD 5	# 	CONTAINE TYPE	LABORATORY ANALYSIS ALC JOCS SV6CS
NOTES:							
	PARTE	TURGIO	, Smēlls	LIKE	PETROLI	UM	SAMPLER

LOW FLOW SAMPLING LOG CREDERE ASSOCIATES

SEQUENTED TATA: SQUENTED TATA: SQU	PROJECT	NAME:		Polycar	10			DATE: 7 15 1201
AMPLE DOTTION ID:	PROJECT	NUMBER:		100010	196			
Vell Depth (ii):	SAMPLE L	OCATION II	D: _ CM	-3				START: 15 1-5 END: 15 45
	WELL DA	TA:						
VALUE MATERIAL: WELL PROTECTIVE CASING CONCRETE COLLAR	WELL DEF	PTH (ft):	34.5		[]HISTO	RICAL	[]T	OP OF CASING [] ELECT. COND. PROBE ROM GRADE [] FLOAT ACTIVATED PROBE
COMBINED ATA: COMBINED ATA: SECURE: NTACT: AMBIENT AIR VOC: PPM	WATER D	EPTH (ft):	27.79	5	75 To 10 To		[]_	[] PRESSURE TRANSDUCER
PURGING SAMPLING PERISTALTIC PUMP SUBMERSIBLE SUBMERSI	WELL MATE PVC [] SS	TERIAL:	LOCKE	D: SE الحا	CURE: 7] YES	CASING	INTACT: [♥]YES	AMBIENT AIR VOC: PPM
PURIOR SAMPLING PERISTALTIC PUMP PH PH PH PH PH PH POTABLE WATER DEIONIZED WATER DEIONIZED WATER DEIONIZED WATER DEIONIZED WATER DEIONIZED WATER DEIONIZED WATER DEIONIZED WATER DEIONIZED WATER DEIONIZED WATER TSP SOLUTION TSP SOLUTION NONE DEIONIZED WATER TSP SOLUTION NONE DEIONIZED WATER TSP SOLUTION NONE PUMP OFF: STABLE FLOW RATE (ml/min): MEASURED ESTIMATED PH COND. (ms) (ms) (mg/l) (ntu) COMMENTS TIME	EQUIPME	NT DATA:					****	DECONTAMINATION
PUMP ON: PUMP OFF: STABLE FLOW RATE (ml/min): [] MEASURED [] ESTIMATED TIME TEMP (°C) pH COND. (ms) ORP (mV) D.O. (mg/l) TURBID. (ntu) [518			PERISTAL' SUBMERS BLADDER HAND PUN DEDICATE NEW HDP! DEDICATE NEW LDPE FILTER	IBLE PUMP MP ID HDPE ID LDPE	[] Spe [] Diss [] ORF	olved Oxyg	ctivity	[] DISTILLED WATER [] DEIONIZED WATER [] POTABLE WATER [] TSP SOLUTION [] ALCONOX SOLUTION
TIME TEMP PH (°C) PH (ms) ORP (mV) (mg/l) TURBID. (ntu) COMMENTS [518 14.15 6.91 .3.02 145.3 10.45 Sholl, at foreign with the object of the content of the	FIELD AN	ALYSIS DA	TA:					
SAMPLE DATA: SAMPLE BOTTLE ID TIME LOCATION TYPE LABORATORY ANALYSIS LOTES:	PUMP ON		PUMP OFF	:	STABLE	E FLOW RA	TE (ml/min): [] MEASURED [] ESTIMATED
1524 17.03 607 .319 157.6 15.24 36.4 (5 Callins) 1536 14.74 5.97 .304 166.5 15.24 (10 Gallons) No opent—Ghant tousin SAMPLE DATA: SAMPLE BOTTLE ID TIME LOCATION 1530 (A-3) PRESERVATION # TYPE ANALYSIS HOTES:	TIME		pН					COMMENTS
1524 17.03 607 .319 157.6 15.24 36.4 (5 Callins) 1536 14.74 5.97 .304 166.5 15.24 (10 Gallons) No opent—Ghant tousin SAMPLE DATA: SAMPLE BOTTLE ID TIME LOCATION 1530 (A-3) PRESERVATION # TYPE ANALYSIS HOTES:	1518	14.15	6.91	302	145.3	10.45		Broken turbin women to opore
SAMPLE DATA: SAMPLE BOTTLE ID TIME LOCATION 1530 (A-3) PRESERVATION METHOD PRESERVATION METHOD TOTES:	1524	17.03	6.07	,319	157.6	15.24	36.4	
SAMPLE BOTTLE ID PRESERVATION SAMPLE CONTAINER LABORATORY TIME LOCATION METHOD # TYPE ANALYSIS 1530 (A-3	1536		8.97	,304	166.5	15.24		
SAMPLE BOTTLE ID PRESERVATION SAMPLE CONTAINER LABORATORY TIME LOCATION METHOD # TYPE ANALYSIS 1530 (A-5)								
SAMPLE BOTTLE ID PRESERVATION SAMPLE CONTAINER LABORATORY TIME LOCATION METHOD # TYPE ANALYSIS 1530 (A-5)								
SAMPLE BOTTLE ID PRESERVATION SAMPLE CONTAINER LABORATORY TIME LOCATION METHOD # TYPE ANALYSIS 1530 (A-5)		<u> </u>				l		
	SAMP TIME	LE BOTTLE						
SAMPLER	NOTES:							
SAMPI FR								
								SAMPLER

				CF	REDERE	AMPLING	res 🗳	A STREET	
PROJECT	NAME:		MOL	4CL+	10				4,5,11
PROJECT	NUMBER:		1000	086				LOCAT	FION ACTIVITY
SAMPLE L	OCATION I	D:	NIL	1-2				END:	1321
WELL DEF			96	[¾] MEAS [] HISTO	ORICAL	[]T0 []FF	OP OF WELL OP OF CASING ROM GRADE	ELECT. C	L EQUIPMENT USED COND. PROBE CTIVATED PROBE RE TRANSDUCER
WATER D	EPTH (ft):	<u> 27.</u>	69	[] HISTO		ı ı	·		TRANSDUCER
WELL MATERIAL PVC [] SS []	TERIAL:	LOCKI LOCKI []Y _ [∑}N	ED: SE	BIENT AIR VOC:					
EQUIPME	NT DATA:					ection (in the		DECONTAMIN	IATION!
	SAMPLING [] [] [] [] [] [] [] [] [] []	PERISTAL SUBMERS BLADDER HAND PUI DEDICATI NEW HDP DEDICATI NEW LDP FILTER	R PUMP MP ED HDPE PE ED LDPE E	[] Dis [] OR	ecific Condu solved Oxyg	ctivity	METER ID	FLUIDS US [] DISTILLED [] DEIONIZE [] POTABLE [] TSP SOLU	SED:) WATER D WATER WATER
PUMP ON:	ALYSIS DA	<i>TA:</i> _PUMP OF	F <u>:</u>	STABL	E FLOW RA	ATE (ml/min)	:] MEASURED [] ESTIMATED
TIME	TEMP (°C)	pН	COND. (mS)	ORP (mV)	D.O. (mg/l)	TURBID. (ntu)		COMMENTS	
1361	16.04	6.28	6.278	-0.4	2.14	32.2	2.991	51.94	60W
130€	17.95	6.06	0.234	7.5	1.84	_	5941	1.0	•
1321	17.82	(2.18	0.25 \$	18.4	9.3		B gal	Flight	odar
SAMPLE I	DATA:	: ID	PRESERV	/ATION	SAMDI	E CONTAINE	- P	LABORATOR	
TIME 1320	LOCA	ATION	METH	OD 03	#	JOS		ANALYSIS	

SAMPLER

NOTES: Purge sampling, well volume K 0.8 ft?

PURGE + BAILER LOW-FLOW-SAMPLING LOG CREDERE ASSOCIATES

PROJECT NAME:	POLYCL	4D		Credere Associates LLC 7 / 14 / 11
PROJECT NUMBER:	100010		LOCATION ACTIVITY	
SAMPLE LOCATION	ID: CA -	-2		START: 1435 END: 1545
WELL DATA:				
WELL DEPTH (ft):	57,70	[] MEASURED	[≥] TOP OF W [] TOP OF O [] FROM GR	ASING [X] ELECT. COND. PROBE ADE [] FLOAT ACTIVATED PROBE
WATER DEPTH (ft):	28.10	[╳] MEASURED [] HISTORICAL	[]	[] PRESSURE TRANSDUCER
WELL MATERIAL: [>] PVC [] SS []	LOCKED: SEC	OTECTIVE CASING CURE: J YES J NO	CONCRETE COLLA INTACT: [X] YES [] NO	AR AMBIENT AIR VOC: MA PPM WELL MOUTH VOC: MA PPM
				DECONTAMINATION
PURGING SAMPLING []	PERISTALTIC PUMP SUBMERSIBLE BLADDER PUMP HAND PUMP DEDICATED HDPE NEW HDPE DEDICATED LDPE NEW LDPE FILTER	[pH Specific Condu [Dissolved Oxyge [] ORP [] Turbidity	gen Landte Zo	[] DISTILLED WATER [] DEIONIZED WATER [] POTABLE WATER [] TSP SOLUTION
FIELD ANALYSIS DA	TA:			
PUMP ON:	PUMP OFF:	STABLE FLOW RA	ATE (ml/min):	[] MEASURED [] ESTIMATED
TIME TEMP (°C)	pH COND. (mS)	(mV) (mg/l)	TURBID. (ntu)	COMMENTS
1515 16.21	5.98 6.184	3.25 135.1	485	
1525 14.19	6.13 0.191	10.11 140.7		
1534 13.42	6.21 0.193	8.35 142.7	95	
1539 13.49	6.25 0.198	10.31 1427	70	
	PRESERVATION METHO		E CONTAINER TYPE LDE	LABORATORY ANALYSIS RCRA 8 Mets
NOTES				
NOTES: PURGE	D 15 gallon	5	SAN	BO MPLER

APPENDIX F LABORATORY ANALYTICAL REPORTS

Absolute Resource associates

124 Heritage Avenue #10 Portsmouth, NH 03801

Jonathan O'Donnell CREDERE Associates 776 Main Street Westbrook, ME 04092 PO Number: None

Job ID: 21886 Date Received: 6/29/11

Project: POLYCLAD 10001086

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

Sue Sylvester

Principal, General Manager

Date of Approval: 7/11/2011

Total number of pages: 58

Absolute Resource Associates Certifications

Lab ID: 21886

Sample Association Table

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
CA-SS-1	Solid	6/28/2011 15:12	21886-001	
				PAHs in solid by 8270
				Percent Dry Matter for Sample Calc by SM2540B,G
CA-SS-2	Solid	6/28/2011 16:28	21886-002	
				PAHs in solid by 8270
				Percent Dry Matter for Sample Calc by SM2540B,G
CA-TP-8	Solid	6/28/2011 10:48	21886-003	
				TPH in solids by 8100
				PAHs in solid by 8270
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
CA-TP-10	Solid	6/28/2011 11:50	21886-004	0 11 15: 11 (100 4 1 1
				Solid Digestion for ICP Analysis
				Lead in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
CA-TP-11	Solid	6/28/2011 12:31	21886-005	Oalid Dissertion for IOD Assolution
				Solid Digestion for ICP Analysis
				Lead in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
OA TD 40	0 - 1: -1	0/00/0044 45:00	04000 000	VOCs in solid by 8260 Petro & Haz Waste
CA-TP-13	Solid	6/28/2011 15:00	21886-006	DCDs in sail by 2000
				PCBs in soil by 8082
				PAHs in solid by 8270
				Soil Digestion for ICP Analysis
				Silver in solids by 6010
				Arsenic in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Chromium in solids by 6010
				Copper in solids by 6010
				Mercury in solids by 7471 Nickel in solids by 6010
				Lead in solids by 6010
				Selenium in solids by 6010 Zinc in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
CA-TP-14	Solid	6/28/2011 15:50	21886-007	VOOS III SOIIG BY 02001 CitO & Haz Wasto
0,111	Cond	0/20/2011 10:00	21000 001	PAHs in solid by 8270
				Soil Digestion for ICP Analysis
				Silver in solids by 6010
				Arsenic in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Chromium in solids by 6010
				Copper in solids by 6010
				Mercury in solids by 7471
				Nickel in solids by 6010
				Lead in solids by 6010
				Selenium in solids by 6010
				Zinc in solids by 6010
				Zino in dolido by do to

Lab ID: 21886

Sample Association Table

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
CA-TP-14	Solid	6/28/2011 15:50	21886-007	
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
CA-TP-15	Solid	6/28/2011 16:25	21886-008	
				PAHs in solid by 8270
				Soil Digestion for ICP Analysis
				Silver in solids by 6010
				Arsenic in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Chromium in solids by 6010
				Copper in solids by 6010
				Mercury in solids by 7471
				Nickel in solids by 6010
				Lead in solids by 6010
				Selenium in solids by 6010
				Zinc in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
CA-TP-16	Solid	6/28/2011 17:00	21886-009	
				PAHs in solid by 8270
				Soil Digestion for ICP Analysis
				Silver in solids by 6010
				Arsenic in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Chromium in solids by 6010
				Copper in solids by 6010
				Mercury in solids by 7471
				Nickel in solids by 6010
				Lead in solids by 6010
				Selenium in solids by 6010
				Zinc in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
CA-TP-17	Solid	6/28/2011 14:40	21886-010	
				PAHs in solid by 8270
				Soil Digestion for ICP Analysis
				Silver in solids by 6010
				Arsenic in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Chromium in solids by 6010
				Copper in solids by 6010
				Mercury in solids by 7471
				Nickel in solids by 6010
				Lead in solids by 6010
				Selenium in solids by 6010
				Zinc in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
CA-TP-18	Solid	6/28/2011 14:48	21886-011	

Lab ID: 21886

Sample Association Table

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
CA-TP-18	Solid	6/28/2011 14:48	21886-011	PAHs in solid by 8270 Soil Digestion for ICP Analysis Silver in solids by 6010 Arsenic in solids by 6010 Barium in solids by 6010 Cadmium in solids by 6010 Chromium in solids by 6010 Copper in solids by 6010 Mercury in solids by 7471 Nickel in solids by 6010 Lead in solids by 6010 Selenium in solids by 6010
				Zinc in solids by 6010 Percent Dry Matter for Sample Calc by SM2540B,G VOCs in solid by 8260 Petro & Haz Waste
CA-TP-DUP-1	Solid	6/28/2011	21886-012	Voce in cond by case i one a rial waste
				PAHs in solid by 8270 Soil Digestion for ICP Analysis Silver in solids by 6010 Arsenic in solids by 6010 Barium in solids by 6010 Cadmium in solids by 6010 Chromium in solids by 6010 Copper in solids by 6010 Mercury in solids by 7471 Nickel in solids by 6010 Lead in solids by 6010 Selenium in solids by 6010 Zinc in solids by 6010 Percent Dry Matter for Sample Calc by SM2540B,G VOCs in solid by 8260 Petro & Haz Waste
D-Floor Covering	Solid	6/28/2011 15:35	21886-013	PCBs in soil by 8082
Transformer Pit	Solid	6/28/2011 12:55	21886-014	PCBs in soil by 8082 Percent Dry Matter for Sample Calc by SM2540B,G
CA-3	Solid	6/29/2011 10:47	21886-015	Percent Dry Matter for Sample Calc by SM2540B,G
Trip Blank	Solid	6/28/2011	21886-016	VOCs in solid by 8260 Petro & Haz Waste VOCs in solid by 8260 Petro & Haz Waste

Job ID: 21886

Sample#: 21886-003 Sample ID: CA-TP-8

Matrix: Solid Percent Dry: 87.3% Results expressed on a dry weight basis.

Sampled: 6/28/11 10:48	-	Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
acetone	< 2	2	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
2-butanone (MEK)	< 0.3	0.3	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
tetrahydrofuran (THF)	< 0.4	0.4	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.4	0.4	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
2-hexanone	< 0.4	0.4	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:35	SW5035A8260B

Job ID: 21886

Sample#: 21886-003 Sample ID: CA-TP-8

Matrix: Solid Percent Dry: 87.3% Results expressed on a dry weight basis.

Sampled: 6/28/11 10:48		Quant	I	Instr Dil'n	Prep	A	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B
Surrogate Recovery		Limits						
dibromofluoromethane SUR	90	78-114	%	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
toluene-D8 SUR	92	88-110	%	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
4-bromofluorobenzene SUR	97	86-115	%	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
a,a,a-trifluorotoluene SUR	112	70-130	%	1	LMM 6/30/11	4295 6/30/1	1 17:35	SW5035A8260B

Job ID: 21886

Sample#: 21886-004 Sample ID: CA-TP-10

Matrix: Solid Percent Dry: 88.5% Results expressed on a dry weight basis.

Sampled: 6/28/11 11:50	-	Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
trichlorofluoromethane	0.3	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
acetone	< 3	3	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
t-butanol (TBA)	< 3	3	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
2-butanone (MEK)	< 0.4	0.4	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
tetrahydrofuran (THF)	< 0.7	0.7	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
1,4-dioxane	< 3	3	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.6	0.6	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
2-hexanone	< 0.7	0.7	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11		6/30/11	18:06	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11		6/30/11	18:06	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:06	SW5035A8260B

Job ID: 21886

Sample#: 21886-004 Sample ID: CA-TP-10

Matrix: Solid Percent Dry: 88.5% Results expressed on a dry weight basis.

Sampled: 6/28/11 11:50		Quant	I	Instr Dil'n	Prep	Ar	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
m&p-xylenes	0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B
Surrogate Recovery		Limits						
dibromofluoromethane SUR	88	78-114	%	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
toluene-D8 SUR	94	88-110	%	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
4-bromofluorobenzene SUR	96	86-115	%	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
a,a,a-trifluorotoluene SUR	106	70-130	%	1	LMM 6/30/11	4295 6/30/1	1 18:06	SW5035A8260B

Job ID: 21886

Sample#: 21886-005 Sample ID: CA-TP-11

Matrix: Solid Percent Dry: 97.2% Results expressed on a dry weight basis.

Sampled: 6/28/11 12:31		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
acetone	< 2	2	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
2-butanone (MEK)	< 0.2	0.2	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
tetrahydrofuran (THF)	< 0.4	0.4	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.3	0.3	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
2-hexanone	< 0.4	0.4	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	18:37	SW5035A8260B

Job ID: 21886

Sample#: 21886-005 Sample ID: CA-TP-11

Matrix: Solid Percent Dry: 97.2% Results expressed on a dry weight basis.

Sampled: 6/28/11 12:31		Quant	ļ	Instr Dil'n	Prep	Ar	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
Surrogate Recovery		Limits						
dibromofluoromethane SUR	87	78-114	%	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B
toluene-D8 SUR	94	88-110	%	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
4-bromofluorobenzene SUR	98	86-115	%	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
a,a,a-trifluorotoluene SUR	98	70-130	%	1	LMM 6/30/11	4295 6/30/1	1 18:37	SW5035A8260B

Job ID: 21886

Sample#: 21886-006 Sample ID: CA-TP-13

Matrix: Solid Percent Dry: 95.7% Results expressed on a dry weight basis.

Sampled: 6/28/11 15:00	-	Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
acetone	< 2	2	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
2-butanone (MEK)	< 0.2	0.2	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
tetrahydrofuran (THF)	< 0.3	0.3	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.3	0.3	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
2-hexanone	< 0.3	0.3	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:08	SW5035A8260B

Job ID: 21886

Sample#: 21886-006 Sample ID: CA-TP-13

Matrix: Solid Percent Dry: 95.7% Results expressed on a dry weight basis.

Sampled: 6/28/11 15:00		Quant	ļ	Instr Dil'n	Prep	Ar	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B
Surrogate Recovery		Limits						
dibromofluoromethane SUR	84	78-114	%	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
toluene-D8 SUR	91	88-110	%	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
4-bromofluorobenzene SUR	95	86-115	%	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
a,a,a-trifluorotoluene SUR	101	70-130	%	1	LMM 6/30/11	4295 6/30/1	1 19:08	SW5035A8260B

Job ID: 21886

Sample#: 21886-007 Sample ID: CA-TP-14

Matrix: Solid Percent Dry: 91% Results expressed on a dry weight basis.

Sampled: 6/28/11 15:50	•	Quant		Instr Dil'n	Prep		Anal	vsis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
acetone	< 2	2	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
2-butanone (MEK)	< 0.3	0.3	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
tetrahydrofuran (THF)	< 0.5	0.5	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.4	0.4	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 6/30/11		6/30/11	19:39	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B
2-hexanone	< 0.5	0.5	ug/g	1	LMM 6/30/11		6/30/11	19:39	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11		6/30/11	19:39	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11		6/30/11	19:39	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11		6/30/11	19:39	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	19:39	SW5035A8260B

Job ID: 21886

Sample#: 21886-007 Sample ID: CA-TP-14

Matrix: Solid Percent Dry: 91% Results expressed on a dry weight basis.

Sampled: 6/28/11 15:50	•	Quant		Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Da	ate Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
Surrogate Recovery		Limits	5					
dibromofluoromethane SUR	85	78-114	%	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
toluene-D8 SUR	91	88-110	%	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
4-bromofluorobenzene SUR	93	86-115	%	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B
a,a,a-trifluorotoluene SUR	104	70-130	%	1	LMM 6/30/11	4295 6/30	0/11 19:39	SW5035A8260B

Job ID: 21886

Sample#: 21886-008 **Sample ID**: CA-TP-15

Matrix: Solid Percent Dry: 75.2% Results expressed on a dry weight basis.

Sampled: 6/28/11 16:25	-	Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
acetone	< 3	3	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
t-butanol (TBA)	< 3	3	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
2-butanone (MEK)	< 0.4	0.4	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
tetrahydrofuran (THF)	< 0.6	0.6	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
1,4-dioxane	< 3	3	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.6	0.6	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
2-hexanone	< 0.6	0.6	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:10	SW5035A8260B

Job ID: 21886

Sample#: 21886-008 Sample ID: CA-TP-15

Matrix: Solid Percent Dry: 75.2% Results expressed on a dry weight basis.

Sampled: 6/28/11 16:25		Quant	ļ	Instr Dil'n	Prep	Αı	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B
Surrogate Recovery		Limits						
dibromofluoromethane SUR	81	78-114	%	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
toluene-D8 SUR	90	88-110	%	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
4-bromofluorobenzene SUR	93	86-115	%	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
a,a,a-trifluorotoluene SUR	124	70-130	%	1	LMM 6/30/11	4295 6/30/1	1 20:10	SW5035A8260B

Job ID: 21886

Sample#: 21886-009 Sample ID: CA-TP-16

Matrix: Solid Percent Dry: 98.5% Results expressed on a dry weight basis.

Sampled: 6/28/11 17:00	-	Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
acetone	< 2	2	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
2-butanone (MEK)	< 0.2	0.2	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
tetrahydrofuran (THF)	< 0.4	0.4	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.3	0.3	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
2-hexanone	< 0.4	0.4	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	20:42	SW5035A8260B

Job ID: 21886

Sample#: 21886-009 **Sample ID:** CA-TP-16

Matrix: Solid Percent Dry: 98.5% Results expressed on a dry weight basis.

Sampled: 6/28/11 17:00	•	Quant		Instr Dil'n	Prep	Α	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	e Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B
Surrogate Recovery		Limits						
dibromofluoromethane SUR	82	78-114	%	1	LMM 6/30/11	4295 6/30/		
toluene-D8 SUR	89	88-110	%	1	LMM 6/30/11	4295 6/30/		
4-bromofluorobenzene SUR	97	86-115	%	1	LMM 6/30/11	4295 6/30/		
a,a,a-trifluorotoluene SUR	96	70-130	%	1	LMM 6/30/11	4295 6/30/	11 20:42	SW5035A8260B

Job ID: 21886

Sample#: 21886-010 Sample ID: CA-TP-17

Matrix: Solid Percent Dry: 81.7% Results expressed on a dry weight basis.

Sampled: 6/28/11 14:40	5.,. 5.	Quant			Dron		alveie	
Parameter	Result	Limit	Units	Instr Dil'n Factor	Prep Analyst Date	Batch Date	alysis Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
acetone	< 3	3	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
t-butanol (TBA)	< 3	3	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
2-butanone (MEK)	< 0.3	0.3	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
tetrahydrofuran (THF)	< 0.5	0.5	ug/g	1	LMM 6/30/11	4295 6/30/1	1 21:13	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1		SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 21:13	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 21:13	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 21:13	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 21:13	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 21:13	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 21:13	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 21:13	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 21:13	SW5035A8260B
1,4-dioxane	< 3	3	ug/g	1	LMM 6/30/11	4295 6/30/1	1 21:13	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 21:13	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.5	0.5	ug/g	1	LMM 6/30/11	4295 6/30/1	1 21:13	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 21:13	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 21:13	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 21:13	SW5035A8260B
2-hexanone	< 0.5	0.5	ug/g	1	LMM 6/30/11	4295 6/30/1	1 21:13	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 21:13	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 21:13	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 21:13	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30/1	1 21:13	SW5035A8260B

Job ID: 21886

Sample#: 21886-010 Sample ID: CA-TP-17

Matrix: Solid Percent Dry: 81.7% Results expressed on a dry weight basis.

Sampled: 6/28/11 14:40	•	Quant		Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Dat	te Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	['] 11 21:13	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	['] 11 21:13	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	['] 11 21:13	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	['] 11 21:13	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	['] 11 21:13	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30		SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/30	11 21:13	SW5035A8260B
Surrogate Recovery		Limits						
dibromofluoromethane SUR	82	78-114	%	1	LMM 6/30/11	4295 6/30		SW5035A8260B
toluene-D8 SUR	90	88-110	%	1	LMM 6/30/11	4295 6/30		SW5035A8260B
4-bromofluorobenzene SUR	95	86-115	%	1	LMM 6/30/11	4295 6/30		SW5035A8260B
a,a,a-trifluorotoluene SUR	118	70-130	%	1	LMM 6/30/11	4295 6/30	/11 21:13	SW5035A8260B

Job ID: 21886

Sample#: 21886-011 Sample ID: CA-TP-18

Matrix: Solid Percent Dry: 78.5% Results expressed on a dry weight basis.

Sampled: 6/28/11 14:48	Diyi 10	Quant			Pron		nalveie	
Parameter	Result	Limit	Units	Instr Dil'n Factor	Prep Analyst Date	Batch Dat	inalysis e Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1		SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1		SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1		SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1		SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1		SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1		SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1		SW5035A8260B
acetone	< 3	3	ug/g	1	LMM 6/30/11	4295 7/5/1		SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1		SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1		SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1		SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1		SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1		SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1		SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1		SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1		SW5035A8260B
t-butanol (TBA)	< 3	3	ug/g	1	LMM 6/30/11	4295 7/5/1		SW5035A8260B
2-butanone (MEK)	< 0.3	0.3	ug/g	1	LMM 6/30/11	4295 7/5/1		SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1		SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B
tetrahydrofuran (THF)	< 0.6	0.6	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B
1,4-dioxane	< 3	3	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.5	0.5	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B
2-hexanone	< 0.6	0.6	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/1	1 15:54	SW5035A8260B

Job ID: 21886

Sample#: 21886-011 Sample ID: CA-TP-18

Matrix: Solid Percent Dry: 78.5% Results expressed on a dry weight basis.

Sampled: 6/28/11 14:48		Quant	I	Instr Dil'n	Prep	Α	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B
Surrogate Recovery		Limits						
dibromofluoromethane SUR	88	78-114	%	1	LMM 6/30/11	4295 7/5/11		SW5035A8260B
toluene-D8 SUR	94	88-110	%	1	LMM 6/30/11	4295 7/5/11		SW5035A8260B
4-bromofluorobenzene SUR	95	86-115	%	1	LMM 6/30/11	4295 7/5/11		SW5035A8260B
a,a,a-trifluorotoluene SUR	120	70-130	%	1	LMM 6/30/11	4295 7/5/11	15:54	SW5035A8260B

Job ID: 21886

Sample#: 21886-012 Sample ID: CA-TP-DUP-1

Matrix: Solid Percent Dry: 93.7% Results expressed on a dry weight basis.

Sampled: 6/28/11		Quant		Instr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
acetone	< 2	2	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
2-butanone (MEK)	< 0.2	0.2	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
tetrahydrofuran (THF)	< 0.4	0.4	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.3	0.3	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
2-hexanone	< 0.4	0.4	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:06	SW5035A8260B

Job ID: 21886

Sample#: 21886-012 Sample ID: CA-TP-DUP-1

Matrix: Solid Percent Dry: 93.7% Results expressed on a dry weight basis.

Sampled: 6/28/11		Quant		Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Da	ite Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
Surrogate Recovery		Limits	5					
dibromofluoromethane SUR	96	78-114	%	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
toluene-D8 SUR	98	88-110	%	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
4-bromofluorobenzene SUR	97	86-115	%	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B
a,a,a-trifluorotoluene SUR	101	70-130	%	1	LMM 6/30/11	4295 7/1/	11 16:06	SW5035A8260B

Job ID: 21886

Sample#: 21886-015

Sample ID: CA-3

Matrix: Solid Percent Dry: 95.5% Results expressed on a dry weight basis.

Sampled: 6/29/11 10:47		Quant		Instr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
acetone	< 3	3	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
t-butanol (TBA)	< 3	3	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
2-butanone (MEK)	< 0.4	0.4	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
tetrahydrofuran (THF)	< 0.7	0.7	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
1,4-dioxane	< 3	3	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.6	0.6	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
2-hexanone	< 0.7	0.7	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B

Job ID: 21886

Sample#: 21886-015

Sample ID: CA-3

Matrix: Solid Percent Dry: 95.5% Results expressed on a dry weight basis.

	ant Dry. 95	.5% Resu	iits expi	esseu oi	i a dry weight ba	1515.			
Sampled: 6/29/11 10:47		Quant		Instr Dil'n	Prep			lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
Surrogate Recovery		Limits							
dibromofluoromethane SUR	96	78-114	%	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
toluene-D8 SUR	101	88-110	%	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
4-bromofluorobenzene SUR	96	86-115	%	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B
a,a,a-trifluorotoluene SUR	101	70-130	%	1	LMM 6/30/11	4295	7/1/11	16:39	SW5035A8260B

Job ID: 21886

Sample#: 21886-016 Sample ID: Trip Blank

Matrix: Solid

Sampled: 6/28/11		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
acetone	< 2	2	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
2-butanone (MEK)	< 0.3	0.3	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
tetrahydrofuran (THF)	< 0.5	0.5	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.4	0.4	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
2-hexanone	< 0.5	0.5	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295	6/30/11	17:05	SW5035A8260B

Job ID: 21886

Sample#: 21886-016 Sample ID: Trip Blank

Matrix: Solid

Sampled: 6/28/11		Quant		Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch I	Date Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/	30/11 17:05	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/	30/11 17:05	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/	30/11 17:05	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/	30/11 17:05	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/	30/11 17:05	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B
Surrogate Recovery		Limits	S					
dibromofluoromethane SUR	92	78-114	%	1	LMM 6/30/11	4295 6/	30/11 17:05	SW5035A8260B
toluene-D8 SUR	90	88-110	%	1	LMM 6/30/11	4295 6/	30/11 17:05	SW5035A8260B
4-bromofluorobenzene SUR	93	86-115	%	1	LMM 6/30/11	4295 6/	30/11 17:05	SW5035A8260B
a,a,a-trifluorotoluene SUR	98	70-130	%	1	LMM 6/30/11	4295 6/3	30/11 17:05	SW5035A8260B

Job ID: 21886

Sample#: 21886-001 Sample ID: CA-SS-1

Matrix: Solid Percent Dry: 82.6% Results expressed on a dry weight basis.

Sampled: 6/28/11 15:12		Quant		Instr Dil'n	Prep	Anal	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	16:50	SW3550B8270D
2-methylnaphthalene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	16:50	SW3550B8270D
acenaphthylene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	16:50	SW3550B8270D
acenaphthene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	16:50	SW3550B8270D
dibenzofuran	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	16:50	SW3550B8270D
fluorene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	16:50	SW3550B8270D
phenanthrene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	16:50	SW3550B8270D
anthracene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	16:50	SW3550B8270D
fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	16:50	SW3550B8270D
pyrene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	16:50	SW3550B8270D
benzo(a)anthracene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	16:50	SW3550B8270D
chrysene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	16:50	SW3550B8270D
benzo(b)fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	16:50	SW3550B8270D
benzo(k)fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	16:50	SW3550B8270D
benzo(a)pyrene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	16:50	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	16:50	SW3550B8270D
dibenzo(a,h)anthracene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	16:50	SW3550B8270D
benzo(g,h,i)perylene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	16:50	SW3550B8270D
Surrogate Recovery		Limits	s					
2-fluorobiphenyl SUR	85	43-116	%	1	AJD 7/1/11	4298 7/5/11	16:50	SW3550B8270D
o-terphenyl SUR	86	33-141	%	1	AJD 7/1/11	4298 7/5/11	16:50	SW3550B8270D

Job ID: 21886

Sample#: 21886-002 **Sample ID**: CA-SS-2

Matrix: Solid Percent Dry: 82.9% Results expressed on a dry weight basis.

Sampled: 6/28/11 16:28		Quant		Instr Dil'n	Prep	Analy	ysis
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time Reference
naphthalene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	21:16 SW3550B8270D
2-methylnaphthalene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	21:16 SW3550B8270D
acenaphthylene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	21:16 SW3550B8270D
acenaphthene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	21:16 SW3550B8270D
dibenzofuran	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	21:16 SW3550B8270D
fluorene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	21:16 SW3550B8270D
phenanthrene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	21:16 SW3550B8270D
anthracene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	21:16 SW3550B8270D
fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	21:16 SW3550B8270D
pyrene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	21:16 SW3550B8270D
benzo(a)anthracene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	21:16 SW3550B8270D
chrysene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	21:16 SW3550B8270D
benzo(b)fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	21:16 SW3550B8270D
benzo(k)fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	21:16 SW3550B8270D
benzo(a)pyrene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	21:16 SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	21:16 SW3550B8270D
dibenzo(a,h)anthracene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	21:16 SW3550B8270D
benzo(g,h,i)perylene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	21:16 SW3550B8270D
Surrogate Recovery		Limits	s				
2-fluorobiphenyl SUR	82	43-116	%	1	AJD 7/1/11	4298 7/5/11	21:16 SW3550B8270D
o-terphenyl SUR	84	33-141	%	1	AJD 7/1/11	4298 7/5/11	21:16 SW3550B8270D

Job ID: 21886

Sample#: 21886-003 Sample ID: CA-TP-8

Matrix: Solid Percent Dry: 87.3% Results expressed on a dry weight basis.

Sampled: 6/28/11 10:48		Quant	i	Instr Dil'n	Prep	Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	21:54	SW3550B8270D
2-methylnaphthalene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	21:54	SW3550B8270D
acenaphthylene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	21:54	SW3550B8270D
acenaphthene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	21:54	SW3550B8270D
dibenzofuran	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	21:54	SW3550B8270D
fluorene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	21:54	SW3550B8270D
phenanthrene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	21:54	SW3550B8270D
anthracene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	21:54	SW3550B8270D
fluoranthene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	21:54	SW3550B8270D
pyrene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	21:54	SW3550B8270D
benzo(a)anthracene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	21:54	SW3550B8270D
chrysene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	21:54	SW3550B8270D
benzo(b)fluoranthene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	21:54	SW3550B8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	21:54	SW3550B8270D
benzo(a)pyrene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	21:54	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	21:54	SW3550B8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	21:54	SW3550B8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	21:54	SW3550B8270D
Surrogate Recovery		Limits	s					
2-fluorobiphenyl SUR	84	43-116	%	1	AJD 7/1/11	4298 7/5/11	21:54	SW3550B8270D
o-terphenyl SUR	88	33-141	%	1	AJD 7/1/11	4298 7/5/11	21:54	SW3550B8270D

Job ID: 21886

Sample#: 21886-006 Sample ID: CA-TP-13

Matrix: Solid Percent Dry: 95.7% Results expressed on a dry weight basis.

Sampled: 6/28/11 15:00		Quant	ı	nstr Dil'n	Prep	Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	19:22	SW3550B8270D
2-methylnaphthalene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	19:22	SW3550B8270D
acenaphthylene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	19:22	SW3550B8270D
acenaphthene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	19:22	SW3550B8270D
dibenzofuran	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	19:22	SW3550B8270D
fluorene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	19:22	SW3550B8270D
phenanthrene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	19:22	SW3550B8270D
anthracene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	19:22	SW3550B8270D
fluoranthene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	19:22	SW3550B8270D
pyrene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	19:22	SW3550B8270D
benzo(a)anthracene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	19:22	SW3550B8270D
chrysene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	19:22	SW3550B8270D
benzo(b)fluoranthene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	19:22	SW3550B8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	19:22	SW3550B8270D
benzo(a)pyrene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	19:22	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	19:22	SW3550B8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	19:22	SW3550B8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	19:22	SW3550B8270D
Surrogate Recovery		Limits	5					
2-fluorobiphenyl SUR	82	43-116	%	1	AJD 7/1/11	4298 7/5/11	19:22	SW3550B8270D
o-terphenyl SUR	89	33-141	%	1	AJD 7/1/11	4298 7/5/11	19:22	SW3550B8270D

Job ID: 21886

Sample#: 21886-007 **Sample ID:** CA-TP-14

Matrix: Solid Percent Dry: 91% Results expressed on a dry weight basis.

Sampled: 6/28/11 15:50		Quant	1	Instr Dil'n	Prep	Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:00	SW3550B8270D
2-methylnaphthalene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:00	SW3550B8270D
acenaphthylene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:00	SW3550B8270D
acenaphthene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:00	SW3550B8270D
dibenzofuran	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:00	SW3550B8270D
fluorene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:00	SW3550B8270D
phenanthrene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:00	SW3550B8270D
anthracene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:00	SW3550B8270D
fluoranthene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:00	SW3550B8270D
pyrene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:00	SW3550B8270D
benzo(a)anthracene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:00	SW3550B8270D
chrysene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:00	SW3550B8270D
benzo(b)fluoranthene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:00	SW3550B8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:00	SW3550B8270D
benzo(a)pyrene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:00	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:00	SW3550B8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:00	SW3550B8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:00	SW3550B8270D
Surrogate Recovery		Limits	S					
2-fluorobiphenyl SUR	78	43-116	%	1	AJD 7/1/11	4298 7/5/11	20:00	SW3550B8270D
o-terphenyl SUR	84	33-141	%	1	AJD 7/1/11	4298 7/5/11	20:00	SW3550B8270D

Job ID: 21886

Sample#: 21886-008 Sample ID: CA-TP-15

Matrix: Solid Percent Dry: 75.2% Results expressed on a dry weight basis.

Sampled: 6/28/11 16:25		Quant	ĺ	Instr Dil'n	Prep	Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 3.3	3.3	ug/g	5	AJD 7/1/11	4298 7/7/11	11:29	SW3550B8270D
2-methylnaphthalene	< 3.3	3.3	ug/g	5	AJD 7/1/11	4298 7/7/11	11:29	SW3550B8270D
acenaphthylene	< 3.3	3.3	ug/g	5	AJD 7/1/11	4298 7/7/11	11:29	SW3550B8270D
acenaphthene	5.3	3.3	ug/g	5	AJD 7/1/11	4298 7/7/11	11:29	SW3550B8270D
dibenzofuran	3.6	3.3	ug/g	5	AJD 7/1/11	4298 7/7/11	11:29	SW3550B8270D
fluorene	7.7	3.3	ug/g	5	AJD 7/1/11	4298 7/7/11	11:29	SW3550B8270D
phenanthrene	100	3.3	ug/g	5	AJD 7/1/11	4298 7/7/11	11:29	SW3550B8270D
anthracene	33	3.3	ug/g	5	AJD 7/1/11	4298 7/7/11	11:29	SW3550B8270D
fluoranthene	160	3.3	ug/g	5	AJD 7/1/11	4298 7/7/11	11:29	SW3550B8270D
pyrene	160	3.3	ug/g	5	AJD 7/1/11	4298 7/7/11	11:29	SW3550B8270D
benzo(a)anthracene	80	3.3	ug/g	5	AJD 7/1/11	4298 7/7/11	11:29	SW3550B8270D
chrysene	74	3.3	ug/g	5	AJD 7/1/11	4298 7/7/11	11:29	SW3550B8270D
benzo(b)fluoranthene	46	3.3	ug/g	5	AJD 7/1/11	4298 7/7/11	11:29	SW3550B8270D
benzo(k)fluoranthene	80	3.3	ug/g	5	AJD 7/1/11	4298 7/7/11	11:29	SW3550B8270D
benzo(a)pyrene	66	3.3	ug/g	5	AJD 7/1/11	4298 7/7/11	11:29	SW3550B8270D
indeno(1,2,3-cd)pyrene	18	3.3	ug/g	5	AJD 7/1/11	4298 7/7/11	11:29	SW3550B8270D
dibenzo(a,h)anthracene	9.6	3.3	ug/g	5	AJD 7/1/11	4298 7/7/11	11:29	SW3550B8270D
benzo(g,h,i)perylene	16	3.3	ug/g	5	AJD 7/1/11	4298 7/7/11	11:29	SW3550B8270D
Surrogate Recovery		Limits	3					
2-fluorobiphenyl SUR	81	43-116	%	5	AJD 7/1/11	4298 7/7/11	11:29	SW3550B8270D
o-terphenyl SUR	82	33-141	%	5	AJD 7/1/11	4298 7/7/11	11:29	SW3550B8270D

Job ID: 21886

Sample#: 21886-009 **Sample ID:** CA-TP-16

Matrix: Solid Percent Dry: 98.5% Results expressed on a dry weight basis.

Sampled: 6/28/11 17:00		Quant	ı	nstr Dil'n	Prep	Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	17:28	SW3550B8270D
2-methylnaphthalene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	17:28	SW3550B8270D
acenaphthylene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	17:28	SW3550B8270D
acenaphthene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	17:28	SW3550B8270D
dibenzofuran	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	17:28	SW3550B8270D
fluorene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	17:28	SW3550B8270D
phenanthrene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	17:28	SW3550B8270D
anthracene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	17:28	SW3550B8270D
fluoranthene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	17:28	SW3550B8270D
pyrene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	17:28	SW3550B8270D
benzo(a)anthracene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	17:28	SW3550B8270D
chrysene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	17:28	SW3550B8270D
benzo(b)fluoranthene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	17:28	SW3550B8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	17:28	SW3550B8270D
benzo(a)pyrene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	17:28	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	17:28	SW3550B8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	17:28	SW3550B8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	17:28	SW3550B8270D
Surrogate Recovery		Limits	5					
2-fluorobiphenyl SUR	81	43-116	%	1	AJD 7/1/11	4298 7/5/11	17:28	SW3550B8270D
o-terphenyl SUR	86	33-141	%	1	AJD 7/1/11	4298 7/5/11	17:28	SW3550B8270D

Job ID: 21886

Sample#: 21886-010 Sample ID: CA-TP-17

Matrix: Solid Percent Dry: 81.7% Results expressed on a dry weight basis.

Sampled: 6/28/11 14:40		Quant	ı	Instr Dil'n	Prep	Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:06	SW3550B8270D
2-methylnaphthalene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:06	SW3550B8270D
acenaphthylene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:06	SW3550B8270D
acenaphthene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:06	SW3550B8270D
dibenzofuran	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:06	SW3550B8270D
fluorene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:06	SW3550B8270D
phenanthrene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:06	SW3550B8270D
anthracene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:06	SW3550B8270D
fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:06	SW3550B8270D
pyrene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:06	SW3550B8270D
benzo(a)anthracene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:06	SW3550B8270D
chrysene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:06	SW3550B8270D
benzo(b)fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:06	SW3550B8270D
benzo(k)fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:06	SW3550B8270D
benzo(a)pyrene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:06	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:06	SW3550B8270D
dibenzo(a,h)anthracene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:06	SW3550B8270D
benzo(g,h,i)perylene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:06	SW3550B8270D
Surrogate Recovery		Limits	5					
2-fluorobiphenyl SUR	83	43-116	%	1	AJD 7/1/11	4298 7/5/11	18:06	SW3550B8270D
o-terphenyl SUR	90	33-141	%	1	AJD 7/1/11	4298 7/5/11	18:06	SW3550B8270D

Job ID: 21886

Sample#: 21886-011 Sample ID: CA-TP-18

Matrix: Solid Percent Dry: 78.5% Results expressed on a dry weight basis.

Sampled: 6/28/11 14:48		Quant	ı	Instr Dil'n	Prep	Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:44	SW3550B8270D
2-methylnaphthalene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:44	SW3550B8270D
acenaphthylene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:44	SW3550B8270D
acenaphthene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:44	SW3550B8270D
dibenzofuran	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:44	SW3550B8270D
fluorene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:44	SW3550B8270D
phenanthrene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:44	SW3550B8270D
anthracene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:44	SW3550B8270D
fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:44	SW3550B8270D
pyrene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:44	SW3550B8270D
benzo(a)anthracene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:44	SW3550B8270D
chrysene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:44	SW3550B8270D
benzo(b)fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:44	SW3550B8270D
benzo(k)fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:44	SW3550B8270D
benzo(a)pyrene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:44	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:44	SW3550B8270D
dibenzo(a,h)anthracene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:44	SW3550B8270D
benzo(g,h,i)perylene	< 0.6	0.6	ug/g	1	AJD 7/1/11	4298 7/5/11	18:44	SW3550B8270D
Surrogate Recovery		Limits	s					
2-fluorobiphenyl SUR	83	43-116	%	1	AJD 7/1/11	4298 7/5/11	18:44	SW3550B8270D
o-terphenyl SUR	88	33-141	%	1	AJD 7/1/11	4298 7/5/11	18:44	SW3550B8270D

Job ID: 21886

Sample#: 21886-012 Sample ID: CA-TP-DUP-1

Matrix: Solid Percent Dry: 93.7% Results expressed on a dry weight basis.

Sampled: 6/28/11		Quant	I	Instr Dil'n	Prep	Ar	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:38	SW3550B8270D
2-methylnaphthalene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:38	SW3550B8270D
acenaphthylene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:38	SW3550B8270D
acenaphthene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:38	SW3550B8270D
dibenzofuran	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:38	SW3550B8270D
fluorene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:38	SW3550B8270D
phenanthrene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:38	SW3550B8270D
anthracene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:38	SW3550B8270D
fluoranthene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:38	SW3550B8270D
pyrene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:38	SW3550B8270D
benzo(a)anthracene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:38	SW3550B8270D
chrysene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:38	SW3550B8270D
benzo(b)fluoranthene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:38	SW3550B8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:38	SW3550B8270D
benzo(a)pyrene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:38	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:38	SW3550B8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:38	SW3550B8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/g	1	AJD 7/1/11	4298 7/5/11	20:38	SW3550B8270D
Surrogate Recovery		Limits	s					
2-fluorobiphenyl SUR	86	43-116	%	1	AJD 7/1/11	4298 7/5/11	20:38	SW3550B8270D
o-terphenyl SUR	91	33-141	%	1	AJD 7/1/11	4298 7/5/11	20:38	SW3550B8270D

Job ID: 21886

Sample#: 21886-006 **Sample ID**: CA-TP-13

Matrix: Solid Percent Dry: 95.7% Results expressed on a dry weight basis.

Sampled: 6/28/11 15:00		Quant	ı	nstr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
PCB-1016	< 0.03	0.03	ug/g	1	JLZ 7/1/11	4297	7/3/11	15:01	SW3540C8082A
PCB-1221	< 0.03	0.03	ug/g	1	JLZ 7/1/11	4297	7/3/11	15:01	SW3540C8082A
PCB-1232	< 0.03	0.03	ug/g	1	JLZ 7/1/11	4297	7/3/11	15:01	SW3540C8082A
PCB-1242	< 0.03	0.03	ug/g	1	JLZ 7/1/11	4297	7/3/11	15:01	SW3540C8082A
PCB-1248	< 0.03	0.03	ug/g	1	JLZ 7/1/11	4297	7/3/11	15:01	SW3540C8082A
PCB-1254	< 0.03	0.03	ug/g	1	JLZ 7/1/11	4297	7/3/11	15:01	SW3540C8082A
PCB-1260	< 0.03	0.03	ug/g	1	JLZ 7/1/11	4297	7/3/11	15:01	SW3540C8082A
Surrogate Recovery		Limits	s						
tetrachloro-m-xylene SUR	63	30-150	%	1	JLZ 7/1/11	4297	7/3/11	15:01	SW3540C8082A
decachlorobiphenyl SUR	72	30-150	%	1	JLZ 7/1/11	4297	7/3/11	15:01	SW3540C8082A

Sample#: 21886-013

Sample ID: D-Floor Covering

Matrix: Solid

Sampled: 6/28/11 15:35		Quant	ı	nstr Dil'n	Prep	Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
PCB-1016	< 0.03	0.03	ug/g	1	JLZ 7/1/11	4297 7/8/11	11:07	SW3540C8082A
PCB-1221	< 0.03	0.03	ug/g	1	JLZ 7/1/11	4297 7/8/11	11:07	SW3540C8082A
PCB-1232	< 0.03	0.03	ug/g	1	JLZ 7/1/11	4297 7/8/11	11:07	SW3540C8082A
PCB-1242	< 0.03	0.03	ug/g	1	JLZ 7/1/11	4297 7/8/11	11:07	SW3540C8082A
PCB-1248	< 0.03	0.03	ug/g	1	JLZ 7/1/11	4297 7/8/11	11:07	SW3540C8082A
PCB-1254	< 0.03	0.03	ug/g	1	JLZ 7/1/11	4297 7/8/11	11:07	SW3540C8082A
PCB-1260	< 0.03	0.03	ug/g	1	JLZ 7/1/11	4297 7/8/11	11:07	SW3540C8082A
Surrogate Recovery		Limits	5					
tetrachloro-m-xylene SUR	24 *	30-150	%	1	JLZ 7/1/11	4297 7/8/11	11:07	SW3540C8082A
decachlorobiphenyl SUR	25 *	30-150	%	1	JLZ 7/1/11	4297 7/8/11	11:07	SW3540C8082A

^{*} The surrogate showed recovery outside the acceptance limits. Matrix interference suspected.

Job ID: 21886

Sample#: 21886-014
Sample ID: Transformer Pit

Matrix: Solid Percent Dry: 96.6% Results expressed on a dry weight basis.

Sampled: 6/28/11 12:55		Quant	ı	Instr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
PCB-1016	< 0.03	0.03	ug/g	1	JLZ 7/1/11	4297	7/8/11	11:38	SW3540C8082A
PCB-1221	< 0.03	0.03	ug/g	1	JLZ 7/1/11	4297	7/8/11	11:38	SW3540C8082A
PCB-1232	< 0.03	0.03	ug/g	1	JLZ 7/1/11	4297	7/8/11	11:38	SW3540C8082A
PCB-1242	< 0.03	0.03	ug/g	1	JLZ 7/1/11	4297	7/8/11	11:38	SW3540C8082A
PCB-1248	< 0.03	0.03	ug/g	1	JLZ 7/1/11	4297	7/8/11	11:38	SW3540C8082A
PCB-1254	< 0.03	0.03	ug/g	1	JLZ 7/1/11	4297	7/8/11	11:38	SW3540C8082A
PCB-1260	< 0.03	0.03	ug/g	1	JLZ 7/1/11	4297	7/8/11	11:38	SW3540C8082A
Surrogate Recovery		Limits	\$						
tetrachloro-m-xylene SUR	43	30-150	%	1	JLZ 7/1/11	4297	7/8/11	11:38	SW3540C8082A
decachlorobiphenyl SUR	63	30-150	%	1	JLZ 7/1/11	4297	7/8/11	11:38	SW3540C8082A

Sample#: 21886-003 Sample ID: CA-TP-8

Matrix: Solid Percent Dry: 87.3% Results expressed on a dry weight basis.

Sampled: 6/28/11 10:48		Quant		Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date Time	Reference
TPH C10-C36	< 220	220	ug/g	1	JLZ 7/1/11	4299 7/	6/11 17:36	SW3550B8100m
Surrogate Recovery		Limits	S					
2-fluorobiphenyl SUR	95	40-140	%	1	JLZ 7/1/11	4299 7/	6/11 17:36	SW3550B8100m
o-terphenyl SUR	112	40-140	%	1	JLZ 7/1/11	4299 7/	6/11 17:36	SW3550B8100m

Job ID: 21886

Sample#: 21886-004 **Sample ID:** CA-TP-10

Matrix: Solid Percent Dry: 88.5% Results expressed on a dry weight basis.

Sampled: 6/28/11 11:50 Quant Prep **Analysis** Instr Dil'n Date Limit Analyst Date Time **Parameter** Result Units Factor Batch Reference Lead 5.6 0.6 BJS 7/6/11 4310 7/6/11 22:48 SW3051A6010C ug/g

Sample#: 21886-005 **Sample ID**: CA-TP-11

Matrix: Solid Percent Dry: 97.2% Results expressed on a dry weight basis.

Sampled: 6/28/11 12:31 Quant Instr Dil'n Prep **Analysis** Limit **Parameter** Result Units Factor Analyst Date Batch Date Time Reference Lead 4.8 0.6 ug/g BJS 7/6/11 4310 7/6/11 22:55 SW3051A6010C

Sample#: 21886-006 **Sample ID:** CA-TP-13

Matrix: Solid Percent Dry: 95.7% Results expressed on a dry weight basis.

Sampled: 6/28/11 15:00		Quant	j	Instr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	3.0	0.6	ug/g	1	BJS 7/6/11	4310	7/6/11	23:03	SW3051A6010C
Barium	23	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:03	SW3051A6010C
Cadmium	< 0.3	0.3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:03	SW3051A6010C
Chromium	36	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:03	SW3051A6010C
Copper	18	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:03	SW3051A6010C
Lead	7.2	0.6	ug/g	1	BJS 7/6/11	4310	7/6/11	23:03	SW3051A6010C
Mercury	< 0.08	0.08	ug/g	1	BJS 7/6/11	4308	7/7/11	9:59	SW7471B
Nickel	7	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:03	SW3051A6010C
Selenium	< 3	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:03	SW3051A6010C
Silver	< 0.4	0.4	ug/g	1	BJS 7/6/11	4310	7/6/11	23:03	SW3051A6010C
Zinc	21	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:03	SW3051A6010C

Sample#: 21886-007 **Sample ID:** CA-TP-14

Matrix: Solid Percent Dry: 91% Results expressed on a dry weight basis.

Sampled: 6/28/11 15:50		Quant	ı	nstr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	1.4	0.7	ug/g	1	BJS 7/6/11	4310	7/6/11	23:10	SW3051A6010C
Barium	47	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:10	SW3051A6010C
Cadmium	< 0.3	0.3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:10	SW3051A6010C
Chromium	260	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:10	SW3051A6010C
Copper	14	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:10	SW3051A6010C
Lead	6.2	0.7	ug/g	1	BJS 7/6/11	4310	7/6/11	23:10	SW3051A6010C
Mercury	< 0.08	0.08	ug/g	1	BJS 7/6/11	4308	7/7/11	10:00	SW7471B
Nickel	4	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:10	SW3051A6010C
Selenium	< 3	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:10	SW3051A6010C
Silver	< 0.5	0.5	ug/g	1	BJS 7/6/11	4310	7/6/11	23:10	SW3051A6010C
Zinc	17	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:10	SW3051A6010C

Job ID: 21886

Sample#: 21886-008 Sample ID: CA-TP-15

Matrix: Solid Percent Dry: 75.2% Results expressed on a dry weight basis.

Sampled: 6/28/11 16:25		Quant	ı	nstr Dil'n	Prep	A	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Dat	e Time	Reference
Arsenic	6.1	0.7	ug/g	1	BJS 7/6/11	4310 7/6/1	1 23:18	SW3051A6010C
Barium	22	4	ug/g	1	BJS 7/6/11	4310 7/6/1	1 23:18	SW3051A6010C
Cadmium	< 0.3	0.3	ug/g	1	BJS 7/6/11	4310 7/6/1	1 23:18	SW3051A6010C
Chromium	9	4	ug/g	1	BJS 7/6/11	4310 7/6/1	1 23:18	SW3051A6010C
Copper	20	4	ug/g	1	BJS 7/6/11	4310 7/6/1	1 23:18	SW3051A6010C
Lead	28	0.7	ug/g	1	BJS 7/6/11	4310 7/6/1	1 23:18	SW3051A6010C
Mercury	< 0.10	0.10	ug/g	1	BJS 7/6/11	4308 7/7/1	1 10:02	SW7471B
Nickel	6	4	ug/g	1	BJS 7/6/11	4310 7/6/1	1 23:18	SW3051A6010C
Selenium	< 4	4	ug/g	1	BJS 7/6/11	4310 7/6/1	1 23:18	SW3051A6010C
Silver	< 0.5	0.5	ug/g	1	BJS 7/6/11	4310 7/6/1	1 23:18	SW3051A6010C
Zinc	23	4	ug/g	1	BJS 7/6/11	4310 7/6/1	1 23:18	SW3051A6010C

Sample#: 21886-009 Sample ID: CA-TP-16

Matrix: Solid Percent Dry: 98.5% Results expressed on a dry weight basis.

Sampled: 6/28/11 17:00		Quant	ı	nstr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	1.2	0.6	ug/g	1	BJS 7/6/11	4310	7/6/11	23:25	SW3051A6010C
Barium	12	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:25	SW3051A6010C
Cadmium	< 0.2	0.2	ug/g	1	BJS 7/6/11	4310	7/6/11	23:25	SW3051A6010C
Chromium	5	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:25	SW3051A6010C
Copper	10	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:25	SW3051A6010C
Lead	3.2	0.6	ug/g	1	BJS 7/6/11	4310	7/6/11	23:25	SW3051A6010C
Mercury	< 0.07	0.07	ug/g	1	BJS 7/6/11	4308	7/7/11	10:04	SW7471B
Nickel	4	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:25	SW3051A6010C
Selenium	< 3	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:25	SW3051A6010C
Silver	< 0.4	0.4	ug/g	1	BJS 7/6/11	4310	7/6/11	23:25	SW3051A6010C
Zinc	9	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:25	SW3051A6010C

Job ID: 21886

Sample#: 21886-010 **Sample ID**: CA-TP-17

Matrix: Solid Percent Dry: 81.7% Results expressed on a dry weight basis.

Sampled: 6/28/11 14:40		Quant	I	nstr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	2.7	0.7	ug/g	1	BJS 7/6/11	4310	7/6/11	23:33	SW3051A6010C
Barium	11	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:33	SW3051A6010C
Cadmium	< 0.3	0.3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:33	SW3051A6010C
Chromium	9	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:33	SW3051A6010C
Copper	22	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:33	SW3051A6010C
Lead	4.8	0.7	ug/g	1	BJS 7/6/11	4310	7/6/11	23:33	SW3051A6010C
Mercury	< 0.07	0.07	ug/g	1	BJS 7/6/11	4308	7/7/11	10:06	SW7471B
Nickel	4	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:33	SW3051A6010C
Selenium	< 3	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:33	SW3051A6010C
Silver	< 0.5	0.5	ug/g	1	BJS 7/6/11	4310	7/6/11	23:33	SW3051A6010C
Zinc	13	3	ug/g	1	BJS 7/6/11	4310	7/6/11	23:33	SW3051A6010C

Sample#: 21886-011 Sample ID: CA-TP-18

Matrix: Solid Percent Dry: 78.5% Results expressed on a dry weight basis.

Sampled: 6/28/11 14:48		Quant	ı	nstr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch D	ate Time	Reference
Arsenic	2.7	0.7	ug/g	1	BJS 7/6/11	4310 7/6	/11 23:40	SW3051A6010C
Barium	16	4	ug/g	1	BJS 7/6/11	4310 7/6	/11 23:40	SW3051A6010C
Cadmium	< 0.3	0.3	ug/g	1	BJS 7/6/11	4310 7/6	/11 23:40	SW3051A6010C
Chromium	7	4	ug/g	1	BJS 7/6/11	4310 7/6	/11 23:40	SW3051A6010C
Copper	13	4	ug/g	1	BJS 7/6/11	4310 7/6	/11 23:40	SW3051A6010C
Lead	4.9	0.7	ug/g	1	BJS 7/6/11	4310 7/6	/11 23:40	SW3051A6010C
Mercury	< 0.08	80.0	ug/g	1	BJS 7/6/11	4308 7/7	7/11 10:08	SW7471B
Nickel	6	4	ug/g	1	BJS 7/6/11	4310 7/6	/11 23:40	SW3051A6010C
Selenium	< 4	4	ug/g	1	BJS 7/6/11	4310 7/6	/11 23:40	SW3051A6010C
Silver	< 0.5	0.5	ug/g	1	BJS 7/6/11	4310 7/6	5/11 23:40	SW3051A6010C
Zinc	15	4	ug/g	1	BJS 7/6/11	4310 7/6	/11 23:40	SW3051A6010C

Job ID: 21886

Sample#: 21886-012 Sample ID: CA-TP-DUP-1

Matrix: Solid Percent Dry: 93.7% Results expressed on a dry weight basis.

Sampled: 6/28/11		Quant	ı	Instr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	< 0.6	0.6	ug/g	1	BJS 7/6/11	4310	7/7/11	0:18	SW3051A6010C
Barium	92	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:18	SW3051A6010C
Cadmium	< 0.3	0.3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:18	SW3051A6010C
Chromium	300	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:18	SW3051A6010C
Copper	16	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:18	SW3051A6010C
Lead	7.0	0.6	ug/g	1	BJS 7/6/11	4310	7/7/11	0:18	SW3051A6010C
Mercury	< 0.09	0.09	ug/g	1	BJS 7/6/11	4308	7/7/11	10:13	SW7471B
Nickel	4	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:18	SW3051A6010C
Selenium	< 3	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:18	SW3051A6010C
Silver	< 0.4	0.4	ug/g	1	BJS 7/6/11	4310	7/7/11	0:18	SW3051A6010C
Zinc	20	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:18	SW3051A6010C

Quality Control Report

124 Heritage Avenue Unit 10 Portsmouth, NH 03801 www.absoluteresourceassociates.com

Case Narrative Lab # 21886

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 5 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

Calibration

No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

PCB: The surrogates for 21886-013 were below the acceptance criteria. Matrix interference suspected.

Laboratory Control Sample Results

VOC: The MLCS/D4295 did not meet the acceptance criteria for chloromethane. This compound showed high recovery. There is no impact to the data as this analyte was not detected in the associated samples. The MLCS/D4295 did not meet the acceptance criteria for dichlorodifluoromethane. The MLCSD4295 did not meet the acceptance criteria for bromomethane. The recovery was acceptable in the LCS. These compounds are known to be problematic in the method.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Not requested for this project.

Other

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

- QC Report -

			Q0 110	' P'	<u> </u>					
Method	QC ID	Parameter	Associated Sample	_	Result	Units Amt Added	%R	Limits	RPD	RPD Limit
SW5035A8260B	MB4295	dichlorodifluoromethane		<	0.1	ug/g				
		chloromethane		<	0.1	ug/g				
		vinyl chloride		<	0.1	ug/g				
		bromomethane		<	0.2	ug/g				
		chloroethane		<	0.1	ug/g				
		trichlorofluoromethane		<	0.1	ug/g				
		diethyl ether		<	0.5	ug/g				
		acetone		<	2.5	ug/g				
		1,1-dichloroethene		<	0.1	ug/g				
		methylene chloride		<	0.2	ug/g				
		carbon disulfide		<	0.1	ug/g				
		methyl t-butyl ether (MTE	BE)	<	0.1	ug/g				
		trans-1,2-dichloroethene		<	0.1	ug/g				
		isopropyl ether (DIPE)		<	0.1	ug/g				
		ethyl t-butyl ether (ETBE)	<	0.1	ug/g				
		1,1-dichloroethane		<	0.1	ug/g				
		t-butanol (TBA)		<	2.5	ug/g				
		2-butanone (MEK)		<	0.5	ug/g				
		2,2-dichloropropane		<	0.1	ug/g				
		cis-1,2-dichloroethene		<	0.1	ug/g				
		chloroform		<	0.1	ug/g ,				
		bromochloromethane		<	0.1	ug/g				
		tetrahydrofuran (THF)		<	0.5	ug/g				
		1,1,1-trichloroethane		<	0.1	ug/g				
		1,1-dichloropropene	M E\	<	0.1	ug/g				
		t-amyl-methyl ether (TAM carbon tetrachloride	I⊏ <i>)</i>	<	0.1 0.1	ug/g				
		1,2-dichloroethane		<	0.1	ug/g				
		benzene		<	0.1	ug/g ug/g				
		trichloroethene			0.1	ug/g ug/g				
		1,2-dichloropropane			0.1	ug/g				
		bromodichloromethane		<	0.1	ug/g				
		1,4-dioxane		<	2.5	ug/g				
		dibromomethane		<	0.1	ug/g				
		4-methyl-2-pentanone (M	IBK)	<	0.5	ug/g				
		cis-1,3-dichloropropene		<	0.1	ug/g				
		toluene		<	0.1	ug/g				
		trans-1,3-dichloropropene	9	<	0.1	ug/g				
		2-hexanone		<	0.5	ug/g				
		1,1,2-trichloroethane		<	0.1	ug/g				
		1,3-dichloropropane		<	0.1	ug/g				
		tetrachloroethene		<	0.1	ug/g				
		dibromochloromethane		<	0.1	ug/g				
		1,2-dibromoethane (EDB)	<	0.1	ug/g				
		chlorobenzene		<	0.1	ug/g				
		1,1,1,2-tetrachloroethane		<	0.1	ug/g				
		ethylbenzene		<	0.1	ug/g				
		m&p-xylenes		<	0.1	ug/g				
		o-xylene		<	0.1	ug/g				
		styrene		<	0.1	ug/g				

Method	QC ID	Parameter	Associated Sample	Result	Units Amt Added	%R	Limits	s RPD	RPD Limit
SW5035A820	60B MB4295	bromoform	<	< 0.1	ug/g				
		isopropylbenzene	•	< 0.1	ug/g				
		1,1,2,2-tetrachloroethane	•	< 0.1	ug/g				
		1,2,3-trichloropropane	•	< 0.1	ug/g				
		n-propylbenzene	•	0.1	ug/g				
		bromobenzene	•	< 0.1	ug/g				
		1,3,5-trimethylbenzene	•	0.1	ug/g				
		2-chlorotoluene	•	0.1	ug/g				
		4-chlorotoluene	•	< 0.1	ug/g				
		tert-butylbenzene	•	0.1	ug/g				
		1,2,4-trimethylbenzene	•	0.1	ug/g				
		sec-butylbenzene	•	0.1	ug/g				
		1,3-dichlorobenzene	•	0.1	ug/g				
		4-isopropyltoluene	•	0.1	ug/g				
		1,4-dichlorobenzene	•	0.1	ug/g				
		1,2-dichlorobenzene	•	< 0.1	ug/g				
		n-butylbenzene	•	0.1	ug/g				
		1,2-dibromo-3-chloropropa	nne <	0.1	ug/g				
		1,2,4-trichlorobenzene	•	< 0.1	ug/g				
		1,3,5-trichlorobenzene	•	< 0.1	ug/g				
		hexachlorobutadiene	•	< 0.1	ug/g				
		naphthalene	•	< 0.2	ug/g				
		1,2,3-trichlorobenzene	•	< 0.1	ug/g				
		dibromofluoromethane SU	R	84	%		78 11	14	
		toluene-D8 SUR		93	%		88 11	10	
		4-bromofluorobenzene SU	R	92	%		86 11	15	
		a,a,a-trifluorotoluene SUR		93	%		70 13	30	

Method	QC ID	Parameter	Associated Sample	Resul	lt L	Units A	mt Added	%R	-	Li	mits	RPD	RPD Limit
SW5035A8260	B MLCS4295	dichlorodifluoromethane		0.	6	ug/g	1	59	*	70	130		
		chloromethane		2.	2	ug/g	1	215	*	70	130		
		vinyl chloride		0.	8	ug/g	1	83		70	130		
		bromomethane		0.	7	ug/g	1	70		70	130		
		chloroethane		0.	7	ug/g	1	70		70	130		
		trichlorofluoromethane		0.	7	ug/g	1	73		70	130		
		diethyl ether		0.	9	ug/g	1	94		70	130		
		acetone		< 2.	5	ug/g	1	112					
		1,1-dichloroethene		0.	8	ug/g	1	77		70	130		
		methylene chloride		0.	9	ug/g	1	93		70	130		
		carbon disulfide		0.	8	ug/g	1	78		70	130		
		methyl t-butyl ether (MTB	E)	1.	0	ug/g	1	103		70	130		
		trans-1,2-dichloroethene		0.	9	ug/g	1	89		70	130		
		isopropyl ether (DIPE)		1.	0	ug/g	1	95		70	130		
		ethyl t-butyl ether (ETBE)		1.	0	ug/g	1	100		70	130		
		1,1-dichloroethane		1.	0	ug/g	1	97		70	130		
		t-butanol (TBA)		5.	3	ug/g	5	106		70	130		
		2-butanone (MEK)		1.		ug/g	1	102		70	130		
		2,2-dichloropropane		1.		ug/g	1	110		70	130		
		cis-1,2-dichloroethene		0.		ug/g	1	94		70	130		
		chloroform		1.		ug/g	1	98		70	130		
		bromochloromethane		1.		ug/g	1	96		70	130		
		tetrahydrofuran (THF)		0.		ug/g	1	91		70	130		
		1,1,1-trichloroethane		0.		ug/g	1	92		70	130		
		1,1-dichloropropene		1.		ug/g	1	99		70	130		
		t-amyl-methyl ether (TAM	E)	1.		ug/g	1	105		70	130		
		carbon tetrachloride		1.		ug/g	1	96		70	130		
		1,2-dichloroethane		1.		ug/g	1	108		70	130		
		benzene		1.		ug/g	1	98		70	130		
		trichloroethene		0.		ug/g	1	92		70	130		
		1,2-dichloropropane		1.		ug/g	1	104		70	130		
		bromodichloromethane		1.		ug/g	1	103		70	130		
		1,4-dioxane		< 2.		ug/g	2	103		70	130		
		dibromomethane		1.		ug/g	1	102		70	130		
		4-methyl-2-pentanone (M	IBK)	0.		ug/g	1	87		70	130		
		cis-1,3-dichloropropene	,	1.		ug/g	1	99		70	130		
		toluene		0.		ug/g	1	93		70	130		
		trans-1,3-dichloropropene		1.		ug/g	1	100		70	130		
		2-hexanone		0.		ug/g	1	78		70	130		
		1,1,2-trichloroethane		1.		ug/g	1	101		70	130		
		1,3-dichloropropane		1.		ug/g	1	119		70	130		
		tetrachloroethene		1.		ug/g	1	97		70	130		
		dibromochloromethane		1.		ug/g	1	115		70	130		
		1,2-dibromoethane (EDB)		1.		ug/g	1	112		70	130		
		chlorobenzene		1.		ug/g	1	107		70	130		
		1,1,1,2-tetrachloroethane		1.		ug/g	1	114		70	130		
		ethylbenzene		1.		ug/g	1	99		70	130		
		m&p-xylenes		2.		ug/g	2	107		70	130		
		o-xylene		1.		ug/g	1	111		70	130		
		styrene		1.		ug/g	1	113		70	130		
		bromoform				ug/g	1	98		70	130		

Method	QC ID	Parameter	Associated Sample	Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limi
SW5035A8260	B MLCS4295	isopropylbenzene		0.9	ug/g	1	95	70	130		
		1,1,2,2-tetrachloroethane		1.1	ug/g	1	113	70	130		
		1,2,3-trichloropropane		1.1	ug/g	1	109	70	130		
		n-propylbenzene		1.0	ug/g	1	102	70	130		
		bromobenzene		1.1	ug/g	1	109	70	130		
		1,3,5-trimethylbenzene		1.0	ug/g	1	99	70	130		
		2-chlorotoluene		1.2	ug/g	1	121	70	130		
		4-chlorotoluene		1.0	ug/g	1	99	70	130		
		tert-butylbenzene		1.0	ug/g	1	96	70	130		
		1,2,4-trimethylbenzene		1.0	ug/g	1	102	70	130		
		sec-butylbenzene		0.9	ug/g	1	93	70	130		
		1,3-dichlorobenzene		1.0	ug/g	1	102	70	130		
		4-isopropyltoluene		0.9	ug/g	1	95	70	130		
		1,4-dichlorobenzene		1.0	ug/g	1	105	70	130		
		1,2-dichlorobenzene		1.1	ug/g	1	107	70	130		
		n-butylbenzene		0.9	ug/g	1	94	70	130		
		1,2-dibromo-3-chloropropar	ne	1.2	ug/g	1	116	70	130		
		1,2,4-trichlorobenzene		0.9	ug/g	1	93	70	130		
		1,3,5-trichlorobenzene		0.9	ug/g	1	88	70	130		
		hexachlorobutadiene		0.9	ug/g	1	92	70	130		
		naphthalene		1.0	ug/g	1	100	70	130		
		1,2,3-trichlorobenzene		0.9	ug/g	1	92	70	130		
		dibromofluoromethane SUF	₹	95	%			78	114		
		toluene-D8 SUR		94	%			88	110		
		4-bromofluorobenzene SUF	२	100	%			86	115		
		a,a,a-trifluorotoluene SUR		91	%			70	130		

SVISGISABZE0B MLCSD4295 dichlorodifluoromethane chloromethane chloromethane chloromethane chloromethane 1.6 ugig 1 100 70 13	thod	QC ID	Parameter	Associated Sample		Result	Units A	Amt Added	%R		Li	mits	RPD	RPD Limi
chloromethane vinyl chloride vinyl c	V5035A8260B	MLCSD4295	dichlorodifluoromethane			0.6	ug/g	1	60	*	70	130	2	30
bromomethane			chloromethane			1.6	ug/g	1	160	*	70	130	29	30
chloroethane tirichlorofluoromethane diethyl ether acatone acatone A. 2.5 u/g 1 76 70 130 diethyl ether acatone A. 2.5 u/g 1 104 1.1-dichloroethene A. 2.5 u/g 1 104 1.1-dichloroethene A. 3 u/g 1 77 70 130 methyl-ene chloride A. 3 u/g 1 1 77 70 130 methyl-ene chloride A. 3 u/g 1 1 77 70 130 methyl-thuyl ether (MTBE) A. 4.7 u/g 1 1 80 70 130 methyl t-buyl ether (ETBE) A. 5 u/g 1 1 80 70 130 methyl t-buyl ether (ETBE) A. 6 u/g 1 1 89 70 130 methyl t-buyl ether (ETBE) A. 7 u/g 1 1 00 70 130 methyl t-buyl ether (ETBE) A. 7 u/g 1 1 00 70 130 methyl t-buyl ether (ETBE) A. 7 u/g 1 1 00 70 130 methyl t-buyl ether (ETBE) A. 7 u/g 1 1 00 70 130 methyl t-buyl ether (ETBE) A. 7 u/g 1 1 00 70 130 methyl t-buyl ether (ETBE) A. 7 u/g 1 1 00 70 130 methyl t-buyl ether (ETBE) A. 7 u/g 1 1 00 70 130 methyl t-buyl ether (ETBE) A. 7 u/g 1 1 00 70 130 methyl t-buyl ether (ETBE) A. 7 u/g 1 1 00 70 130 methyl t-buyl ether (ETBE) A. 7 u/g 1 1 00 70 130 methyl t-buyl ether (ETBE) A. 7 u/g 1 1 00 70 130 methyl ether (ETBE) A. 7 u/g 1 1 00 70 130 methyl ether (ETBE) A. 7 u/g 1 1 00 70 130 methyl ether (ETBE) A. 7 u/g 1 1 00 70 130 methyl ether (ETBE) A. 7 u/g 1 1 00 70 130 methyl ether (ETBE) A. 7 u/g 1 1 00 70 130 methyl ether (ETBE) A. 7 u/g 1 1 00 70 130 methyl ether (ETBE) A. 7 u/g 1 1 00 70 130 methyl ether (ETBE) A. 7 u/g 1 1 00 70 130 methyl-methyl ether (ETBE) A. 8 u/g 1 1 00 70 130 methyl-methyl ether (ETBE) A. 8 u/g 1 1 00 70 130 methyl-methyl ether (ETBE) A. 8 u/g 1 1 00 70 130 methyl-methyl ether (ETBE) A. 8 u/g 1 1 00 70 130 methyl-methyl ether (ETBE) A. 8 u/g 1 1 00 70 130 methyl-methyl ether (ETBE) A. 9 u/g 1 1 00 70 130 methyl-methyl ether (ETBE) A. 9 u/g 1 1 00 70 130 methyl-methyl ether (ETBE) A. 9 u/g 1 1 00 70 130 methyl-methyl ether (ETBE) A. 9 u/g 1 1 00 70 130 methyl-methyl ether (ETBE) A. 9 u/g 1 1 00 70 130 methyl-methyl ether (ETBE) A. 1 u/g 1 1 00 70 130 methyl-methyl-methyl ether (ETBE) A. 1 u/g 1 1 00 70 130 methyl-methyl-methyl ether (ETBE) A. 2 u/g 1 1 00 70 130 methyl-methyl-methyl ether (ETBE) A. 1 u/g 1			vinyl chloride			0.9	ug/g	1	86		70	130	4	30
trichlorofluoromethane diethyl ether			bromomethane		<	0.2	ug/g	1	21	*	70	130	107	* 30
diethyl ether			chloroethane			0.7	ug/g	1	71		70	130	1	30
acetone			trichlorofluoromethane			0.8	ug/g	1	76		70	130	4	30
1,1-dichloroethene			diethyl ether			0.9	ug/g	1	92		70	130	2	30
methylene chloride 0.9 ug/g 1 93 70 130 carbon disulfide 0.8 ug/g 1 80 70 130 methyl Lebuly lethr (MTBE) 1.0 ug/g 1 89 70 130 isopropyl ether (DIPE) 0.9 ug/g 1 94 70 130 ethyl Lebuly ether (ETBE) 1.0 ug/g 1 95 70 130 1,1-dichloroethane 1.0 ug/g 1 95 70 130 2,2-dichloropropane 1.0 ug/g 1 90 70 130 cis-1,2-dichloroethene 0.9 ug/g 1 94 70 130 choloroform 1.0 ug/g 1 95 70 130 choloroforme 1.0 ug/g 1 95 70 130 choloroforme 1.0 ug/g 1 95 70 130 tetrahydrofuran (THF) 0.8 ug			acetone		<	2.5	ug/g	1	104				8	30
carbon disulfide 0.8 ug/g 1 80 70 130 methyl t-bulyl ether (MTBE) 1.0 ug/g 1 100 70 130 trans-1.2-dichlorethene 0.9 ug/g 1 89 70 130 isopropyl ether (DIPE) 0.9 ug/g 1 94 70 130 ethyl Ebulyl ether (ETBE) 1.0 ug/g 1 90 70 130 1,1-dichloroethane 1.0 ug/g 1 95 70 130 2-butanone (MEK) 0.9 ug/g 1 90 70 130 2,2-dichloropropane 1.0 ug/g 1 92 70 130 2,2-dichloropropane 1.0 ug/g 1 95 70 130 chloroform 1.0 ug/g 1 95 70 130 tetrahydrofunc (THF) 0.8 ug/g 1 95 70 130 tetrahydrofunc (THF) 0.8			1,1-dichloroethene			0.8	ug/g	1	77		70	130	0	30
methyl L-butyl ether (MTBE) 1.0 ug/g 1 100 70 130 trans-1,2-dichloroethene 0.9 ug/g 1 89 70 130 isopropyl ether (IDFE) 0.9 ug/g 1 94 70 130 ethyl L-butyl ether (ETBE) 1.0 ug/g 1 95 70 130 1,1-dichloroethane 1.0 ug/g 1 95 70 130 2-butanone (MEK) 0.9 ug/g 1 90 70 130 2-butanone (MEK) 0.9 ug/g 1 90 70 130 2-dichloroethene 1.0 ug/g 1 102 70 130 cis-1,2-dichloroethene 1.0 ug/g 1 95 70 130 cis-1,2-dichloroethane 1.0 ug/g 1 95 70 130 teranyl-methyl ether (TAME) 1.0 ug/g 1 96 70 130 teranyl-methyl ether (TAM			methylene chloride			0.9	ug/g	1	93		70	130	0	30
trans-1,2-dichloroethene			carbon disulfide			0.8	ug/g	1	80		70	130	2	30
trans-1,2-dichloroethene isopropyl ether (DIPE) ethyl-t-buly lether (ETBE) 1,0 ug/g 1 94 70 130 ethyl-t-buly lether (ETBE) 1,0 ug/g 1 95 70 130 1,1-dichloroethane 1,0 ug/g 1 95 70 130 1,2-dichloroptopane 1,0 ug/g 1 99 70 130 2,2-dichloroptopane 1,0 ug/g 1 102 70 130 cis-1,2-dichloroethene 1,0 ug/g 1 95 70 130 cis-1,2-dichloroethene 1,0 ug/g 1 95 70 130 cis-1,2-dichloroethene 1,0 ug/g 1 95 70 130 cis-1,1-dichloroethene 1,0 ug/g 1 95 70 130 chloroform 1,0 ug/g 1 95 70 130 chloroform 1,0 ug/g 1 95 70 130 chloroform 1,0 ug/g 1 95 70 130 chloroform 1,0 ug/g 1 95 70 130 chloroethane 1,0 ug/g 1 95 70 130 chloroethane 1,0 ug/g 1 95 70 130 chloroethane 1,0 ug/g 1 96 70 130 chloroethane 1,0 ug/g 1 96 70 130 chloroethane 1,0 ug/g 1 96 70 130 chloroethane 1,0 ug/g 1 96 70 130 chloroethane 1,0 ug/g 1 103 70 130 carbon tetrachloride 0,9 ug/g 1 103 70 130 chloroethane 1,0 ug/g 1 103 70 130 chloroethane 1,0 ug/g 1 103 70 130 chloroethane 1,0 ug/g 1 103 70 130 chloroethane 1,0 ug/g 1 104 70 130 chloroethane 1,0 ug/g 1 104 70 130 chloroethane 1,0 ug/g 1 103 70 130 chloroethane 1,0 ug/g 1 103 70 130 chloroethane 1,0 ug/g 1 103 70 130 chloroethane 1,0 ug/g 1 103 70 130 chloroethane 1,0 ug/g 1 103 70 130 chloroethane 1,0 ug/g 1 103 70 130 chloroethane 1,0 ug/g 1 103 70 130 chloroethane 1,0 ug/g 1 104 70 130 chl			methyl t-butyl ether (MTB	E)		1.0		1	100		70	130	3	30
isopropyl ether (DIPE)				•		0.9		1	89		70	130	0	30
ethyl t-butyl ether (ETBE) 1.0 ug/g 1 100 70 130 1.1-dichlorocethane 1.0 ug/g 1 95 70 130 t-butanol (TBA) 4.7 ug/g 5 95 70 130 2-butanone (MEK) 0.9 ug/g 1 90 70 130 2.2-dichloropropane 1.0 ug/g 1 102 70 130 cis-1,2-dichloroethene 0.9 ug/g 1 94 70 130 chloroform 1.0 ug/g 1 95 70 130 thoromochloromethane 1.0 ug/g 1 95 70 130 tetrahydrofuran (THF) 0.8 ug/g 1 95 70 130 tetrahydrofuran (THF) 0.8 ug/g 1 95 70 130 tetrahydrofuran (THF) 0.8 ug/g 1 95 70 130 tetrahydrofuran (THF) 0.8 ug/g 1 95 70 130 tetrahydrofuran (THF) 0.8 ug/g 1 96 70 130 1.1-t-dichloropropene 1.0 ug/g 1 96 70 130 carbon tetrachloride 0.9 ug/g 1 96 70 130 tetrahydrofuran (THO) 1.2-dichloropropene 1.0 ug/g 1 96 70 130 tetrahydrofuran (THO) 1.2-dichloropropene 1.0 ug/g 1 96 70 130 tetrahydrofuran (THO) 1.2-dichloropropene 1.0 ug/g 1 103 70 130 tetrahydrofuran (THO) 1.2-dichloropropene 1.0 ug/g 1 103 70 130 tetrahydrofuran (THO) 1.2-dichloropropene 1.0 ug/g 1 100 70 130 tetrahydrofuran (THO) 1.2-dichloropropene 1.0 ug/g 1 96 70 130 tetrahydropropene 1.0 ug/g 1 96 70 130 tetrahydropropene 1.0 ug/g 1 100 70 130 tetrahydropropene 1.0 ug/g 1 100 70 130 tetrahydropropene 1.0 ug/g 1 100 70 130 totahydropropene 1.0 ug/g 1 96 70 130 totahydropropene 1.0 ug/g 1 96 70 130 totahydropropene 1.0 ug/g 1 97 70 130 totahydropropene 1.0 ug/g 1 97 70 130 totahydropropene 1.0 ug/g 1 97 70 130 totahydropropene 1.0 ug/g 1 97 70 130 totahydropropene 1.0 ug/g 1 97 70 130 totahydropropene 1.0 ug/g 1 99 70 130 130 totahydropropene 1.0 ug/g 1 100 70 130 totahydropropene 1.0 ug/g 1 97 70 130 totahydropropene 1.0 ug/g 1 99 70 130 130 12-dichloropropene 1.0 ug/g 1 99 70 130 130 12-dichloropropene 1.0 ug/g 1 100 70 130 130 130 130 130 130 130 130 130 13			isopropyl ether (DIPE)			0.9		1	94		70	130	1	30
1,1-dichloroethane						1.0		1	100		70	130	0	30
t-butanol (TBA) 2-butanone (MEK) 0.9 ug/g 1 90 70 130 2,2-dichloropropane 0.10 ug/g 1 102 70 130 0.5-1,2-dichloropropane 0.9 ug/g 1 94 70 130 0.5-1,2-dichloroethene 0.9 ug/g 1 95 70 130 0.5-1,1,1-trichloroethane 1.0 ug/g 1 95 70 130 0.5-1,1,1-trichloroethane 0.9 ug/g 1 95 70 130 0.5-1,1,1-trichloroethane 0.9 ug/g 1 95 70 130 0.5-1,1,1-trichloroethane 0.9 ug/g 1 95 70 130 0.5-1,1,1-trichloroethane 0.9 ug/g 1 91 70 130 0.5-1,1,1-trichloropropene 0.9 ug/g 1 91 70 130 0.5-1,1,1-trichloroethane 0.9 ug/g 1 93 70 130 0.5-1,1,1-trichloroethane 0.9 ug/g 1 93 70 130 0.5-1,1,1-trichloroethane 0.9 ug/g 1 93 70 130 0.5-1,1,1-trichloroethane 0.9 ug/g 1 93 70 130 0.5-1,1,1-trichloroethane 0.9 ug/g 1 93 70 130 0.5-1,1,1-trichloroethane 0.9 ug/g 1 90 70 130 0.5-1,1,1-trichloropropane 0.9 ug/g 1 103 70 130 0.5-1,1,1-trichloroethane 0.9 ug/g 1 100 70 130 0.5-1,1,1-trichloroethane 0.9 ug/g 1 100 70 130 0.5-1,1,1-trichloropropane 0.0 ug/g 1 100 70 130 0.5-1,1,1-trichloropropane 0.0 ug/g 1 100 70 130 0.5-1,1,1-trichloropropane 0.0 ug/g 1 100 70 130 0.5-1,1,1-trichloropropane 0.0 ug/g 1 96 70 130 0.5-1,1,1-trichloropropane 0.0 ug/g 1 97 70 130 0.5-1,1,1-trichloropropane 0.0 ug/g 1 96 70 130 0.5-1,1,1-trichloropropane 0.0 ug/g 1 96 70 130 0.5-1,1,1-trichloropropane 0.0 ug/g 1 96 70 130 0.5-1,1,1-trichloropropane 0.0 ug/g 1 97 70 130 0.5-1,1,1-trichloropropane 0.0 ug/g 1 97 70 130 0.5-1,1,1,1,1-trichloropropane 0.0 ug/g 1 103 70 130 0.5-1,1,1,1,1-trichloropropane 0.0 ug/g 1 103 70 130 0.5-1,1,1,1,1-trichloropropane 0.0 ug/g 1 103 70 130 0.5-1,1,1,1,1-trichloropropane 0.0 ug/g 1 103 70 130 0.5-1,1,1,1,1-trichloropropane 0.0 ug/g 1 103 70 130 0.5-1,1,1,1,1-trichloropropane 0.0 ug/g 1 103 70 130 0.5-1,1,1,1,1-trichloropropane 0.0 ug/g 1 103 70 130 0.5-1,1,1,1,1-trichloropropane 0.0 ug/g 1 103 70 130 0.5-1,1,1,1,1,1-trichloropropane 0.						1.0		1	95		70	130	2	30
2-butanone (MEK) 0.9 ug/g 1 90 70 130 2,2-dichloropropane 1.0 ug/g 1 102 70 130 cis-1,2-dichloropethene 0.9 ug/g 1 95 70 130 chloroform 1.0 ug/g 1 95 70 130 bromochloromethane 1.0 ug/g 1 95 70 130 tetrahydrofuran (THF) 0.8 ug/g 1 75 70 130 1,1-1-trichloroethane 0.9 ug/g 1 96 70 130 1,1-1-trichloroethane 1.0 ug/g 1 96 70 130 t-amyl-methyl ether (TAME) 1.0 ug/g 1 96 70 130 carbon tetrachloride 0.9 ug/g 1 93 70 130 t-amyl-methyl ether (TAME) 1.0 ug/g 1 96 70 130 t-amyl-methyl ether (TAME) 1.0 ug/g 1 90 70 130 t-amyl-methyl e			t-butanol (TBA)			4.7		5	95		70	130	11	30
2,2-dichloropropane 1.0 ug/g 1 102 70 130 cis-1,2-dichloroethene 0.9 ug/g 1 94 70 130 chloroform 1.0 ug/g 1 95 70 130 bromochloromethane 1.0 ug/g 1 95 70 130 tetrahydrofuran (THF) 0.8 ug/g 1 75 70 130 1,1,1-trichloroethane 0.9 ug/g 1 96 70 130 1,1-dichloropropene 1.0 ug/g 1 96 70 130 t-amyl-methyl ether (TAME) 1.0 ug/g 1 93 70 130 carbon tetrachloride 0.9 ug/g 1 93 70 130 tearbon tetrachloride 0.9 ug/g 1 96 70 130 terichloroethane 1.0 ug/g 1 96 70 130 trichloroethene 1.0 ug/g 1 103 70 130 trichloroethane 1.						0.9		1	90		70	130	12	30
cis-1,2-dichloroethene 0,9 ug/g 1 94 70 130 chloroform 1.0 ug/g 1 95 70 130 bromochloromethane 1.0 ug/g 1 95 70 130 tetrahydrofuran (THF) 0.8 ug/g 1 75 70 130 1,1-trichloroethane 0.9 ug/g 1 91 70 130 1,1-dichloropropene 1.0 ug/g 1 96 70 130 carbon tetrachloride 0.9 ug/g 1 103 70 130 carbon tetrachloride 0.9 ug/g 1 104 70 130 carbon tetrachloride 0.9 ug/g 1 104 70 130 tetrachloroethane 1.0 ug/g 1 96 70 130 trichloroethane 1.0 ug/g 1 103 70 130 trichloroethane 1.0 ug/g			,					1	102		70	130	8	30
chloroform 1.0 ug/g 1 95 70 130 bromochloromethane 1.0 ug/g 1 95 70 130 tetrahydrofuran (THF) 0.8 ug/g 1 75 70 130 1,1,1-trichloroethane 0.9 ug/g 1 91 70 130 1,1-dichloropropene 1.0 ug/g 1 96 70 130 t-amyl-methyl ether (TAME) 1.0 ug/g 1 103 70 130 carbon tetrachloride 0.9 ug/g 1 93 70 130 1,2-dichlorothane 1.0 ug/g 1 104 70 130 benzene 1.0 ug/g 1 96 70 130 tirchloroethene 0.9 ug/g 1 103 70 130 tirchloropropane 1.0 ug/g 1 100 70 130 tirchloropropane 1.0 ug/g									94			130	0	30
bromochloromethane 1.0 ug/g 1 95 70 130 tetrahydrofuran (THF) 0.8 ug/g 1 75 70 130 130 1,1,1-trichloroethane 0.9 ug/g 1 91 70 130 1,1-dichloropropene 1.0 ug/g 1 96 70 130 templemethyl ether (TAME) 1.0 ug/g 1 103 70 130 130 1,2-dichloroethane 1.0 ug/g 1 103 70 130 1,2-dichloroethane 1.0 ug/g 1 104 70 130 130 1,2-dichloroethane 1.0 ug/g 1 104 70 130 130 1,2-dichloroethane 1.0 ug/g 1 104 70 130 130 1,2-dichloroethane 1.0 ug/g 1 100 70 130 130 1,2-dichloroethane 1.0 ug/g 1 100 70 130 130 1,2-dichloroethane 1.0 ug/g 1 100 70 130 130 1,2-dichloroethane 1.0 ug/g 1 100 70 130 130 1,3-dichloroethane 1.0 ug/g 1 100 70 130 130 130 14-dioxane < 2.5 ug/g 2 88 70 130 130 130 14-methyl-2-pentanone (MIBK) 0.8 ug/g 1 85 70 130 130 130 130 130 130 130 130 130 13								1	95		70	130	3	30
tetrahydrofuran (THF) 0.8 ug/g 1 75 70 130 1,1,1-trichloroethane 0.9 ug/g 1 91 70 130 1,1-dichloropropene 1.0 ug/g 1 96 70 130 t-amyl-methyl ether (TAME) 1.0 ug/g 1 96 70 130 carbon tetrachloride 0.9 ug/g 1 93 70 130 1,2-dichloroethane 1.0 ug/g 1 104 70 130 benzene 1.0 ug/g 1 96 70 130 trichloroethane 0.9 ug/g 1 90 70 130 1,2-dichloropropane 1.0 ug/g 1 103 70 130 1,2-dichloromethane 1.0 ug/g 1 100 70 130 1,4-dioxane < 2.5			bromochloromethane					1				130	1	30
1,1,1-trichloroethane 0.9 ug/g 1 91 70 130 1,1-dichloropropene 1.0 ug/g 1 96 70 130 t-amyl-methyl ether (TAME) 1.0 ug/g 1 103 70 130 carbon tetrachloride 0.9 ug/g 1 93 70 130 1,2-dichloroethane 1.0 ug/g 1 104 70 130 benzene 1.0 ug/g 1 96 70 130 trichloroethene 0.9 ug/g 1 96 70 130 1,2-dichloropropane 1.0 ug/g 1 103 70 130 bromodichloromethane 1.0 ug/g 1 100 70 130 1,4-dioxane < 2.5			tetrahydrofuran (THF)					1	75			130	19	30
1,1-dichloropropene 1.0 ug/g 1 96 70 130 t-amyl-methyl ether (TAME) 1.0 ug/g 1 103 70 130 carbon tetrachloride 0.9 ug/g 1 93 70 130 1,2-dichloroethane 1.0 ug/g 1 104 70 130 benzene 1.0 ug/g 1 96 70 130 trichloroethane 0.9 ug/g 1 90 70 130 1,2-dichloropropane 1.0 ug/g 1 103 70 130 bromodichloromethane 1.0 ug/g 1 100 70 130 1,4-dioxane < 2.5								1	91			130	1	30
t-amyl-methyl ether (TAME) 1.0 ug/g 1 103 70 130 carbon tetrachloride 0.9 ug/g 1 93 70 130 130 1,2-dichloroethane 1.0 ug/g 1 104 70 130 benzene 1.0 ug/g 1 96 70 130 trichloroethene 0.9 ug/g 1 96 70 130 1,2-dichloropropane 1.0 ug/g 1 103 70 130 bromodichloromethane 1.0 ug/g 1 100 70 130 1,4-dioxane < 2.5 ug/g 2 88 70 130 dibromomethane 1.0 ug/g 1 101 70 130 cis-1,3-dichloropropane 1.0 ug/g 1 101 70 130 cis-1,3-dichloropropane 1.0 ug/g 1 101 70 130 130 14 ms-1,3-dichloropropane 1.0 ug/g 1 96 70 130 130 14 ms-1,3-dichloropropane 1.0 ug/g 1 96 70 130 130 14 ms-1,3-dichloropropane 1.0 ug/g 1 97 70 130 130 14 ms-1,3-dichloropropane 1.0 ug/g 1 97 70 130 14 ms-1,3-dichloropropane 1.0 ug/g 1 97 70 130 130 1,1,2-trichloroethane 1.0 ug/g 1 99 70 130 1,3-dichloropropane 1.1 ug/g 1 108 70 130 1,3-dichloropropane 1.1 ug/g 1 108 70 130 1,2-dichloropropane 1.1 ug/g 1 108 70 130 1,2-dichloropropane 1.1 ug/g 1 103 70 130 1,2-dichloromethane 1.0 ug/g 1 103 70 130 1,2-dichloromethane 1.0 ug/g 1 103 70 130 1,2-dichloromethane 1.0 ug/g 1 103 70 130 1,2-dichloromethane 1.0 ug/g 1 105 70 130 1,1,1,2-tetrachloroethane 1.0 ug/g 1 105 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 105 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 1,1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 130 1,1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 130 1,1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 130 140 140 140 140 140 140 140 140 140 14								1	96			130	3	30
carbon tetrachloride 0.9 ug/g 1 93 70 130 1,2-dichloroethane 1.0 ug/g 1 104 70 130 benzene 1.0 ug/g 1 96 70 130 trichloroethene 0.9 ug/g 1 90 70 130 1,2-dichloropropane 1.0 ug/g 1 103 70 130 bromodichloromethane 1.0 ug/g 1 100 70 130 1,4-dioxane < 2.5				E)				1	103			130	2	30
1,2-dichloroethane 1.0 ug/g 1 104 70 130 benzene 1.0 ug/g 1 96 70 130 trichloroethene 0.9 ug/g 1 90 70 130 1,2-dichloropropane 1.0 ug/g 1 103 70 130 bromodichloromethane 1.0 ug/g 1 100 70 130 1,4-dioxane < 2.5				,				1					3	30
benzene 1.0 ug/g 1 96 70 130 trichloroethene 0.9 ug/g 1 90 70 130 1,2-dichloropropane 1.0 ug/g 1 103 70 130 bromodichloromethane 1.0 ug/g 1 100 70 130 1,4-dioxane < 2.5 ug/g 2 88 70 130 dibromomethane 1.0 ug/g 1 101 70 130 4-methyl-2-pentanone (MIBK) 0.8 ug/g 1 85 70 130 dibromorpropene 1.0 ug/g 1 96 70 130 toluene 1.0 ug/g 1 97 70 130 toluene 1.0 ug/g 1 97 70 130 toluene 1.0 ug/g 1 97 70 130 toluene 0.9 ug/g 1 74 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td>30</td>													4	30
trichloroethene 0.9 ug/g 1 90 70 130 1,2-dichloropropane 1.0 ug/g 1 103 70 130 bromodichloromethane 1.0 ug/g 1 100 70 130 1,4-dioxane < 2.5													2	30
1,2-dichloropropane 1.0 ug/g 1 103 70 130 bromodichloromethane 1.0 ug/g 1 100 70 130 1,4-dioxane < 2.5													2	30
bromodichloromethane 1.0 ug/g 1 100 70 130 1,4-dioxane < 2.5 ug/g 2 88 70 130 dibromomethane 1.0 ug/g 1 101 70 130 4-methyl-2-pentanone (MIBK) 0.8 ug/g 1 85 70 130 cis-1,3-dichloropropene 1.0 ug/g 1 96 70 130 toluene 1.0 ug/g 1 97 70 130 trans-1,3-dichloropropene 0.9 ug/g 1 95 70 130 2-hexanone 0.7 ug/g 1 95 70 130 1,1,2-trichloroethane 1.0 ug/g 1 99 70 130 1,3-dichloropropane 1.1 ug/g 1 99 70 130 tetrachloroethene 0.9 ug/g 1 99 70 130 1,3-dichloropropane 1.1 ug/g 1 108 70 130 dibromochloromethane 1.0 ug/g 1 108 70 130 tetrachloroethene 0.9 ug/g 1 94 70 130 dibromochloromethane 1.0 ug/g 1 103 70 130 chlorobenzene 1.1 ug/g 1 105 70 130 chlorobenzene 1.0 ug/g 1 105 70 130 ethylbenzene 0.9 ug/g 1 106 70 130													1	30
1,4-dioxane < 2.5													4	30
dibromomethane 1.0 ug/g 1 101 70 130 4-methyl-2-pentanone (MIBK) 0.8 ug/g 1 85 70 130 cis-1,3-dichloropropene 1.0 ug/g 1 96 70 130 toluene 1.0 ug/g 1 97 70 130 trans-1,3-dichloropropene 0.9 ug/g 1 95 70 130 2-hexanone 0.7 ug/g 1 74 70 130 1,1,2-trichloroethane 1.0 ug/g 1 108 70 130 1,3-dichloropropane 1.1 ug/g 1 108 70 130 tetrachloroethene 0.9 ug/g 1 94 70 130 dibromochloromethane 1.0 ug/g 1 103 70 130 1,2-dibromoethane (EDB) 1.1 ug/g 1 105 70 130 chlorobenzene 1.0 ug/g 1 106 70 130 1,1,1,2-tetrachloroethane <			1.4-dioxane		<								16	30
4-methyl-2-pentanone (MIBK) 0.8 ug/g 1 85 70 130 cis-1,3-dichloropropene 1.0 ug/g 1 96 70 130 toluene 1.0 ug/g 1 97 70 130 trans-1,3-dichloropropene 0.9 ug/g 1 95 70 130 2-hexanone 0.7 ug/g 1 74 70 130 1,1,2-trichloroethane 1.0 ug/g 1 99 70 130 1,3-dichloropropane 1.1 ug/g 1 108 70 130 tetrachloroethene 0.9 ug/g 1 94 70 130 dibromochloromethane (EDB) 1.1 ug/g 1 103 70 130 chlorobenzene 1.0 ug/g 1 105 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 ethylbenzene 0.9 ug/g 1 91 70 130													1	30
cis-1,3-dichloropropene 1.0 ug/g 1 96 70 130 toluene 1.0 ug/g 1 97 70 130 trans-1,3-dichloropropene 0.9 ug/g 1 95 70 130 2-hexanone 0.7 ug/g 1 74 70 130 1,1,2-trichloroethane 1.0 ug/g 1 99 70 130 1,3-dichloropropane 1.1 ug/g 1 108 70 130 tetrachloroethene 0.9 ug/g 1 94 70 130 dibromochloromethane 1.0 ug/g 1 103 70 130 1,2-dibromoethane (EDB) 1.1 ug/g 1 105 70 130 chlorobenzene 1.0 ug/g 1 105 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 ethylbenzene 0.9 ug/g 1 91 70 130				IBK)									2	30
toluene 1.0 ug/g 1 97 70 130 trans-1,3-dichloropropene 0.9 ug/g 1 95 70 130 2-hexanone 0.7 ug/g 1 74 70 130 130 1,1,2-trichloroethane 1.0 ug/g 1 99 70 130 130 1,3-dichloropropane 1.1 ug/g 1 108 70 130 tetrachloroethene 0.9 ug/g 1 94 70 130 dibromochloromethane 1.0 ug/g 1 103 70 130 1,2-dibromoethane (EDB) 1.1 ug/g 1 103 70 130 chlorobenzene 1.0 ug/g 1 107 70 130 chlorobenzene 1.0 ug/g 1 105 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 ethylbenzene 0.9 ug/g 1 91 70 130				,									3	30
trans-1,3-dichloropropene 0.9 ug/g 1 95 70 130 2-hexanone 0.7 ug/g 1 74 70 130 1,1,2-trichloroethane 1.0 ug/g 1 99 70 130 1,3-dichloropropane 1.1 ug/g 1 108 70 130 tetrachloroethene 0.9 ug/g 1 94 70 130 dibromochloromethane 1.0 ug/g 1 103 70 130 1,2-dibromoethane (EDB) 1.1 ug/g 1 107 70 130 chlorobenzene 1.0 ug/g 1 105 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 ethylbenzene 0.9 ug/g 1 91 70 130													4	30
2-hexanone 0.7 ug/g 1 74 70 130 1,1,2-trichloroethane 1.0 ug/g 1 99 70 130 1,3-dichloropropane 1.1 ug/g 1 108 70 130 tetrachloroethene 0.9 ug/g 1 94 70 130 dibromochloromethane 1.0 ug/g 1 103 70 130 1,2-dibromoethane (EDB) 1.1 ug/g 1 107 70 130 chlorobenzene 1.0 ug/g 1 105 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 ethylbenzene 0.9 ug/g 1 91 70 130													5	30
1,1,2-trichloroethane 1.0 ug/g 1 99 70 130 1,3-dichloropropane 1.1 ug/g 1 108 70 130 tetrachloroethene 0.9 ug/g 1 94 70 130 dibromochloromethane 1.0 ug/g 1 103 70 130 1,2-dibromoethane (EDB) 1.1 ug/g 1 107 70 130 chlorobenzene 1.0 ug/g 1 105 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 ethylbenzene 0.9 ug/g 1 91 70 130													6	30
1,3-dichloropropane 1.1 ug/g 1 108 70 130 tetrachloroethene 0.9 ug/g 1 94 70 130 dibromochloromethane 1.0 ug/g 1 103 70 130 1,2-dibromoethane (EDB) 1.1 ug/g 1 107 70 130 chlorobenzene 1.0 ug/g 1 105 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 ethylbenzene 0.9 ug/g 1 91 70 130													2	30
tetrachloroethene 0.9 ug/g 1 94 70 130 dibromochloromethane 1.0 ug/g 1 103 70 130 1,2-dibromoethane (EDB) 1.1 ug/g 1 107 70 130 chlorobenzene 1.0 ug/g 1 105 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 ethylbenzene 0.9 ug/g 1 91 70 130													9	30
dibromochloromethane 1.0 ug/g 1 103 70 130 1,2-dibromoethane (EDB) 1.1 ug/g 1 107 70 130 chlorobenzene 1.0 ug/g 1 105 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 ethylbenzene 0.9 ug/g 1 91 70 130			• •										3	30
1,2-dibromoethane (EDB) 1.1 ug/g 1 107 70 130 chlorobenzene 1.0 ug/g 1 105 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 ethylbenzene 0.9 ug/g 1 91 70 130													10	30
chlorobenzene 1.0 ug/g 1 105 70 130 1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 ethylbenzene 0.9 ug/g 1 91 70 130													5	30
1,1,1,2-tetrachloroethane 1.1 ug/g 1 106 70 130 ethylbenzene 0.9 ug/g 1 91 70 130													2	30
ethylbenzene 0.9 ug/g 1 91 70 130													8	30
													9	30
			m&p-xylenes			2.0	ug/g ug/g	2	101		70	130	5	30
o-xylene 2.0 ug/g 2 101 70 130			· ·										7	30
,			=										7 7	30
styrene 1.1 ug/g 1 106 70 130 bromoform 0.8 ug/g 1 85 70 130													7 15	30

Method	QC ID	Parameter	Associated Sample	Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limit
SW5035A8260E	MLCSD4295	isopropylbenzene		0.9	ug/g	1	88	70	130	7	30
		1,1,2,2-tetrachloroethane		1.1	ug/g	1	108	70	130	5	30
		1,2,3-trichloropropane		1.1	ug/g	1	105	70	130	3	30
		n-propylbenzene		1.0	ug/g	1	101	70	130	1	30
		bromobenzene		1.1	ug/g	1	111	70	130	2	30
		1,3,5-trimethylbenzene		1.0	ug/g	1	99	70	130	1	30
		2-chlorotoluene		1.1	ug/g	1	109	70	130	11	30
		4-chlorotoluene		1.1	ug/g	1	110	70	130	11	30
		tert-butylbenzene		1.0	ug/g	1	96	70	130	0	30
		1,2,4-trimethylbenzene		1.0	ug/g	1	103	70	130	0	30
		sec-butylbenzene		0.9	ug/g	1	92	70	130	1	30
		1,3-dichlorobenzene		1.0	ug/g	1	103	70	130	0	30
		4-isopropyltoluene		0.9	ug/g	1	94	70	130	1	30
		1,4-dichlorobenzene		1.0	ug/g	1	103	70	130	1	30
		1,2-dichlorobenzene		1.1	ug/g	1	105	70	130	1	30
		n-butylbenzene		0.9	ug/g	1	93	70	130	1	30
		1,2-dibromo-3-chloroprop	ane	1.0	ug/g	1	104	70	130	11	30
		1,2,4-trichlorobenzene		0.9	ug/g	1	90	70	130	3	30
		1,3,5-trichlorobenzene		0.9	ug/g	1	87	70	130	0	30
		hexachlorobutadiene		0.9	ug/g	1	93	70	130	1	30
		naphthalene		1.0	ug/g	1	96	70	130	3	30
		1,2,3-trichlorobenzene		0.9	ug/g	1	90	70	130	2	30
		dibromofluoromethane St	JR	97	%			78	114		
		toluene-D8 SUR		99	%			88	110		
		4-bromofluorobenzene St	JR	95	%			86	115		
		a,a,a-trifluorotoluene SUF	₹	96	%			70	130		

Method	QC ID	Parameter	Associated Sample		Result	Units A	Amt Added	%R	L	imits	F	RPD	RPD Limit
SW3540C8082A	BLK4297	PCB-1016		<	0.0	ug/g							
		PCB-1221		<	0.0	ug/g							
		PCB-1232		<	0.0	ug/g							
		PCB-1242		<	0.0	ug/g							
		PCB-1248		<	0.0	ug/g							
		PCB-1254		<	0.0	ug/g							
		PCB-1260		<	0.0	ug/g							
		tetrachloro-m-xylene SUR			65	%			30	150			
		decachlorobiphenyl SUR			84	%			30	150			
SW3540C8082A	LCS4297	PCB-1016			0.2	ug/g	0.2	79	40	140			
		PCB-1221		<	0.0	ug/g							
		PCB-1232		<	0.0	ug/g							
		PCB-1242		<	0.0	ug/g							
		PCB-1248		<	0.0	ug/g							
		PCB-1254		<	0.0	ug/g							
		PCB-1260			0.2	ug/g	0.2	95	40	140			
		tetrachloro-m-xylene SUR			59	%			30	150			
		decachlorobiphenyl SUR			86	%			30	150			
SW3540C8082A	LCSD4297	PCB-1016			0.1	ug/g	0.2	72	40	140		10	30
		PCB-1221		<	0.0	ug/g							
		PCB-1232		<	0.0	ug/g							
		PCB-1242		<	0.0	ug/g							
		PCB-1248		<	0.0	ug/g							
		PCB-1254		<	0.0	ug/g							
		PCB-1260			0.2	ug/g	0.2	92	40	140		3	30
		tetrachloro-m-xylene SUR			54	%			30	150			
		decachlorobiphenyl SUR			80	%			30	150			
SW3550B8100m	BI K//200	TPH C10-C36		<	200	ug/g							
7W3330B0100II	I DLINAZJO	2-fluorobiphenyl SUR		`	92	ug/g %			40	140			
		o-terphenyl SUR			98	%			40	140			
SW3550B8100m	n DUP4299	TPH C10-C36	21855-002		11000	ug/g					200		20
		2-fluorobiphenyl SUR	21855-002		103	%			40	140			
		o-terphenyl SUR	21855-002		83	%			40	140			
SW3550B8100m	LCS4299	TPH C10-C36			2300	ug/g	2500	90	40	140			
		2-fluorobiphenyl SUR			105	%			40	140			
		o-terphenyl SUR			111	%			40	140			
SW3550B8100m	n MS4299	TPH C10-C36	21855-002		12000	ug/g	3056.6	378	* 40	140			
		2-fluorobiphenyl SUR	21855-002		50	%			40	140			
		o-terphenyl SUR	21855-002		86	%			40	140			

Method QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Lir	nits	RPD	RPD Limit
SW3550B8270D BLK4298	naphthalene		<	0.50	ug/g					
	2-methylnaphthalene		<	0.50	ug/g					
	acenaphthylene		<	0.50	ug/g					
	acenaphthene		<	0.50	ug/g					
	dibenzofuran		<	0.50	ug/g					
	fluorene		<	0.50	ug/g					
	phenanthrene		<	0.50	ug/g					
	anthracene		<	0.50	ug/g					
	fluoranthene		<	0.50	ug/g					
	pyrene		<	0.50	ug/g					
	benzo(a)anthracene		<	0.50	ug/g					
	chrysene		<	0.50	ug/g					
	benzo(b)fluoranthene		<	0.50	ug/g					
	benzo(k)fluoranthene		<	0.50	ug/g					
	benzo(a)pyrene		<	0.50	ug/g					
	indeno(1,2,3-cd)pyrene		<	0.50	ug/g					
	dibenzo(a,h)anthracene		<	0.50	ug/g					
	benzo(g,h,i)perylene		<	0.50	ug/g					
	2-fluorobiphenyl SUR			88	%		43	116		
	o-terphenyl SUR			86	%		33	141		
SW3550B8270D DUP4298	naphthalene	21886-006	<	0.49	ug/g					30
	2-methylnaphthalene	21886-006	<	0.49	ug/g					30
	acenaphthylene	21886-006	<	0.49	ug/g					30
	acenaphthene	21886-006	<	0.49	ug/g					30
	dibenzofuran	21886-006	<	0.49	ug/g					30
	fluorene	21886-006	<	0.49	ug/g					30
	phenanthrene	21886-006	<	0.49	ug/g					30
	anthracene	21886-006	<	0.49	ug/g					30
	fluoranthene	21886-006	<	0.49	ug/g					30
	pyrene	21886-006	<	0.49	ug/g					30
	benzo(a)anthracene	21886-006	<	0.49	ug/g					30
	chrysene	21886-006	<	0.49	ug/g					30
	benzo(b)fluoranthene	21886-006	<	0.49	ug/g					30
	benzo(k)fluoranthene	21886-006	<	0.49	ug/g					30
	benzo(a)pyrene	21886-006	<	0.49	ug/g					30
	indeno(1,2,3-cd)pyrene	21886-006	<	0.49	ug/g					30
	dibenzo(a,h)anthracene	21886-006	<	0.49	ug/g					30
	benzo(g,h,i)perylene	21886-006	<	0.49	ug/g					30
	2-fluorobiphenyl SUR	21886-006		86	%		43	116		
	o-terphenyl SUR	21886-006		86	%		33	141		

Method QC ID	Parameter	Associated Sample	Result	Units A	Amt Added	%R	Li	mits	RPD	RPD Limi
SW3550B8270D LCS4298	naphthalene		3.4	ug/g	4	84	40	140		
	2-methylnaphthalene		3.6	ug/g	4	91	40	140		
	acenaphthylene		3.6	ug/g	4	91	40	140		
	acenaphthene		3.4	ug/g	4	85	40	140		
	dibenzofuran		< 0.50	ug/g						
	fluorene		3.5	ug/g	4	86	40	140		
	phenanthrene		3.2	ug/g	4	81	40	140		
	anthracene		3.6	ug/g	4	90	40	140		
	fluoranthene		3.5	ug/g	4	88	40	140		
	pyrene		4.3	ug/g	4	108	40	140		
	benzo(a)anthracene		3.9	ug/g	4	96	40	140		
	chrysene		3.8	ug/g	4	95	40	140		
	benzo(b)fluoranthene		4.4	ug/g	4	111	40	140		
	benzo(k)fluoranthene		3.3	ug/g	4	82	40	140		
	benzo(a)pyrene		3.5	ug/g	4	87	40	140		
	indeno(1,2,3-cd)pyrene		3.3	ug/g	4	83	40	140		
	dibenzo(a,h)anthracene		3.2	ug/g	4	79	40	140		
	benzo(g,h,i)perylene		3.3	ug/g	4	83	40	140		
	2-fluorobiphenyl SUR		87	%			43	116		
	o-terphenyl SUR		88	%			33	141		
SW3550B8270D MS4298	naphthalene	21886-006	3.5	ug/g	4.08	84	40	140		
	2-methylnaphthalene	21886-006	3.5	ug/g	4.08	86	40	140		
	acenaphthylene	21886-006	3.9	ug/g	4.08	96	40	140		
	acenaphthene	21886-006	3.7	ug/g	4.08	91	40	140		
	dibenzofuran	21886-006	< 0.51	ug/g						
	fluorene	21886-006	3.6	ug/g	4.08	88	40	140		
	phenanthrene	21886-006	3.5	ug/g	4.08	86	40	140		
	anthracene	21886-006	3.5	ug/g	4.08	85	40	140		
	fluoranthene	21886-006	3.4	ug/g	4.08	85	40	140		
	pyrene	21886-006	4.3	ug/g	4.08	104	40	140		
	benzo(a)anthracene	21886-006	3.8	ug/g	4.08	93	40	140		
	chrysene	21886-006	3.9	ug/g	4.08	95	40	140		
	benzo(b)fluoranthene	21886-006	4.0	ug/g	4.08	97	40	140		
	benzo(k)fluoranthene	21886-006	3.5	ug/g	4.08	87	40	140		
	benzo(a)pyrene	21886-006	3.6	ug/g	4.08	87	40	140		
	indeno(1,2,3-cd)pyrene	21886-006	2.8	ug/g	4.08	68	40	140		
	dibenzo(a,h)anthracene	21886-006	2.6	ug/g	4.08	64	40	140		
	benzo(g,h,i)perylene	21886-006	2.7	ug/g	4.08	65	40	140		
	2-fluorobiphenyl SUR	21886-006	89	%			43	116		
	o-terphenyl SUR	21886-006	81	%			33	141		

Method	QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Liı	mits	RPD	RPD Limit
SW3051A60	10C BLK4310	Silver		<	0.25	ug/g						
		Arsenic		<	0.50	ug/g						
		Barium		<	2.5	ug/g						
		Cadmium		<	0.20	ug/g						
		Chromium		<	2.5	ug/g						
		Copper		<	2.5	ug/g						
		Nickel		<	2.5	ug/g						
		Lead		<	0.50	ug/g						
		Selenium		<	2.5	ug/g						
		Zinc		<	2.5	ug/g						
SW3051A60	10C DUP4310	Lead	21906-011		4.9	ug/g					9	35
SW7471B	BLK4308	Mercury		<	0.02	ug/g						
SW7471B	CRM4308	Mercury			1.6	ug/g	1.1		0.49	1.76		
SW7471B	CRMD4308	Mercury			1.3	ug/g	1.1		0.49	1.76	20	20
SW7471B	MS4308	Mercury	21879-002		0.61	ug/g	0.406	110	75	125		
SW7471B	MSD4308	Mercury	21879-002		0.66	ug/g	0.406	121	75	125	7	35
SW7471B	REP4308	Mercury	21879-002									

QSD-01 Revision 12/23/10	RECORD	CUSTODY	*Date Needed	Standard (10 Business Days)	TAT REQUESTED Priority (24 hr)*	V 11 CA-7	1 1	1 09 CA-T	08 CA-	07 CA-7	-1	- CA-7	104 4-71	03 CA-T	1 02 CA-S	2/886-01 CA-S	Sample FI		، }	Invoice To:	Phone #:	· '	TT-6 M	Company Name: (REDEX	Б	Absolute Resource
Relinquished by:	Relinquished by	Relinquished by	☐ HARD CO			10-18/2	4	P-162	マージィ	2 11-0	P-13 2	P-11 2	2-10 2	P-8 2	35-2 1	55-1 1	# CONTAIN		Fatte) - -	2-2+2	31Donnoll	lain St.	E Assoc	ssociate	Resour
by:	by.	by Sampler C	☐ HARD COPY REQUIRED	REPORTING INSTRUCTIONS	See absoluteresourceassociates.com for sample acceptance policy and current accreditation lists.	4										×	SOLID OTHER	Matrix P	SN		225		west	OC14755	es Compo	G /
	,	M	☐ FAX (FAX#)		SPEC	-											HNO ₃ H ₂ SO ₄ NaOH	Preservation Method	PO#	Quote #	Reporting Limits:	Protocol:	Projec	,	abs	
		l.		PDF (e-mail address)	SPECIAL INSTRUCTIONS 500-WIFLELDS									X		6/28/1	MeOH OTHER (Specify)	Method		#	ting QAPP EPA DW	∞l: RCRA MCP	10001086 Project Location: (N) MA ME	ame:	oluteresourcea	124 Heritage Avenue #10 Portsmouth, NH 03801 603-436-2001
Date	Date) Johonnell	TONS	1448	Sub!	170	2231	1550	1861	(22)	S 11	10 1/8	1628		DATE TIME	Sampling		- □ NH GREE/ODD	GW-1 S-1 Other	SDWA NPDES NHDES OTHER	5	. 5	absoluteresourceassociates.com	venue #10 VH 03801 2001
Time Receiv Way B	Time Rećeiv	Time Receiv	☐ OTHER (specify)	E)	×	X	×	X	X	X	Х.	X	X		ক্ট	SAMPLER VOC 8260 VOC 624 VPH MAD	□ V0	OC 8260 C 8TEX	OHM (es 🗆 Vo	C 8260				CHAIN-C
ceived by Laboratory: y Bill#:	Seived by	ceived by:		wedere		<u> </u>	(X	X	X	X	X			XX	X	X	□ VOC 524.3	2 🔲 V DRO 80	/OC 524 15 🗆 70ABN	.2 NH MEDF	List 🗆 G RO 🗆 EPI 25 🗀 ED	ases-List H MADEF B 504.1	, □ IbH Ei	ngerprint		V-OF-CUS ANALYSIS
atory:	0	Put		11c. Com		A											8082 PCB 08G 1664 0 pH 0 TSS 1	4 □ M BOD TDS □	Mineral (Co)&G S nducti) TVS	M5520F vily □ □ Alkal	Turbidity inity			LAKA	TODY RECORD REQUEST
						X	X	X	X	×	X	×	X				RCRA Mela Total Meta Dieserved Ammonia	ıls-list: Metals	PI -list:	> Zィ	ںے را	الار			vele beu	CORD
Date	Date	188/ n	TEMPERATURE	RECEIVED ON ICE													☐ T-Phospho ☐ Cyanide ☐ ☐ Nitrate ☐ ☐ Corrosivity ☐ TCLP Meta	Sulf Nitrite y D R	ide 🗆 e 🗆 Cl	Nitrat iloride CN (e + Nitrite : □ Sulfa □ Reactive	☐ Ortho	o P romide (*) F Ignitibility/FF)		21886
Time		/ /// Time		ICE XYES [] NO		4										<u>~</u>	Subcontract: Grab (G) or				Size □ TO	CLP Herb	icides			U1

QSD-01 Revision 12/23/10	RECORD	CUSTODY	*Date Needed	Standard (10 Business Days)	4 hr)* i (48 hr)*	TAT REQUESTED				1 1	W/C trials	15°CA-3	1 Charles	13 D-Keer	21886/2CA-TF	Sample Field ID ID ID	Lab	Invoice To:	Phone #207 -	The Boll Lio	Address:	Company Name:		Absolute Resource
Relinquished by:	Relinquished by:	Relinquished by Sampler:	☐ HARD CORY REQUIRED ☐	REPORTING INSTRUCTIONS	for sample acceptance policy and current accreditation lists.	See absoluteresourceassociates.com					lank !	X	-100) -	TP-)W-12 X	# CONTAIN WATER SOLID OTHER HCI HNO ₃	Matrix	Patter	272-2225	O'Donnel	ainst, Westbrak, Mi	ASSOCIATES	associates	Resource
		1/	FAX (FAX#)	PDF (e-mail address) -, odbruo (k		n SPECIAL INSTRUCTIONS	·					X 6/29			\times \(\lambda \) (/28)	H ₂ SO ₄ NaOH MeOH OTHER (Specify)	Preservation Method	Quote # PO #	Reporting QAPP Limits: EPA DW		Project Location: (ij) MA ME	Project Name:	absoluteresourceassociates.com	124 Heritage Avenue #10 Portsmouth, NH 03801 603-436-2001
Date Time	Date Time	a/2q/N NO	OTHER (specify).	A) LOWNORDS.	SCASS	SNOI						X 045 F401 11/18	、 で記る 	1535	7/11 - 1/20 X	TIME SAMPLER UVOC 8260	Sampling	Fund Pricing	<u>. ľ</u> .	S NPI	VT Other	さき	ssociates.com	
Received by Laboratory: Way Bill#:	Received by:	Receipted fift	specify) //	cradercilc.c.									×	×		□ VOC 624 □ VPH MADE □ VOC 524.2 ■ TPH □ D ■ 6270PAH ■ 8082 PCB □ 0&G 1664 □ PH □ E	P	MEGRO ☐ 0C 524.2 N 15 ☐ MEE 70ABN ☐ 181 Pesticic	GRO 8015 H List □ G DRO □ EP 625 □ ED des □ 608	Gases-List: H MADEP B 504.1 Pest/PCE	☐ TPH Fi	ngerprint		CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST
	V	2	TEMF	RECE											× ×	TSS TI RCRA Meta Total Metal Total Metal Ammonia T-Phosphot	s-Iist: Metals- D CC rus D Sulfi	Priority Po	Ilulant Meta	N i TON P/A 8a	cleria MPN	· · · ·	INIVERS BEDIEST	RECORD 21886
Date Time	Date Time	U/Date II:0]	EMPERATURE / S	RECEIVED ON ICE XXES □ NO					3							☐ Nitrate ☐ ☐ Corrosivily ☐ TCLP Meta Subcontract:	R	eactive CN TCLP VOC	☐ Reactiv	/e S- □ I SVOC □	gnitibility/FF TCLP Pestic)		86

PAGE 2 OF 2

ANALYTICAL REPORT

Lab Number: L1110998

Client: Absolute Resource Associates

124 Heritage Avenue Portsmouth, NH 03801

ATTN: Jane Borkland
Phone: (603) 436-2001
Project Name: Not Specified

Project Number: 21886 Report Date: 07/28/11

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: Not Specified Lab Number: L1110998

Project Number: 21886 Report Date: 07/28/11

 Alpha Sample ID
 Client ID
 Sample Location
 Collection Date/Time

 L1110998-01
 21886-07 (CA-TP-14)
 NH
 06/28/11 15:50

Project Name:Not SpecifiedLab Number:L1110998Project Number:21886Report Date:07/28/11

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Cli	lient Services at 800-624-9220.
--	---------------------------------

Sample Receipt

The samples were received at the laboratory above the required temperature range. The samples were transported to the laboratory in a cooler with ice and delivered directly from the sampling site.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Upabeth & Simmons Elizabeth Simmons

Authorized Signature:

Title: Technical Director/Representative

Date: 07/28/11

INORGANICS & MISCELLANEOUS

Project Name: Not Specified Lab Number: L1110998

Project Number: 21886 Report Date: 07/28/11

SAMPLE RESULTS

Lab ID: L1110998-01 Date Collected: 06/28/11 15:50

Client ID: 21886-07 (CA-TP-14) Date Received: 07/21/11 Sample Location: NH Field Prep: Not Specified

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lat)								
Solids, Total	92		%	0.10	NA	1	-	07/22/11 10:50	30,2540G	JC
Chromium, Hexavalent	4.5		mg/kg	0.87		1	07/24/11 14:00	07/24/11 18:00	1,7196A	JT

L1110998

Project Name: Lab Number:

Project Number: 21886 Report Date: 07/28/11

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab for sam	ple(s): 01	Batch:	: WG48	30802-1				
Chromium, Hexavalent	ND	mg/kg	0.80		1	07/24/11 14:00	07/24/11 18:00	1,7196A	JT

Lab Control Sample Analysis Batch Quality Control

Lab Number:

L1110998 07/28/11 Report Date:

Not Specified 21886 Project Number: Project Name:

LCSD "Recovery	Qual "Recovery Qual Limits RPD Qual RPD Limits
rcs	%Recovery
	Parameter

General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG480802-2

20 80-120 100 Chromium, Hexavalent

Matrix Spike Analysis Batch Quality Control

Lab Number:

Project Name:

L1110998 07/28/11 Report Date: Not Specified 21886 Project Number:

Parameter	Native Sample	MS Added	MS Found	MS MS MSD MSD Found %Recovery Qual Found	Oual F	MSD Found	MSD Recovery RPD Anal Limits RPD Anal Limits	Rec ual Li	Recovery Limits	מוס טוא	RPD al Limits
				•	5		T (in the second)			3	
General Chemistry - Westborough Lab Associated sample	igh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG480802	4- QC	e(s): 01 QC Batch ID: WG480802-4 QC Sample: L1110998-01 Client ID: 21886-07 (CA-TP-14	98-01 (Client ID:	21886-0	7 (CA-TP-14
Chromium, Hexavalent	4.5	1150	1100	96			•	75	75-125		20

Lab Duplicate Analysis Batch Quality Control

L1110998 07/28/11 Lab Number: Report Date:

Not Specified 21886 Project Number: Project Name:

Parameter	Native Sample	Duplicate Sa	Duplicate Sample Units	RPD	Qual	RPD Qual RPD Limits
General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG480548-1 QC Sample: L1110980-01 Client ID: DUP Sample	e(s): 01 QC Batch ID:	WG480548-1	QC Sample: L11	10980-01 Clic	ent ID: DU	P Sample
Solids, Total	39	40	%	က		20
General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG480802-3 QC Sample: L1110998-01 Client ID: 21886-07 (CA-TP-14)	e(s): 01 QC Batch ID:	WG480802-3	QC Sample: L11	10998-01 Clie	ent ID: 218	86-07 (CA-TP-14)
Chromium, Hexavalent	4.5	4.3	mg/kg	2		20

Project Name: Lab Number: L1110998 Not Specified

Project Number: 21886 **Report Date:** 07/28/11

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

Α Absent

Container Information Temp deg C Pres Seal **Container ID Container Type** Analysis(*) Cooler рΗ

L1110998-01A Amber 120ml unpreserved Α N/A 8 Υ Absent TS(7),HEXCR-7196(30)

Project Name:Not SpecifiedLab Number:L1110998Project Number:21886Report Date:07/28/11

GLOSSARY

Acronyms

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

 Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: Data Usability Report

Project Name:Not SpecifiedLab Number:L1110998Project Number:21886Report Date:07/28/11

Data Qualifiers

than 5x the RL. (Metals only.)

 \boldsymbol{R} — Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

J - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

ND - Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Serial_No:07281111:15

Project Name: Not Specified Lab Number: L1110998

Project Number: 21886 Report Date: 07/28/11

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IIIA, 1997.

30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised June 7, 2011 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held.

For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. Organic Parameters: Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB), 1,4-Dioxane (Mod 8270). Microbiology Parameters: Total Coliform-MF mEndo (SM9222B), Total Coliform – Colilert (SM9223 P/A), E. Coli. – Colilert (SM9223 P/A), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D))

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, TPH (HEM/SGT), Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH. Microbiology Parameters: Total Coliform – MF mEndo (SM9222B), Total Coliform – MTF (SM9221B), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform – A-1 Broth (SM9221E).)

Solid Waste/Soil (Inorganic Parameters: pH, Sulfide, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), SPLP Leach (1312 metals only), Reactivity. Organic Parameters: PCBs, PCBs in Oil, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9222D, 9223B, EPA 180.1, 353.2, SM2130B, 2320B, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B, 4500NO3-F, EPA 200.7, EPA 200.8, 245.1, EPA 300.0. Organic Parameters: 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, SM2320B, 2510B, 2540C, 2540D, 426C, 4500Cl-D, 4500Cl-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NH3-H, 4500NO3-F, 4500P-B, 4500P-E, 5210B, 5220D, 5310C, EPA 200.7, 200.8, 245.1. Organic Parameters: 608, 624, ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Solid Waste/Soil (Organic Parameters: ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water (Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate); (EPA 353.2 for: Nitrate-N, Nitrite-N); (SM4500NO3-F for: Nitrate-N and Nitrite-N); 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C, SM4500H-B. Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics); (504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), EPA 332. Microbiology Parameters: SM9215B; ENZ. SUB. SM9223; ColilertQT SM9223B; MF-SM9222D.)

Non-Potable Water (Inorganic Parameters:, (EPA 200.8 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn); (EPA 200.7 for: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl, V,Zn); 245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics),(608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCBs-Water), (EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables), 600/4-81-045-PCB-Oil. Microbiology Parameters: (ColilertQT SM9223B;Enterolert-QT: SM9222D-MF.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. *NELAP Accredited.*Drinking Water (Inorganic Parameters: SM 9222B, 9223B, 9215B, EPA 200.7, 200.8, 245.2, 300.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 332.0. Organic Parameters: 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 3005A, 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1, 1664A, SW-846 9010, 9030, 9040B, 9050A, SM426C, SM2120B, 2310B, 2320B, 2540B, 2540D, 4500H+B, 4500CL-E, 4500CN-E, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 5220D, 2510B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. Organic Parameters: SW-846 3510C, 5030B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A, 8151A.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6010B, 7196A, 7471A, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040B, 9045C, 9050C, 9065,1311, 1312, 3005A, 3050B. Organic Parameters: SW-846 3540C, 3546, 3580A, 5030B, 5035, 8260B, 8270C, 8330, 8151A, 8015B, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500CN-CE, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 200.8, 245.2, 2540C, SM2120B, 2320B, 2510B, 5310C, SM4500H-B. Organic Parameters: EPA 332, 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.4, SM5220D, 4500Cl-E, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM510ABC, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, 9222D, 9221B, 9221C, 9221E, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, 350.2, SW-846 1312, 6020, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, 4500CN-CE, EPA 245.1, 245.2, SW-846 9040B, 3005A, EPA 6010B, 7196A, SW-846 9010B, 9030B. Organic Parameters: SW-846 8260B, 8270C, 8270C-SIM, 3510C, EPA 608, 624, 625, SW-846 3630C, 5030B, 8081A, 8082, 8151A, 8330, NJ OQA-QAM-025 Rev.7, NJ EPH.)

Solid & Chemical Materials (Inorganic Parameters: SW-846, 6010B, 7196A, 9010B, 9030B, 1010, 1030, 1311, 1312, 3005A, 3050B, 7471A, 9014, 9012A, 9040B, 9045C, 9050A, 9065. Organic Parameters: SW-846 8015B, 8081A, 8082, 8151A, 8330, 8260B, 8270C, 8270C-SIM, 3540C, 3545, 3546, 3550B, 3580A, 3630C, 5030B, 5035L, 5035H, NJ OQA-QAM-025 Rev.7, NJ EPH.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500H-B, 4500NO3-F, 2540C, SM 2510B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, 5310C, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, SM4500CL-E, 4500F-C, SM15 426C, EPA 350.1, SM4500NH3-BH, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-04-1-C, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, SM3500Cr-D, EPA 245.1, 245.2, 7470A, SM2120B, LACHAT 10-204-00-1-A, EPA 9040B, SM4500-HB, EPA 1664A, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 9010B, 9030B.. Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, EPA 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: 1010, 1030, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 1312, 3005A, 3050B, 9010B, 9030B. Organic Parameters: EPA 8260B, 8270C, 8015B, 8081A, 8151A, 8330, 8082, 3540C, 3545, 3546, 3580, 5030B, 5035.)

North Carolina Department of the Environment and Natural Resources <u>Certificate/Lab ID</u>: 666. <u>Organic</u> Parameters: MA-EPH, MA-VPH.

Pennsylvania Department of Environmental Protection <u>Certificate/Lab ID</u>: 68-03671. *NELAP Accredited. Drinking Water* (Organic Parameters: EPA 524.2)

Non-Potable Water (Inorganic Parameters: EPA 1312. Organic Parameters: EPA 3510C, 5030B, 625, 624, 608, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Solid & Hazardous Waste (Inorganic Parameters: EPA 350.1, 1010, 1030, 1311, 1312, 3050B, 6010B, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065, SM 4500NH3-H. Organic Parameters: 3540C, 3545, 3546, 3550B,

3580A, 3630C, 5035, 8015B, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Rhode Island Department of Health <u>Certificate/Lab ID</u>: LAO00065. *NELAP Accredited via NY-DOH.*Refer to MA-DEP Certificate for Potable and Non-Potable Water.
Refer to NJ-DEP Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality <u>Certificate/Lab ID</u>: T104704476-09-1. **NELAP Accredited.** Non-Potable Water (<u>Inorganic Parameters</u>: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 376.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540D, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. Organic Parameters: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Department of Defense Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: EPA 200.7, 200.8, 6010B, 6020, 245.1, 245.2, 7470A, 9040B, 300.0, 332.0, 6860, 353.2, 410.4, 9060, 1664A, SM 4500CN-E, 4500H-B, 4500NO3-F, 5220D, 5310C, 2320B, 2540C, 3005A, 3015, 9010B, 9056. Organic Parameters: EPA 8260B, 8270C, 8330A, 625, 8082, 8081A, 3510C, 5030B, MassDEP EPH, MassDEP VPH.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010B, 7471A, 9010, 9012A, 6860, 1311, 1312, 3050B, 7196A, 9010B, 3500-CR-D, 4500CN-CE, 2540G, Organic Parameters: EPA 8260B, 8270C, 8330A/B-prep, 8082, 8081A, 3540C, 3546, 3580A, 5035A, MassDEP EPH, MassDEP VPH.)

The following analytes are not included in our current NELAP/TNI Scope of Accreditation:

EPA 8260B: Freon-113, 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). **EPA 625:** 4-Chloroaniline, 4-Methylphenol. Total Phosphorus in a soil matrix, Chloride in a soil matrix, TKN in a soil matrix, NO2 in a soil matrix, NO3 in a soil matrix, SO4 in a soil matrix.

RECORD QSD-01 Revision 12/23/10	CUSTODY	*Date Needed	TAT REQUESTED Priority (24 hr)* Expedited (48 hr)*	(H-77-14)	Lab Sample Field ID ID	Invoice To.	rial Bo:	Company Name:	I I₹ I
Relinquished by: Relinquished by: Relinquished by:	Relinquished by Sampler:	F C	See absoluteresourceassociates.com for sample acceptance policy and current accreditation lists.	ウサ + ×	# CONTAINERS WATER SOLID OTHER	chivester	or Kland	Sompany Name: Sompany Address: (formerly Resource laiss)	e Resource
Date Time	Date Ti	□ FAX (FAX#) Jane D OTHER (specify)		(w/28)n 1550	HCI HNO ₃ H ₂ SO ₄ NaOH MeOH OTHER (Specify) DATE TIME SAMPLER	d GH	5	Project #: 2 1886	124 Heritage Avenue #10 Portsmouth, NH 03801 603-436-2001 absoluteresourceassociates.com
Time Received by Laboratory: Way Bill#:	Time Received by:		time.		VOC 8260 VOC 9260 VOC 624 VOC 624 VOC 624 VOC 624 VOC 9242 VOC 524.2 VOC	MEGRO	VOC 8260 MADE VOC 8021 V	TPH Fingerprint	CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST AND ANALYSIS REQUEST
Date Time 7/2//11 /3:40 Date Time	Date Time	ŗ		×	☐ Cyanide ☐ Sulfide ☐ Nitrate ☐ Nitrate ☐ Nitrate ☐ Nitrite ☐ Corrosivity ☐ Rea ☐ TCLP Metals ☐ T ☐ Subcontract: ☐ TOC ☐ ☐ OCC	Chloride Sactive CN Reac	ulfate Bromic tive S- Igniti PSVOC TCL	le	PAGE 1 OF)

Absolute Resource associates

124 Heritage Avenue #10 Portsmouth, NH 03801

Rick Vandenberg
CREDERE Associates
776 Main Street
Westbrook, ME 04092

PO Number: 10001086

Job ID: 21906

Date Received: 7/1/11

Project: POLYCLAD 10001086

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

Sue Sylvester

Principal, General Manager

Date of Approval: 7/14/2011

Total number of pages: 50

Absolute Resource Associates Certifications

New Hampshire 1732 Massachusetts M-NH902 Maine NH903

Lab ID: 21906

Sample Association Table

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
CA-3 2-4	Solid	6/29/2011 12:59	21906-001	
				Soil Digestion for ICP Analysis
				Silver in solids by 6010
				Arsenic in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Chromium in solids by 6010
				Copper in solids by 6010
				Mercury in solids by 7471
				Nickel in solids by 6010
				Lead in solids by 6010
				Selenium in solids by 6010
				Zinc in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
CA-2 6-8	Solid	6/29/2011 12:55	21906-002	1 ercent bry matter for dample date by SM2340B,0
				Soil Digestion for ICP Analysis
				Silver in solids by 6010
				Arsenic in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Chromium in solids by 6010
				Copper in solids by 6010
				Mercury in solids by 7471
				Nickel in solids by 6010
				Lead in solids by 6010
				Selenium in solids by 6010
				Zinc in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
CA-5 12-14	Solid	6/29/2011 17:10	21906-006	VOCs in solid by 8260 Petro & Haz Waste
CA-5 12-14	Solid	0/29/2011 17.10	21900-000	PCBs in soil by 8082
				TPH in solids by 8100
				•
				Acid & Base/Neutral Extractables in solid by 8270
				Soil Digestion for ICP Analysis
				Silver in solids by 6010
				Arsenic in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Chromium in solids by 6010
				Copper in solids by 6010
				Mercury in solids by 7471
				Nickel in solids by 6010
				Lead in solids by 6010
				Selenium in solids by 6010
				Zinc in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
CA-1 26-28	Solid	6/29/2011 15:56	21906-007	•
-			-	TPH in solids by 8100
				PAHs in solid by 8270
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
				VOGS III SUIIU DY OZOU FEITU & FIAZ WASIE

Lab ID: 21906

Sample Association Table

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
CA-4 10-12	Solid	6/29/2011 17:40	21906-008	
				PCBs in soil by 8082
				TPH in solids by 8100
				Acid & Base/Neutral Extractables in solid by 8270
				Soil Digestion for ICP Analysis
				Silver in solids by 6010
				Arsenic in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Chromium in solids by 6010
				Copper in solids by 6010
				Mercury in solids by 7471
				Nickel in solids by 6010
				Lead in solids by 6010
				Selenium in solids by 6010
				Zinc in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
CA-TP-9 6'	Solid	6/30/2011 15:45	21906-009	
				TPH in solids by 8100
				PAHs in solid by 8270
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
CA-TP-7A 10-12'	Solid	6/30/2011 17:30	21906-010	•
				TPH in solids by 8100
				PAHs in solid by 8270
				Solid Digestion for ICP Analysis
				Lead in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
CA-TP-12 1'	Solid	6/30/2011 13:15	21906-011	•
				Solid Digestion for ICP Analysis
				Lead in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
CA-TP-DUP-2	Solid	6/30/2011 0:00	21906-012	· , · · · · · · · · · · · · · · · · · · ·
-		-	· · · -	TPH in solids by 8100
				Percent Dry Matter for Sample Calc by SM2540B,G
				,,

Job ID: 21906

Sample#: 21906-002 **Sample ID**: CA-2 6-8

Sampled: 6/29/11 12:55	-	Quant		Instr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
acetone	< 3	3	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
t-butanol (TBA)	< 3	3	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
2-butanone (MEK)	< 0.4	0.4	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
tetrahydrofuran (THF)	< 0.6	0.6	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
1,4-dioxane	< 3	3	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.5	0.5	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
2-hexanone	< 0.6	0.6	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	15:29	SW5035A8260B

Job ID: 21906

Sample#: 21906-002 **Sample ID:** CA-2 6-8

Sampled: 6/29/11 12:55		Quant	I	Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7		SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B
Surrogate Recovery		Limits						
dibromofluoromethane SUR	79	78-114	%	1	LMM 7/6/11	4307 7		SW5035A8260B
toluene-D8 SUR	91	88-110	%	1	LMM 7/6/11	4307 7		SW5035A8260B
4-bromofluorobenzene SUR	95	86-115	%	1	LMM 7/6/11	4307 7		SW5035A8260B
a,a,a-trifluorotoluene SUR	115	70-130	%	1	LMM 7/6/11	4307 7	7/8/11 15:29	SW5035A8260B

Job ID: 21906

Sample#: 21906-006 **Sample ID:** CA-5 12-14

Sampled: 6/29/11 17:10	,	Quant	•	Instr Dil'n	Prep		Δna	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/8/11	16:00	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/8/11	16:00	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/8/11	16:00	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/8/11	16:00	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/8/11	16:00	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/8/11	16:00	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/8/11	16:00	SW5035A8260B
acetone	< 4	4	ug/g	1	LMM 7/6/11		7/8/11	16:00	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/8/11	16:00	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
t-butanol (TBA)	< 4	4	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
2-butanone (MEK)	< 0.4	0.4	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
tetrahydrofuran (THF)	< 0.7	0.7	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
1,4-dioxane	< 4	4	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.6	0.6	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
2-hexanone	< 0.7	0.7	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	16:00	SW5035A8260B

Job ID: 21906

Sample#: 21906-006 **Sample ID:** CA-5 12-14

Sampled: 6/29/11 17:10		Quant		Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch D	ate Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
Surrogate Recovery		Limits	3					
dibromofluoromethane SUR	82	78-114	%	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
toluene-D8 SUR	92	88-110	%	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
4-bromofluorobenzene SUR	95	86-115	%	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B
a,a,a-trifluorotoluene SUR	108	70-130	%	1	LMM 7/6/11	4307 7/8	/11 16:00	SW5035A8260B

Job ID: 21906

Sample#: 21906-007 **Sample ID:** CA-1 26-28

Sampled: 6/29/11 15:56	-	Quant		Instr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
acetone	< 4	4	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
t-butanol (TBA)	< 4	4	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
2-butanone (MEK)	< 0.4	0.4	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
tetrahydrofuran (THF)	< 0.7	0.7	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
1,4-dioxane	< 4	4	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.6	0.6	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
2-hexanone	< 0.7	0.7	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	18:06	SW5035A8260B

Job ID: 21906

Sample#: 21906-007 **Sample ID:** CA-1 26-28

Sampled: 6/29/11 15:56		Quant	I	Instr Dil'n	Prep		Analysis	3
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date Ti	me Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307		3:06 SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307		3:06 SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B
Surrogate Recovery		Limits						
dibromofluoromethane SUR	80	78-114	%	1	LMM 7/6/11	4307		3:06 SW5035A8260B
toluene-D8 SUR	90	88-110	%	1	LMM 7/6/11	4307		3:06 SW5035A8260B
4-bromofluorobenzene SUR	100	86-115	%	1	LMM 7/6/11	4307		3:06 SW5035A8260B
a,a,a-trifluorotoluene SUR	95	70-130	%	1	LMM 7/6/11	4307	7/8/11 18	3:06 SW5035A8260B

Job ID: 21906

Sample#: 21906-008 **Sample ID:** CA-4 10-12

Sampled: 6/29/11 17:40	-	Quant		Instr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
chloromethane	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
vinyl chloride	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
bromomethane	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
chloroethane	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
trichlorofluoromethane	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
diethyl ether	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
acetone	< 4	4	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
1,1-dichloroethene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
methylene chloride	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
carbon disulfide	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
trans-1,2-dichloroethene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
isopropyl ether (DIPE)	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
1,1-dichloroethane	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
t-butanol (TBA)	< 4	4	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
2-butanone (MEK)	< 0.5	0.5	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
2,2-dichloropropane	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
cis-1,2-dichloroethene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
chloroform	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
bromochloromethane	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
tetrahydrofuran (THF)	< 0.9	0.9	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
1,1,1-trichloroethane	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
1,1-dichloropropene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
carbon tetrachloride	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
1,2-dichloroethane	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
benzene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
trichloroethene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
1,2-dichloropropane	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
bromodichloromethane	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
1,4-dioxane	< 4	4	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
dibromomethane	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.8	8.0	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
cis-1,3-dichloropropene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
toluene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
trans-1,3-dichloropropene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
2-hexanone	< 0.9	0.9	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
1,1,2-trichloroethane	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
1,3-dichloropropane	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
tetrachloroethene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B
dibromochloromethane	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	18:35	SW5035A8260B

Job ID: 21906

Sample#: 21906-008 **Sample ID:** CA-4 10-12

Sampled: 6/29/11 17:40		Quant	ı	Instr Dil'n	Prep		Analysis	3
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date Ti	me Reference
1,2-dibromoethane (EDB)	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
chlorobenzene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
ethylbenzene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
m&p-xylenes	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
o-xylene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
styrene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
bromoform	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
isopropylbenzene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
1,2,3-trichloropropane	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
n-propylbenzene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
bromobenzene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
1,3,5-trimethylbenzene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
2-chlorotoluene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
4-chlorotoluene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
tert-butylbenzene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
1,2,4-trimethylbenzene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
sec-butylbenzene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
1,3-dichlorobenzene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
4-isopropyltoluene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
1,4-dichlorobenzene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
1,2-dichlorobenzene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
n-butylbenzene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
1,2,4-trichlorobenzene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
1,3,5-trichlorobenzene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
hexachlorobutadiene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307		3:35 SW5035A8260B
naphthalene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307		3:35 SW5035A8260B
1,2,3-trichlorobenzene	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B
Surrogate Recovery		Limits						
dibromofluoromethane SUR	80	78-114	%	1	LMM 7/6/11	4307		3:35 SW5035A8260B
toluene-D8 SUR	93	88-110	%	1	LMM 7/6/11	4307		3:35 SW5035A8260B
4-bromofluorobenzene SUR	98	86-115	%	1	LMM 7/6/11	4307		3:35 SW5035A8260B
a,a,a-trifluorotoluene SUR	108	70-130	%	1	LMM 7/6/11	4307	7/8/11 18	3:35 SW5035A8260B

Job ID: 21906

Sample#: 21906-009 **Sample ID**: CA-TP-9 6'

Sampled: 6/30/11 15:45	-	Quant		Instr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
acetone	< 2	2	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
2-butanone (MEK)	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
tetrahydrofuran (THF)	< 0.4	0.4	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.3	0.3	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
2-hexanone	< 0.4	0.4	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B

Job ID: 21906

Sample#: 21906-009 **Sample ID**: CA-TP-9 6'

Sampled: 6/30/11 15:45		Quant		Instr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 7/6/11		7/8/11	19:04	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
Surrogate Recovery		Limits	5						
dibromofluoromethane SUR	78	78-114	%	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
toluene-D8 SUR	93	88-110	%	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
4-bromofluorobenzene SUR	89	86-115	%	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B
a,a,a-trifluorotoluene SUR	98	70-130	%	1	LMM 7/6/11	4307	7/8/11	19:04	SW5035A8260B

Job ID: 21906

Sample#: 21906-010

Sample ID: CA-TP-7A 10-12'

Parameter	Sampled: 6/30/11 17:30		Quant		Instr Dil'n	Prep		Anal	ysis	
chloromethane < 0.1	Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
vinyl chloride < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B brommethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B chloroethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B diethyl ether < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B acetone < 2 2 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B acetone < 2 2 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B acetone distilific 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B acthyl Euly ether (MTBE) 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 </td <td>dichlorodifluoromethane</td> <td>< 0.1</td> <td>0.1</td> <td>ug/g</td> <td>1</td> <td>LMM 7/6/11</td> <td>4307</td> <td>7/11/11</td> <td>13:44</td> <td>SW5035A8260B</td>	dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
bromomethane	chloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
chloroethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B trichlorofluoromethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B diethyl ether < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 1,1-dichloroethene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B acthod losdifide < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B methyl E-butyl ether (MTBE) < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B isopropyl ether (DIPE) < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B isopropyl ether (ETBE) < 0.1 0.1 ug/g 1 LMM 7/6/11	vinyl chloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
trichlorofluoromethane < 0.1 ugg 1 LMM 7/6/11 4307 7/11/11 33.4 W5035A8260B diethly ether < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13.44 W5035A8260B acetone < 2 2 ug/g 1 LMM 7/6/11 4307 7/11/11 13.44 W5035A8260B 1,1-dichloroethene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13.44 SW5035A8260B methyle-budy ether (MTBE) < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13.44 SW5035A8260B trans-1,2-dichloroethene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13.44 SW5035A8260B trans-1,2-dichloroethene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13.44 SW5035A8260B try 1,1-dichloroethane < 0.1 0.1 ug/g 1 LMM 7/6/11	bromomethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
diethyl ether < 0.1 0.1 ugg 1 LMM 7/6/11 4307 7/11/11 33.44 SW5035A8260B acetone < 2	chloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
aceione	trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
1.1-dichloroethene	diethyl ether	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
methylene chloride < 0.1 ug/g 1 LMM 7/6/I1 4307 7/11/I1 13:44 SW5035A8260B carbon disulfide < 0.1	acetone	< 2	2	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
carbon disulfide < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13.44 SW5035A8260B methyl t-butyl ether (MTBE) < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13.44 SW5035A8260B trans-1,2-dichloroethene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13.44 SW5035A8260B isopropyl ether (DIPE) < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13.44 SW5035A8260B 1,1-dichloroethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13.44 SW5035A8260B 1,1-dichloroethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13.44 SW5035A8260B 2-butanol (MEK) < 0.2 0.2 ug/g 1 LMM 7/6/11 4307 7/11/11 13.44 SW5035A8260B 2,2-dichloropropane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13.44 SW5035A8260B	1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
methyl t-butyl ether (MTBE) < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B trans-1,2-dichloroethene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B isopropyl ether (DIPE) < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B thyl t-butyl ether (ETBE) < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 1,1-dichloroethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 2-butanol (TBA) < 2 2 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 2-butanol (MEK) < 0.2 0.2 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 2-dichloropropane < 0.1 0.1 ug/g 1 LMM 7/6/11<	methylene chloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
trans-1,2-dichloroethene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B isopropyl ether (DIPE) < 0.1	carbon disulfide	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
Sepropyl ether (DIPE)	methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
ethyl t-butyl ether (ETBE) < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 1,1-dichloroethane < 0.1	trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
1,1-dichloroethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B t-butanol (TBA) < 2 2 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 2-butanone (MEK) < 0.2 0.2 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 2,2-dichloropropane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B cis-1,2-dichloroethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B bromochloromethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B t-terhalydrofuran (THF) < 0.4 0.4 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 1,1-dichloropropane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 1,-dichloropr	isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
t-butanol (TBA) < 2 2 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 2-butanone (MEK) < 0.2	ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
2-butanone (MEK) < 0.2 0.2 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 2,2-dichloropropane < 0.1	1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
2,2-dichloropropane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B cis-1,2-dichloroethene < 0.1	t-butanol (TBA)	< 2	2	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
cis-1,2-dichloroethene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B chloroform < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B bromochloromethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B tetrahydrofuran (THF) < 0.4 0.4 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 1,1-trichloroethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 1,1-dichloropthane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 1,1-dichloropropene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 1,2-dichloropthane < 0.1 0.1 ug/g 1 LMM 7/6/11 <	2-butanone (MEK)	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
chloroform < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B bromochloromethane < 0.1	2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
bromochloromethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B tetrahydrofuran (THF) < 0.4 0.4 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 1,1,1-trichloroethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 1,1,1-trichloroethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 1,1-dichloropropene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 1,2-dichloropropene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 1,2-dichloropethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 1,2-dichloropropane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B br	cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
tetrahydrofuran (THF)	chloroform	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
1,1,1-trichloroethane < 0.1	bromochloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
1,1-dichloropropene < 0.1	tetrahydrofuran (THF)	< 0.4	0.4	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
t-amyl-methyl ether (TAME) < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B carbon tetrachloride < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 1,2-dichloroethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B benzene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B trichloroethene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B trichloropropane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B bromodichloromethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B bromodichloromethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 1,4-dioxane < 2 2 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B dibromomethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 4-methyl-2-pentanone (MIBK) < 0.3 0.3 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B cis-1,3-dichloropropene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B toluene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B	1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
carbon tetrachloride < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 1,2-dichloroethane < 0.1	1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
1,2-dichloroethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B benzene < 0.1	t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
benzene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B trichloroethene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 1,2-dichloropropane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B bromodichloromethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 1,4-dioxane < 2 2 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B dibromomethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 4-methyl-2-pentanone (MIBK) < 0.3 0.3 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B cis-1,3-dichloropropene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B toluene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B	carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
trichloroethene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 1,2-dichloropropane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B bromodichloromethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 1,4-dioxane < 2 2 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B dibromomethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 4-methyl-2-pentanone (MIBK) < 0.3 0.3 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B cis-1,3-dichloropropene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B toluene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B	1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
1,2-dichloropropane < 0.1	benzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
bromodichloromethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 1,4-dioxane < 2	trichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
1,4-dioxane < 2	1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
dibromomethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B 4-methyl-2-pentanone (MIBK) < 0.3	bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
4-methyl-2-pentanone (MIBK) < 0.3 0.3 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B cis-1,3-dichloropropene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B toluene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B	1,4-dioxane	< 2	2	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
cis-1,3-dichloropropene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B toluene < 0.1	dibromomethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
toluene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B	4-methyl-2-pentanone (MIBK)	< 0.3	0.3	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
	cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
	toluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
trans-1,3-dichloropropene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B	trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
2-hexanone < 0.4 0.4 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B	2-hexanone	< 0.4	0.4	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
1,1,2-trichloroethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B	1,1,2-trichloroethane	< 0.1	0.1		1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
1,3-dichloropropane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B	1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
tetrachloroethene < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B	tetrachloroethene	< 0.1	0.1		1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B
dibromochloromethane < 0.1 0.1 ug/g 1 LMM 7/6/11 4307 7/11/11 13:44 SW5035A8260B	dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	13:44	SW5035A8260B

Job ID: 21906

Sample#: 21906-010

Sample ID: CA-TP-7A 10-12'

Sampled: 6/30/11 17:30		Quant		Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Da	ate Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
Surrogate Recovery		Limits	6					
dibromofluoromethane SUR	85	78-114	%	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
toluene-D8 SUR	91	88-110	%	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
4-bromofluorobenzene SUR	94	86-115	%	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B
a,a,a-trifluorotoluene SUR	98	70-130	%	1	LMM 7/6/11	4307 7/1	1/11 13:44	SW5035A8260B

Job ID: 21906

Sample#: 21906-011 **Sample ID**: CA-TP-12 1'

Sampled: 6/30/11 13:15	-	Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
acetone	< 2	2	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
2-butanone (MEK)	< 0.2	0.2	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
tetrahydrofuran (THF)	< 0.4	0.4	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.3	0.3	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
2-hexanone	< 0.4	0.4	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307	7/11/11	14:16	SW5035A8260B

Job ID: 21906

Sample#: 21906-011 **Sample ID**: CA-TP-12 1'

Sampled: 6/30/11 13:15		Quant		Instr Dil'n	Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1		SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1		SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
Surrogate Recovery		Limits	6					
dibromofluoromethane SUR	84	78-114	%	1	LMM 7/6/11	4307 7/11/1		SW5035A8260B
toluene-D8 SUR	90	88-110	%	1	LMM 7/6/11	4307 7/11/1		SW5035A8260B
4-bromofluorobenzene SUR	96	86-115	%	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B
a,a,a-trifluorotoluene SUR	91	70-130	%	1	LMM 7/6/11	4307 7/11/1	1 14:16	SW5035A8260B

Job ID: 21906

Sample#: 21906-006 **Sample ID:** CA-5 12-14

Sampled: 6/29/11 17:10		Quant		Instr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
N-nitrosodimethylamine	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
aniline	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
phenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
2-chlorophenol	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
bis(2-chloroethyl)ether	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
1,3-dichlorobenzene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
1,4-dichlorobenzene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
1,2-dichlorobenzene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
benzyl alcohol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
2-methylphenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
bis(2-chloroisopropyl) ether	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
hexachloroethane	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
N-nitroso-di-N-propylamine	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
4-methylphenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
nitrobenzene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
isophorone	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
2-nitrophenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
2,4-dimethylphenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
bis(2-chloroethoxy)methane	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
2,4-dichlorophenol	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
1,2,4-trichlorobenzene	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
naphthalene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
benzoic acid	< 6	6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
4-chloroaniline	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
hexachlorobutadiene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
4-chloro-3-methylphenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
2-methylnaphthalene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
hexachlorocyclopentadiene	< 1	1	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
2,4,6-trichlorophenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
2,4,5-trichlorophenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
2-chloronaphthalene	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
2-nitroaniline	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
acenaphthylene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
dimethylphthalate	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
2,6-dinitrotoluene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
2,4-dinitrotoluene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
acenaphthene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
3-nitroaniline	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
2,4-dinitrophenol	< 6	6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
dibenzofuran	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
4-nitrophenol	< 2	2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
fluorene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
diethyl phthalate	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D

Job ID: 21906

Sample#: 21906-006 **Sample ID:** CA-5 12-14

Sampled: 6/29/11 17:10		Quant	[Instr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
4-chlorophenyl phenyl ether	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
4-nitroaniline	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
4,6-dinitro-2-methylphenol	< 2	2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
azobenzene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
N-nitrosodiphenylamine	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
4-bromophenyl phenyl ether	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
hexachlorobenzene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
pentachlorophenol	< 1	1	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
phenanthrene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
anthracene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
carbazole	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
di-n-butylphthalate	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
fluoranthene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
benzidine	< 4	4	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
pyrene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
butyl benzyl phthalate	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
benzo(a)anthracene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
chrysene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
3,3'-dichlorobenzidine	< 4	4	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
bis(2-ethylhexyl)phthalate	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
di-n-octyl phthalate	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
benzo(b)fluoranthene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
benzo(k)fluoranthene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
benzo(a)pyrene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
indeno(1,2,3-cd)pyrene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
dibenzo(a,h)anthracene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
benzo(g,h,i)perylene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
Surrogate Recovery		Limits	5						
2-fluorophenol SUR	53	21-100	%	1	AJD 7/6/11		7/9/11	16:04	SW3546/8270D
phenol-D5 SUR	60	10-102	%	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
2,4,6-tribromophenol SUR	27	10-123	%	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
nitrobenzene-D5 SUR	47	35-114	%	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D
2-fluorobiphenyl SUR	61	43-116	%	1	AJD 7/6/11		7/9/11	16:04	SW3546/8270D
p-terphenyl-D14 SUR	67	33-141	%	1	AJD 7/6/11	4314	7/9/11	16:04	SW3546/8270D

Job ID: 21906

Sample#: 21906-007 **Sample ID:** CA-1 26-28

Sampled: 6/29/11 15:56		Quant	ı	Instr Dil'n	Prep	Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	16:25	SW3550B8270D
2-methylnaphthalene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	16:25	SW3550B8270D
acenaphthylene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	16:25	SW3550B8270D
acenaphthene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	16:25	SW3550B8270D
dibenzofuran	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	16:25	SW3550B8270D
fluorene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	16:25	SW3550B8270D
phenanthrene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	16:25	SW3550B8270D
anthracene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	16:25	SW3550B8270D
fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	16:25	SW3550B8270D
pyrene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	16:25	SW3550B8270D
benzo(a)anthracene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	16:25	SW3550B8270D
chrysene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	16:25	SW3550B8270D
benzo(b)fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	16:25	SW3550B8270D
benzo(k)fluoranthene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	16:25	SW3550B8270D
benzo(a)pyrene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	16:25	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	16:25	SW3550B8270D
dibenzo(a,h)anthracene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	16:25	SW3550B8270D
benzo(g,h,i)perylene	< 0.6	0.6	ug/g	1	AJD 7/7/11	4315 7/8/11	16:25	SW3550B8270D
Surrogate Recovery		Limits	s					
2-fluorobiphenyl SUR	78	43-116	%	1	AJD 7/7/11	4315 7/8/11	16:25	SW3550B8270D
o-terphenyl SUR	82	33-141	%	1	AJD 7/7/11	4315 7/8/11	16:25	SW3550B8270D

Job ID: 21906

Sample#: 21906-008 **Sample ID:** CA-4 10-12

Sampled: 6/29/11 17:40		Quant		Instr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
N-nitrosodimethylamine	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
aniline	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
phenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
2-chlorophenol	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
bis(2-chloroethyl)ether	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
1,3-dichlorobenzene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
1,4-dichlorobenzene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
1,2-dichlorobenzene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
benzyl alcohol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
2-methylphenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
bis(2-chloroisopropyl) ether	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
hexachloroethane	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
N-nitroso-di-N-propylamine	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
4-methylphenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
nitrobenzene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
isophorone	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
2-nitrophenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
2,4-dimethylphenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
bis(2-chloroethoxy)methane	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
2,4-dichlorophenol	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
1,2,4-trichlorobenzene	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
naphthalene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
benzoic acid	< 6	6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
4-chloroaniline	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
hexachlorobutadiene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
4-chloro-3-methylphenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
2-methylnaphthalene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
hexachlorocyclopentadiene	< 1	1	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
2,4,6-trichlorophenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
2,4,5-trichlorophenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
2-chloronaphthalene	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
2-nitroaniline	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
acenaphthylene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
dimethylphthalate	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
2,6-dinitrotoluene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
2,4-dinitrotoluene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
acenaphthene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
3-nitroaniline	< 0.2	0.2	ug/g	1	AJD 7/6/11		7/9/11	16:42	SW3546/8270D
2,4-dinitrophenol	< 6	6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
dibenzofuran	< 0.06	0.06	ug/g	1	AJD 7/6/11		7/9/11	16:42	SW3546/8270D
4-nitrophenol	< 2	2	ug/g	1	AJD 7/6/11		7/9/11	16:42	SW3546/8270D
fluorene	< 0.06	0.06	ug/g	1	AJD 7/6/11		7/9/11	16:42	SW3546/8270D
diethyl phthalate	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D

Job ID: 21906

Sample#: 21906-008 **Sample ID:** CA-4 10-12

Sampled: 6/29/11 17:40		Quant	[Instr Dil'n	Prep		Ana	llysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
4-chlorophenyl phenyl ether	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
4-nitroaniline	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
4,6-dinitro-2-methylphenol	< 2	2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
azobenzene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
N-nitrosodiphenylamine	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
4-bromophenyl phenyl ether	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
hexachlorobenzene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
pentachlorophenol	< 1	1	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
phenanthrene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
anthracene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
carbazole	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
di-n-butylphthalate	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
fluoranthene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
benzidine	< 4	4	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
pyrene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
butyl benzyl phthalate	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
benzo(a)anthracene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
chrysene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
3,3'-dichlorobenzidine	< 4	4	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
bis(2-ethylhexyl)phthalate	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
di-n-octyl phthalate	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
benzo(b)fluoranthene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
benzo(k)fluoranthene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
benzo(a)pyrene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
indeno(1,2,3-cd)pyrene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
dibenzo(a,h)anthracene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
benzo(g,h,i)perylene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
Surrogate Recovery		Limits	5						
2-fluorophenol SUR	48	21-100	%	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
phenol-D5 SUR	58	10-102	%	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
2,4,6-tribromophenol SUR	29	10-123	%	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
nitrobenzene-D5 SUR	48	35-114	%	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
2-fluorobiphenyl SUR	64	43-116	%	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D
p-terphenyl-D14 SUR	71	33-141	%	1	AJD 7/6/11	4314	7/9/11	16:42	SW3546/8270D

Job ID: 21906

Sample#: 21906-009 **Sample ID**: CA-TP-9 6'

Sampled: 6/30/11 15:45		Quant		Instr Dil'n	Prep	Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	19:34	SW3550B8270D
2-methylnaphthalene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	19:34	SW3550B8270D
acenaphthylene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	19:34	SW3550B8270D
acenaphthene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	19:34	SW3550B8270D
dibenzofuran	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	19:34	SW3550B8270D
fluorene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	19:34	SW3550B8270D
phenanthrene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	19:34	SW3550B8270D
anthracene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	19:34	SW3550B8270D
fluoranthene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	19:34	SW3550B8270D
pyrene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	19:34	SW3550B8270D
benzo(a)anthracene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	19:34	SW3550B8270D
chrysene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	19:34	SW3550B8270D
benzo(b)fluoranthene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	19:34	SW3550B8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	19:34	SW3550B8270D
benzo(a)pyrene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	19:34	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	19:34	SW3550B8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	19:34	SW3550B8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	19:34	SW3550B8270D
Surrogate Recovery		Limits	S					
2-fluorobiphenyl SUR	81	43-116	%	1	AJD 7/7/11	4315 7/8/11	19:34	SW3550B8270D
o-terphenyl SUR	86	33-141	%	1	AJD 7/7/11	4315 7/8/11	19:34	SW3550B8270D

Job ID: 21906

Sample#: 21906-010

Sample ID: CA-TP-7A 10-12'

Sampled: 6/30/11 17:30		Quant		Instr Dil'n	Prep	Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	15:43	SW3550B8270D
2-methylnaphthalene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	15:43	SW3550B8270D
acenaphthylene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	15:43	SW3550B8270D
acenaphthene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	15:43	SW3550B8270D
dibenzofuran	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	15:43	SW3550B8270D
fluorene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	15:43	SW3550B8270D
phenanthrene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	15:43	SW3550B8270D
anthracene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	15:43	SW3550B8270D
fluoranthene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	15:43	SW3550B8270D
pyrene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	15:43	SW3550B8270D
benzo(a)anthracene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	15:43	SW3550B8270D
chrysene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	15:43	SW3550B8270D
benzo(b)fluoranthene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	15:43	SW3550B8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	15:43	SW3550B8270D
benzo(a)pyrene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	15:43	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	15:43	SW3550B8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	15:43	SW3550B8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/g	1	AJD 7/7/11	4315 7/8/11	15:43	SW3550B8270D
Surrogate Recovery		Limits	S					
2-fluorobiphenyl SUR	77	43-116	%	1	AJD 7/7/11	4315 7/8/11	15:43	SW3550B8270D
o-terphenyl SUR	77	33-141	%	1	AJD 7/7/11	4315 7/8/11	15:43	SW3550B8270D

Job ID: 21906

Sample#: 21906-003 Sample ID: CA-CC-1

Matrix: Solid Percent Dry: 98% Results expressed on a dry weight basis.

Sampled: 6/30/11 12:00		Quant	I	nstr Dil'n	Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
PCB-1016	< 0.6	0.6	ug/g	20	JLZ 7/6/11	4305 7/11/11	12:47	SW3540C8082A
PCB-1221	< 0.6	0.6	ug/g	20	JLZ 7/6/11	4305 7/11/11	12:47	SW3540C8082A
PCB-1232	< 0.6	0.6	ug/g	20	JLZ 7/6/11	4305 7/11/11	12:47	SW3540C8082A
PCB-1242	< 0.6	0.6	ug/g	20	JLZ 7/6/11	4305 7/11/11	12:47	SW3540C8082A
PCB-1248	< 0.6	0.6	ug/g	20	JLZ 7/6/11	4305 7/11/11	12:47	SW3540C8082A
PCB-1254	< 0.6	0.6	ug/g	20	JLZ 7/6/11	4305 7/11/11	12:47	SW3540C8082A
PCB-1260	< 0.6	0.6	ug/g	20	JLZ 7/6/11	4305 7/11/11	12:47	SW3540C8082A
Surrogate Recovery		Limits	5					
tetrachloro-m-xylene SUR	DOR	30-150	%	20	JLZ 7/6/11	4305 7/11/11	12:47	SW3540C8082A
decachlorobiphenyl SUR	DOR	30-150	%	20	JLZ 7/6/11	4305 7/11/11	12:47	SW3540C8082A

DOR = Diluted out of range.

Note: Dilution due to matrix interference.

Sample#: 21906-004 Sample ID: CA-CC-DUP

Matrix: Solid Percent Dry: 78.9% Results expressed on a dry weight basis.

Sampled: 6/30/11 12:00		Quant	I	nstr Dil'n	Prep		Analy	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
PCB-1016	< 0.8	8.0	ug/g	20	JLZ 7/6/11	4305 7	7/11/11	14:50	SW3540C8082A
PCB-1221	< 0.8	8.0	ug/g	20	JLZ 7/6/11	4305 7	7/11/11	14:50	SW3540C8082A
PCB-1232	< 0.8	8.0	ug/g	20	JLZ 7/6/11	4305 7	7/11/11	14:50	SW3540C8082A
PCB-1242	< 0.8	8.0	ug/g	20	JLZ 7/6/11	4305 7	7/11/11	14:50	SW3540C8082A
PCB-1248	< 0.8	8.0	ug/g	20	JLZ 7/6/11	4305 7	7/11/11	14:50	SW3540C8082A
PCB-1254	< 0.8	8.0	ug/g	20	JLZ 7/6/11	4305 7	7/11/11	14:50	SW3540C8082A
PCB-1260	< 0.8	8.0	ug/g	20	JLZ 7/6/11	4305 7	7/11/11	14:50	SW3540C8082A
Surrogate Recovery		Limits	5						
tetrachloro-m-xylene SUR	DOR	30-150	%	20	JLZ 7/6/11	4305 7	7/11/11	14:50	SW3540C8082A
decachlorobiphenyl SUR	DOR	30-150	%	20	JLZ 7/6/11	4305 7	7/11/11	14:50	SW3540C8082A

DOR = Diluted out of range.

Note: Dilution due to matrix interference.

Job ID: 21906

Sample#: 21906-005 Sample ID: CA-CC-2

Matrix: Solid Percent Dry: 97.8% Results expressed on a dry weight basis.

Sampled: 6/30/11 12:15		Quant	I	nstr Dil'n	Prep	Aı	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
PCB-1016	< 0.6	0.6	ug/g	20	JLZ 7/6/11	4305 7/11/1	1 13:18	SW3540C8082A
PCB-1221	< 0.6	0.6	ug/g	20	JLZ 7/6/11	4305 7/11/1	1 13:18	SW3540C8082A
PCB-1232	< 0.6	0.6	ug/g	20	JLZ 7/6/11	4305 7/11/1	1 13:18	SW3540C8082A
PCB-1242	< 0.6	0.6	ug/g	20	JLZ 7/6/11	4305 7/11/1	1 13:18	SW3540C8082A
PCB-1248	< 0.6	0.6	ug/g	20	JLZ 7/6/11	4305 7/11/1	1 13:18	SW3540C8082A
PCB-1254	< 0.6	0.6	ug/g	20	JLZ 7/6/11	4305 7/11/1	1 13:18	SW3540C8082A
PCB-1260	< 0.6	0.6	ug/g	20	JLZ 7/6/11	4305 7/11/1	1 13:18	SW3540C8082A
Surrogate Recovery		Limits	3					
tetrachloro-m-xylene SUR	DOR	30-150	%	20	JLZ 7/6/11	4305 7/11/1	1 13:18	SW3540C8082A
decachlorobiphenyl SUR	DOR	30-150	%	20	JLZ 7/6/11	4305 7/11/1	1 13:18	SW3540C8082A

DOR = Diluted out of range.

Note: Dilution due to matrix interference.

Sample#: 21906-006 **Sample ID:** CA-5 12-14

Matrix: Solid Percent Dry: 77.6% Results expressed on a dry weight basis.

Sampled: 6/29/11 17:10		Quant	I	nstr Dil'n	Prep	Aı	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
PCB-1016	< 0.7	0.7	ug/g	20	JLZ 7/6/11	4305 7/11/1	1 14:19	SW3540C8082A
PCB-1221	< 0.7	0.7	ug/g	20	JLZ 7/6/11	4305 7/11/1	1 14:19	SW3540C8082A
PCB-1232	< 0.7	0.7	ug/g	20	JLZ 7/6/11	4305 7/11/1	1 14:19	SW3540C8082A
PCB-1242	< 0.7	0.7	ug/g	20	JLZ 7/6/11	4305 7/11/1	1 14:19	SW3540C8082A
PCB-1248	< 0.7	0.7	ug/g	20	JLZ 7/6/11	4305 7/11/1	1 14:19	SW3540C8082A
PCB-1254	< 0.7	0.7	ug/g	20	JLZ 7/6/11	4305 7/11/1	1 14:19	SW3540C8082A
PCB-1260	< 0.7	0.7	ug/g	20	JLZ 7/6/11	4305 7/11/1	1 14:19	SW3540C8082A
Surrogate Recovery		Limits	s					
tetrachloro-m-xylene SUR	DOR	30-150	%	20	JLZ 7/6/11	4305 7/11/1	1 14:19	SW3540C8082A
decachlorobiphenyl SUR	DOR	30-150	%	20	JLZ 7/6/11	4305 7/11/1	1 14:19	SW3540C8082A

DOR = Diluted out of range.

Note: Dilution due to matrix interference.

Job ID: 21906

Sample#: 21906-008 **Sample ID:** CA-4 10-12

Matrix: Solid Percent Dry: 81.4% Results expressed on a dry weight basis.

Sampled: 6/29/11 17:40		Quant	I	nstr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
PCB-1016	< 0.6	0.6	ug/g	20	JLZ 7/6/11	4305	7/11/11	13:48	SW3540C8082A
PCB-1221	< 0.6	0.6	ug/g	20	JLZ 7/6/11	4305	7/11/11	13:48	SW3540C8082A
PCB-1232	< 0.6	0.6	ug/g	20	JLZ 7/6/11	4305	7/11/11	13:48	SW3540C8082A
PCB-1242	< 0.6	0.6	ug/g	20	JLZ 7/6/11	4305	7/11/11	13:48	SW3540C8082A
PCB-1248	< 0.6	0.6	ug/g	20	JLZ 7/6/11	4305	7/11/11	13:48	SW3540C8082A
PCB-1254	< 0.6	0.6	ug/g	20	JLZ 7/6/11	4305	7/11/11	13:48	SW3540C8082A
PCB-1260	< 0.6	0.6	ug/g	20	JLZ 7/6/11	4305	7/11/11	13:48	SW3540C8082A
Surrogate Recovery		Limits	8						
tetrachloro-m-xylene SUR	DOR	30-150	%	20	JLZ 7/6/11	4305	7/11/11	13:48	SW3540C8082A
decachlorobiphenyl SUR	DOR	30-150	%	20	JLZ 7/6/11	4305	7/11/11	13:48	SW3540C8082A

DOR = Diluted out of range.

Note: Dilution due to matrix interference.

Job ID: 21906

Sample#: 21906-006 **Sample ID:** CA-5 12-14

Matrix: Solid Percent Dry: 77.6% Results expressed on a dry weight basis.

Sampled: 6/29/11 17:10		Quant	I	Instr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36	< 250	250	ug/g	1	JLZ 7/7/11	4312	7/8/11	19:52	SW3550B8100m
Surrogate Recovery		Limits	i						
2-fluorobiphenyl SUR	78	40-140	%	1	JLZ 7/7/11	4312	7/8/11	19:52	SW3550B8100m
o-terphenyl SUR	99	40-140	%	1	JLZ 7/7/11	4312	7/8/11	19:52	SW3550B8100m

Sample#: 21906-007 **Sample ID:** CA-1 26-28

Matrix: Solid Percent Dry: 87.3% Results expressed on a dry weight basis.

Sampled: 6/29/11 15:56		Quant		nstr Dil'n	Prep	Ar	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
TPH C10-C36	< 220	220	ug/g	1	JLZ 7/7/11	4312 7/8/11	20:09	SW3550B8100m
Surrogate Recovery		Limits	;					
2-fluorobiphenyl SUR	74	40-140	%	1	JLZ 7/7/11	4312 7/8/11	20:09	SW3550B8100m
o-terphenyl SUR	99	40-140	%	1	JLZ 7/7/11	4312 7/8/11	20:09	SW3550B8100m

Sample#: 21906-008 **Sample ID:** CA-4 10-12

Matrix: Solid Percent Dry: 81.4% Results expressed on a dry weight basis.

Sampled: 6/29/11 17:40		Quant		Instr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36	< 240	240	ug/g	1	JLZ 7/7/11	4312	7/8/11	20:25	SW3550B8100m
Surrogate Recovery		Limits	•						
2-fluorobiphenyl SUR	74	40-140	%	1	JLZ 7/7/11	4312	7/8/11	20:25	SW3550B8100m
o-terphenyl SUR	93	40-140	%	1	JLZ 7/7/11	4312	7/8/11	20:25	SW3550B8100m

Sample#: 21906-009 **Sample ID**: CA-TP-9 6'

Sampled: 6/30/11 15:45		Quant		Instr Dil'n	Prep		nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Dat	e Time	Reference
TPH C10-C36	< 200	200	ug/g	1	JLZ 7/7/11	4312 7/8/1	1 20:41	SW3550B8100m
Surrogate Recovery		Limits	s					
2-fluorobiphenyl SUR	68	40-140	%	1	JLZ 7/7/11	4312 7/8/1	1 20:41	SW3550B8100m
o-terphenyl SUR	88	40-140	%	1	JLZ 7/7/11	4312 7/8/1	1 20:41	SW3550B8100m

Job ID: 21906

Sample#: 21906-010

Sample ID: CA-TP-7A 10-12'

Matrix: Solid Percent Dry: 97.3% Results expressed on a dry weight basis.

Sampled: 6/30/11 17:30		Quant	ı	Instr Dil'n	Prep	Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
TPH C10-C36	< 190	190	ug/g	1	JLZ 7/7/11	4312 7/8/11	20:58	SW3550B8100m
Surrogate Recovery		Limits	•					
2-fluorobiphenyl SUR	68	40-140	%	1	JLZ 7/7/11	4312 7/8/11	20:58	SW3550B8100m
o-terphenyl SUR	87	40-140	%	1	JLZ 7/7/11	4312 7/8/11	20:58	SW3550B8100m

Sample#: 21906-012 Sample ID: CA-TP-DUP-2

Sampled: 6/30/11 0:00		Quant		Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date Time	Reference
TPH C10-C36	< 200	200	ug/g	1	JLZ 7/7/11	4312 7/	/9/11 0:30	SW3550B8100m
Surrogate Recovery		Limits	s					
2-fluorobiphenyl SUR	80	40-140	%	1	JLZ 7/7/11	4312 7/	/9/11 0:30	SW3550B8100m
o-terphenyl SUR	103	40-140	%	1	JLZ 7/7/11	4312 7/	/9/11 0:30	SW3550B8100m

Job ID: 21906

Sample#: 21906-001 **Sample ID:** CA-3 2-4

Matrix: Solid Percent Dry: 95.4% Results expressed on a dry weight basis.

Sampled: 6/29/11 12:59		Quant	I	nstr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	4.4	0.5	ug/g	1	BJS 7/6/11	4310	7/7/11	0:41	SW3051A6010C
Barium	16	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:41	SW3051A6010C
Cadmium	< 0.2	0.2	ug/g	1	BJS 7/6/11	4310	7/7/11	0:41	SW3051A6010C
Chromium	6	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:41	SW3051A6010C
Copper	16	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:41	SW3051A6010C
Lead	5.5	0.5	ug/g	1	BJS 7/6/11	4310	7/7/11	0:41	SW3051A6010C
Mercury	< 0.08	0.08	ug/g	1	BJS 7/6/11	4309	7/7/11	10:45	SW7471B
Nickel	7	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:41	SW3051A6010C
Selenium	< 3	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:41	SW3051A6010C
Silver	< 0.4	0.4	ug/g	1	BJS 7/6/11	4310	7/7/11	0:41	SW3051A6010C
Zinc	21	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:41	SW3051A6010C

Sample#: 21906-002 **Sample ID**: CA-2 6-8

Sampled: 6/29/11 12:55		Quant		nstr Dil'n	Prep	Analysis			
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	1.5	0.5	ug/g	1	BJS 7/6/11	4310	7/7/11	0:49	SW3051A6010C
Barium	13	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:49	SW3051A6010C
Cadmium	< 0.2	0.2	ug/g	1	BJS 7/6/11	4310	7/7/11	0:49	SW3051A6010C
Chromium	25	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:49	SW3051A6010C
Copper	12	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:49	SW3051A6010C
Lead	4.9	0.5	ug/g	1	BJS 7/6/11	4310	7/7/11	0:49	SW3051A6010C
Mercury	< 0.07	0.07	ug/g	1	BJS 7/6/11	4309	7/7/11	10:47	SW7471B
Nickel	5	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:49	SW3051A6010C
Selenium	< 3	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:49	SW3051A6010C
Silver	< 0.4	0.4	ug/g	1	BJS 7/6/11	4310	7/7/11	0:49	SW3051A6010C
Zinc	23	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:49	SW3051A6010C

Job ID: 21906

Sample#: 21906-006 **Sample ID:** CA-5 12-14

Matrix: Solid Percent Dry: 77.6% Results expressed on a dry weight basis.

Sampled: 6/29/11 17:10		Quant	I	nstr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	2.2	0.7	ug/g	1	BJS 7/6/11	4310	7/7/11	0:56	SW3051A6010C
Barium	16	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:56	SW3051A6010C
Cadmium	< 0.3	0.3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:56	SW3051A6010C
Chromium	7	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:56	SW3051A6010C
Copper	22	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:56	SW3051A6010C
Lead	4.1	0.7	ug/g	1	BJS 7/6/11	4310	7/7/11	0:56	SW3051A6010C
Mercury	< 0.08	0.08	ug/g	1	BJS 7/6/11	4309	7/7/11	10:49	SW7471B
Nickel	6	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:56	SW3051A6010C
Selenium	< 3	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:56	SW3051A6010C
Silver	< 0.5	0.5	ug/g	1	BJS 7/6/11	4310	7/7/11	0:56	SW3051A6010C
Zinc	17	3	ug/g	1	BJS 7/6/11	4310	7/7/11	0:56	SW3051A6010C

Sample#: 21906-008 **Sample ID:** CA-4 10-12

Matrix: Solid Percent Dry: 81.4% Results expressed on a dry weight basis.

Sampled: 6/29/11 17:40		Quant	i	nstr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	2.1	0.5	ug/g	1	BJS 7/6/11	4310	7/7/11	1:04	SW3051A6010C
Barium	15	3	ug/g	1	BJS 7/6/11	4310	7/7/11	1:04	SW3051A6010C
Cadmium	< 0.2	0.2	ug/g	1	BJS 7/6/11	4310	7/7/11	1:04	SW3051A6010C
Chromium	6	3	ug/g	1	BJS 7/6/11	4310	7/7/11	1:04	SW3051A6010C
Copper	14	3	ug/g	1	BJS 7/6/11	4310	7/7/11	1:04	SW3051A6010C
Lead	4.0	0.5	ug/g	1	BJS 7/6/11	4310	7/7/11	1:04	SW3051A6010C
Mercury	< 0.07	0.07	ug/g	1	BJS 7/6/11	4309	7/7/11	10:51	SW7471B
Nickel	5	3	ug/g	1	BJS 7/6/11	4310	7/7/11	1:04	SW3051A6010C
Selenium	< 3	3	ug/g	1	BJS 7/6/11	4310	7/7/11	1:04	SW3051A6010C
Silver	< 0.4	0.4	ug/g	1	BJS 7/6/11	4310	7/7/11	1:04	SW3051A6010C
Zinc	14	3	ug/g	1	BJS 7/6/11	4310	7/7/11	1:04	SW3051A6010C

Sample#: 21906-010 **Sample ID:** CA-TP-7A 10-12'

Matrix: Solid Percent Dry: 97.3% Results expressed on a dry weight basis.

Sampled: 6/30/11 17:30 Prep **Analysis** Quant Instr Dil'n **Parameter** Limit Units Factor Analyst Date Batch Date Time Result Reference SW3051A6010C Lead 5.6 0.5 BJS 7/6/11 4310 7/7/11 1:11 ug/g

Sample#: 21906-011 **Sample ID**: CA-TP-12 1'

Sampled: 6/30/11 13:	15	Quant	Instr Dil'n			э р	Analysis			
Parameter	Result	Limit	Units	Factor	Analyst Da	te Bat	ch Date	Time	Reference	
I ead	4.5	0.6	ua/a	1	BJS 7/6/11	1 43	10 7/7/11	1:19	SW3051A6010C	

Quality Control Report

124 Heritage Avenue Unit 10 Portsmouth, NH 03801 www.absoluteresourceassociates.com

Case Narrative Lab # 21906

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 1 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

Calibration

No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

PCB: The surrogates were diluted out of the calibration range in the following sample due to interferences caused by the matrix: 21906-003, -004, -005, -006, and -008.

Laboratory Control Sample Results

PCB: The relative percent difference between the LCS4305 and LCSD4305 was outside the acceptance criteria for PCB-1016 and PCB-1260. The percent recovery for these analytes in each QC parameter was within the acceptance criteria. No impact to the data suspected.

VOC: The MLCS/D4307 did not meet the acceptance criteria for dichlorodifluoromethane and vinyl chloride. These compounds are known to be problematic in the method.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Not requested for this project.

Other

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

- QC Report -

		QO ITOP	O 1 t					
Method QC ID	Parameter Ass	sociated Sample	Result	Units Amt Added	%R	Limits	RPD	RPD Limit
SW5035A8260B MB4307	dichlorodifluoromethane	<	0.1	ug/g				
	chloromethane	<	0.1	ug/g				
	vinyl chloride	<	0.1	ug/g				
	bromomethane	<	0.2	ug/g				
	chloroethane	<	0.1	ug/g				
	trichlorofluoromethane	<	0.1	ug/g				
	diethyl ether	<		ug/g				
	acetone	<	2.5	ug/g				
	1,1-dichloroethene	<		ug/g				
	methylene chloride	<	0.2	ug/g				
	carbon disulfide	<	0.1	ug/g				
	methyl t-butyl ether (MTBE)	<	0.1	ug/g				
	trans-1,2-dichloroethene	<	0.1	ug/g				
	isopropyl ether (DIPE)	<	0.1	ug/g				
	ethyl t-butyl ether (ETBE)	<	0.1	ug/g				
	1,1-dichloroethane	<	0.1	ug/g				
	t-butanol (TBA)	<	2.5	ug/g				
	2-butanone (MEK)	<	0.5	ug/g				
	2,2-dichloropropane	<	0.1	ug/g				
	cis-1,2-dichloroethene	<	0.1	ug/g				
	chloroform	<	0.1	ug/g				
	bromochloromethane	<	0.1	ug/g				
	tetrahydrofuran (THF)	<	0.5	ug/g				
	1,1,1-trichloroethane	<	0.1	ug/g				
	1,1-dichloropropene	<	0.1	ug/g				
	t-amyl-methyl ether (TAME)	<	0.1	ug/g				
	carbon tetrachloride	<	0.1	ug/g				
	1,2-dichloroethane	<	0.1	ug/g				
	benzene	<	0.1	ug/g				
	trichloroethene	<	0.1	ug/g				
	1,2-dichloropropane	<	0.1	ug/g				
	bromodichloromethane	<	0.1	ug/g				
	1,4-dioxane	<	2.5	ug/g				
	dibromomethane	<	0.1	ug/g				
	4-methyl-2-pentanone (MIBK)	<	0.5	ug/g				
	cis-1,3-dichloropropene	<	0.1	ug/g				
	toluene	<	0.1	ug/g				
	trans-1,3-dichloropropene	<	0.1	ug/g				
	2-hexanone	<	0.5	ug/g				
	1,1,2-trichloroethane	<	0.1	ug/g				
	1,3-dichloropropane	<	0.1	ug/g				
	tetrachloroethene	<	0.1	ug/g				
	dibromochloromethane	<	0.1	ug/g				
	1,2-dibromoethane (EDB)	<	0.1	ug/g				
	chlorobenzene	<	0.1	ug/g				
	1,1,1,2-tetrachloroethane	<	0.1	ug/g				
	ethylbenzene	<	0.1	ug/g				
	m&p-xylenes	<	0.1	ug/g				
	o-xylene	<	0.1	ug/g				
	styrene	<	0.1	ug/g				

Method	QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Lir	nits	RPD	RPD Limit
SW5035A82	60B MB4307	bromoform		<	0.1	ug/g					
		isopropylbenzene		<	0.1	ug/g					
		1,1,2,2-tetrachloroethane		<	0.1	ug/g					
		1,2,3-trichloropropane		<	0.1	ug/g					
		n-propylbenzene		<	0.1	ug/g					
		bromobenzene		<	0.1	ug/g					
		1,3,5-trimethylbenzene		<	0.1	ug/g					
		2-chlorotoluene		<	0.1	ug/g					
		4-chlorotoluene		<	0.1	ug/g					
		tert-butylbenzene		<	0.1	ug/g					
		1,2,4-trimethylbenzene		<	0.1	ug/g					
		sec-butylbenzene		<	0.1	ug/g					
		1,3-dichlorobenzene		<	0.1	ug/g					
		4-isopropyltoluene		<	0.1	ug/g					
		1,4-dichlorobenzene		<	0.1	ug/g					
		1,2-dichlorobenzene		<	0.1	ug/g					
		n-butylbenzene		<	0.1	ug/g					
		1,2-dibromo-3-chloropropar	ne	<	0.1	ug/g					
		1,2,4-trichlorobenzene		<	0.1	ug/g					
		hexachlorobutadiene		<	0.1	ug/g					
		naphthalene		<	0.2	ug/g					
		1,2,3-trichlorobenzene		<	0.1	ug/g					
		dibromofluoromethane SUF	₹		89	%		78	114		
		toluene-D8 SUR			93	%		88	110		
		4-bromofluorobenzene SUF	₹		97	%		86	115		
		a,a,a-trifluorotoluene SUR			95	%		70	130		

Method	QC ID	Parameter	Associated Sample	Result	Units A	Amt Added	%R	-	Li	mits	RPD	RPD Limit
SW5035A8260	B MLCS4307	dichlorodifluoromethane		0.6	ug/g	1	61	*	70	130		
		chloromethane		0.8	ug/g	1	76		70	130		
		vinyl chloride		0.5	ug/g	1	52	*	70	130		
		bromomethane		1.1	ug/g	1	106		70	130		
		chloroethane		0.9	ug/g	1	92		70	130		
		trichlorofluoromethane		0.8	ug/g	1	82		70	130		
		diethyl ether		1.0	ug/g	1	97		70	130		
		acetone		< 2.5	ug/g	1	89					
		1,1-dichloroethene		0.8	ug/g	1	76		70	130		
		methylene chloride		0.9	ug/g	1	94		70	130		
		carbon disulfide		0.8	ug/g	1	79		70	130		
		methyl t-butyl ether (MTB	E)	1.0	ug/g	1	95		70	130		
		trans-1,2-dichloroethene		0.8	ug/g	1	84		70	130		
		isopropyl ether (DIPE)		1.0	ug/g	1	98		70	130		
		ethyl t-butyl ether (ETBE)		1.0	ug/g	1	96		70	130		
		1,1-dichloroethane		0.9	ug/g	1	89		70	130		
		t-butanol (TBA)		6.3	ug/g	5	127		70	130		
		2-butanone (MEK)		1.0	ug/g	1	98		70	130		
		2,2-dichloropropane		1.1	ug/g	1	107		70	130		
		cis-1,2-dichloroethene		0.9	ug/g	1	95		70	130		
		chloroform		1.0	ug/g	1	97		70	130		
		bromochloromethane		1.0	ug/g	1	95		70	130		
		tetrahydrofuran (THF)		1.0	ug/g	1	101		70	130		
		1,1,1-trichloroethane		0.9	ug/g	1	93		70	130		
		1,1-dichloropropene		1.0	ug/g	1	95		70	130		
		t-amyl-methyl ether (TAM	E)	0.9	ug/g	1	93		70	130		
		carbon tetrachloride	•	0.9	ug/g	1	91		70	130		
		1,2-dichloroethane		1.0	ug/g	1	97		70	130		
		benzene		1.0	ug/g	1	97		70	130		
		trichloroethene		0.9	ug/g	1	93		70	130		
		1,2-dichloropropane		1.0	ug/g	1	99		70	130		
		bromodichloromethane		1.0	ug/g	1	97		70	130		
		1,4-dioxane		< 2.5	ug/g	2	113		70	130		
		dibromomethane		1.0	ug/g	1	97		70	130		
		4-methyl-2-pentanone (M	IBK)	1.0	ug/g	1	98		70	130		
		cis-1,3-dichloropropene	,	1.0	ug/g	1	102		70	130		
		toluene		1.0	ug/g	1	97		70	130		
		trans-1,3-dichloropropene		1.1	ug/g	1	109		70	130		
		2-hexanone		0.9	ug/g	1	91		70	130		
		1,1,2-trichloroethane		1.0	ug/g	1	100		70	130		
		1,3-dichloropropane		0.9	ug/g	1	89		70	130		
		tetrachloroethene		1.0	ug/g	1	97		70	130		
		dibromochloromethane		0.8	ug/g	1	81		70	130		
		1,2-dibromoethane (EDB)		0.9	ug/g	1	87		70	130		
		chlorobenzene		1.0	ug/g	1	100		70	130		
		1,1,1,2-tetrachloroethane		0.9	ug/g	1	95		70	130		
		ethylbenzene		0.9	ug/g	1	89		70	130		
		m&p-xylenes		2.0	ug/g	2	100		70	130		
		o-xylene		1.1	ug/g	1	106		70	130		
		styrene		0.9	ug/g	1	94		70	130		
		,		0.0	∽ສ/ສ		٠,					

Method	QC ID	Parameter	Associated Sample	Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limi
SW5035A826	0B MLCS4307	isopropylbenzene		1.0	ug/g	1	101	70	130		
		1,1,2,2-tetrachloroethane		1.1	ug/g	1	112	70	130		
		1,2,3-trichloropropane		1.1	ug/g	1	108	70	130		
		n-propylbenzene		1.1	ug/g	1	107	70	130		
		bromobenzene		1.0	ug/g	1	101	70	130		
		1,3,5-trimethylbenzene		1.0	ug/g	1	105	70	130		
		2-chlorotoluene		1.1	ug/g	1	108	70	130		
		4-chlorotoluene		1.1	ug/g	1	107	70	130		
		tert-butylbenzene		1.1	ug/g	1	108	70	130		
		1,2,4-trimethylbenzene		1.0	ug/g	1	105	70	130		
		sec-butylbenzene		1.1	ug/g	1	110	70	130		
		1,3-dichlorobenzene		1.1	ug/g	1	112	70	130		
		4-isopropyltoluene		1.1	ug/g	1	111	70	130		
		1,4-dichlorobenzene		1.0	ug/g	1	101	70	130		
		1,2-dichlorobenzene		1.0	ug/g	1	102	70	130		
		n-butylbenzene		1.1	ug/g	1	110	70	130		
		1,2-dibromo-3-chloropropar	ne	0.9	ug/g	1	89	70	130		
		1,2,4-trichlorobenzene		0.9	ug/g	1	88	70	130		
		hexachlorobutadiene		1.0	ug/g	1	96	70	130		
		naphthalene		0.9	ug/g	1	93	70	130		
		1,2,3-trichlorobenzene		1.0	ug/g	1	98	70	130		
		dibromofluoromethane SUR	?	93	%			78	114		
		toluene-D8 SUR		95	%			88	110		
		4-bromofluorobenzene SUF	?	108	%			86	115		
		a,a,a-trifluorotoluene SUR		97	%			70	130		

Method	QC ID	Parameter	Associated Sample	Result	Units A	Amt Added	%R		Li	mits	RPD	RPD Limit
SW5035A8260B	MLCSD4307	dichlorodifluoromethane		0.6	ug/g	1	57	*	70	130	7	30
		chloromethane		0.8	ug/g	1	81		70	130	6	30
		vinyl chloride		0.5	ug/g	1	47	*	70	130	9	30
		bromomethane		1.2	ug/g	1	117		70	130	10	30
		chloroethane		0.9	ug/g	1	95		70	130	3	30
		trichlorofluoromethane		0.8	ug/g	1	83		70	130	1	30
		diethyl ether		1.0	ug/g	1	98		70	130	2	30
		acetone		< 2.5	ug/g	1	92				2	30
		1,1-dichloroethene		0.7	ug/g	1	74		70	130	3	30
		methylene chloride		0.9	ug/g	1	91		70	130	3	30
		carbon disulfide		0.8	ug/g	1	83		70	130	4	30
		methyl t-butyl ether (MTB	E)	1.0	ug/g	1	100		70	130	5	30
		trans-1,2-dichloroethene		0.8	ug/g	1	81		70	130	3	30
		isopropyl ether (DIPE)		1.0	ug/g	1	101		70	130	3	30
		ethyl t-butyl ether (ETBE)		1.0	ug/g	1	99		70	130	3	30
		1,1-dichloroethane		0.9	ug/g	1	87		70	130	2	30
		t-butanol (TBA)		6.1	ug/g	5	122		70	130	4	30
		2-butanone (MEK)		1.0	ug/g	1	99		70	130	1	30
		2,2-dichloropropane		1.0	ug/g	1	105		70	130	2	30
		cis-1,2-dichloroethene		0.9	ug/g	1	94		70	130	1	30
		chloroform		1.0	ug/g	1	96		70	130	1	30
		bromochloromethane		0.9	ug/g	1	93		70	130	2	30
		tetrahydrofuran (THF)		1.0	ug/g	1	101		70	130	0	30
		1,1,1-trichloroethane		0.9	ug/g	1	90		70	130	3	30
		1,1-dichloropropene		1.0	ug/g	1	95		70	130	0	30
		t-amyl-methyl ether (TAM	E)	1.0	ug/g	1	99		70	130	6	30
		carbon tetrachloride	,	0.9	ug/g	1	87		70	130	4	30
		1,2-dichloroethane		1.0	ug/g	1	96		70	130	0	30
		benzene		1.0	ug/g	1	97		70	130	0	30
		trichloroethene		0.9	ug/g	1	92		70	130	1	30
		1,2-dichloropropane		1.0	ug/g	1	100		70	130	1	30
		bromodichloromethane		0.9	ug/g	1	94		70	130	4	30
		1,4-dioxane		< 2.5	ug/g	2	97		70	130	15	30
		dibromomethane		1.0	ug/g	1	100		70	130	2	30
		4-methyl-2-pentanone (M	IBK)	1.0	ug/g	1	99		70	130	2	30
		cis-1,3-dichloropropene	,	1.0	ug/g	1	97		70	130	4	30
		toluene		1.0	ug/g	1	97		70	130	0	30
		trans-1,3-dichloropropene	;	1.1	ug/g	1	108		70	130	1	30
		2-hexanone		0.9	ug/g	1	94		70	130	3	30
		1,1,2-trichloroethane		1.0	ug/g	1	101		70	130	1	30
		1,3-dichloropropane		0.9	ug/g	1	92		70	130	4	30
		tetrachloroethene		1.0	ug/g	1	99		70	130	3	30
		dibromochloromethane		0.8	ug/g	1	79		70	130	3	30
		1,2-dibromoethane (EDB)		0.9	ug/g	1	89		70	130	2	30
		chlorobenzene		1.0	ug/g	1	101		70	130	1	30
		1,1,1,2-tetrachloroethane		0.9	ug/g	1	90		70	130	5	30
		ethylbenzene		0.9	ug/g	1	91		70	130	3	30
		m&p-xylenes		2.0	ug/g	2	102		70	130	2	30
		o-xylene		1.1	ug/g	1	108		70	130	1	30
		styrene		1.0	ug/g	1	95		70	130	1	30
		bromoform		1.0	ug/g	1	102		70	130	6	30
		Stotilolottii		1.0	ug/g	'	102		, 0	100	J	00

Method	QC ID	Parameter Associated	Sample Result	Units A	mt Added	%R	Liı	mits	RPD	RPD Limit
SW5035A826	OB MLCSD4307	isopropylbenzene	1.0	ug/g	1	100	70	130	1	30
		1,1,2,2-tetrachloroethane	1.1	ug/g	1	115	70	130	2	30
		1,2,3-trichloropropane	1.0	ug/g	1	105	70	130	3	30
		n-propylbenzene	1.1	ug/g	1	109	70	130	2	30
		bromobenzene	1.0	ug/g	1	103	70	130	1	30
		1,3,5-trimethylbenzene	1.0	ug/g	1	103	70	130	1	30
		2-chlorotoluene	1.1	ug/g	1	107	70	130	1	30
		4-chlorotoluene	1.1	ug/g	1	110	70	130	3	30
		tert-butylbenzene	1.1	ug/g	1	107	70	130	1	30
		1,2,4-trimethylbenzene	1.1	ug/g	1	108	70	130	3	30
		sec-butylbenzene	1.1	ug/g	1	111	70	130	1	30
		1,3-dichlorobenzene	1.2	ug/g	1	116	70	130	3	30
		4-isopropyltoluene	1.1	ug/g	1	112	70	130	1	30
		1,4-dichlorobenzene	1.0	ug/g	1	105	70	130	3	30
		1,2-dichlorobenzene	1.1	ug/g	1	106	70	130	4	30
		n-butylbenzene	1.1	ug/g	1	112	70	130	2	30
		1,2-dibromo-3-chloropropane	0.9	ug/g	1	85	70	130	4	30
		1,2,4-trichlorobenzene	0.9	ug/g	1	90	70	130	2	30
		hexachlorobutadiene	1.0	ug/g	1	103	70	130	8	30
		naphthalene	1.0	ug/g	1	99	70	130	6	30
		1,2,3-trichlorobenzene	1.0	ug/g	1	102	70	130	4	30
		dibromofluoromethane SUR	94	%			78	114		
		toluene-D8 SUR	96	%			88	110		
		4-bromofluorobenzene SUR	109	%			86	115		
		a,a,a-trifluorotoluene SUR	95	%			70	130		

- QC Report -

Method	QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Li	mits	RPD	RP	D Limi
SW3540C8082A	BLK4305	PCB-1016		<	0.02	ug/g							
		PCB-1221		<	0.02	ug/g							
		PCB-1232		<	0.02	ug/g							
		PCB-1242		<	0.02	ug/g							
		PCB-1248		<	0.02	ug/g							
		PCB-1254		<	0.02	ug/g							
		PCB-1260		<	0.02	ug/g							
		tetrachloro-m-xylene SUR			51	%			30	150			
		decachlorobiphenyl SUR			62	%			30	150			
SW3540C8082A	LCS4305	PCB-1016			0.13	ug/g	0.2	64	40	140			
		PCB-1221		<	0.02	ug/g							
		PCB-1232		<	0.02	ug/g							
		PCB-1242		<	0.02	ug/g							
		PCB-1248		<	0.02	ug/g							
		PCB-1254		<	0.02	ug/g							
		PCB-1260			0.13	ug/g	0.2	64	40	140			
		tetrachloro-m-xylene SUR			48	%			30	150			
		decachlorobiphenyl SUR			57	%			30	150			
SW3540C8082A	LCSD4305	PCB-1016			0.18	ug/g	0.2	91	40	140	35	*	30
		PCB-1221		<	0.02	ug/g							
		PCB-1232		<	0.02	ug/g							
		PCB-1242		<	0.02	ug/g							
		PCB-1248		<	0.02	ug/g							
		PCB-1254		<	0.02	ug/g							
		PCB-1260			0.18	ug/g	0.2	90	40	140	34	*	30
		tetrachloro-m-xylene SUR			61	%			30	150			
		decachlorobiphenyl SUR			72	%			30	150			

Method	QC ID	Parameter Associated S	Sample	Result	Units Amt Added	%R	Limits	RPD	RPD Limi
SW3546/8270D	BLK4314	N-nitrosodimethylamine	<	0.2	ug/g				
		aniline	<	0.2	ug/g				
		phenol	<	0.2	ug/g				
		2-chlorophenol	<	0.5	ug/g				
		bis(2-chloroethyl)ether	<	0.2	ug/g				
		1,3-dichlorobenzene	<	0.2	ug/g				
		1,4-dichlorobenzene	<	0.2	ug/g				
		1,2-dichlorobenzene	<	0.2	ug/g				
		benzyl alcohol	<	0.2	ug/g				
		2-methylphenol	<	0.2	ug/g				
		bis(2-chloroisopropyl) ether	<	0.2	ug/g				
		hexachloroethane	<	0.2	ug/g				
		N-nitroso-di-N-propylamine	<	0.2	ug/g				
		4-methylphenol	<	0.2	ug/g				
		nitrobenzene	<	0.2	ug/g				
		isophorone	<	0.5	ug/g				
		2-nitrophenol	<	0.2	ug/g				
		2,4-dimethylphenol	<	0.2	ug/g				
		bis(2-chloroethoxy)methane	<	0.5	ug/g				
		2,4-dichlorophenol	<	0.5	ug/g				
		1,2,4-trichlorobenzene	<	0.5	ug/g				
	naphthalene	<	0.05	ug/g					
		benzoic acid	<	5.0	ug/g				
		4-chloroaniline	<	0.2	ug/g				
		hexachlorobutadiene	<	0.2	ug/g				
		4-chloro-3-methylphenol	<	0.2	ug/g				
		2-methylnaphthalene	<	0.05	ug/g				
		hexachlorocyclopentadiene	<	1.0	ug/g				
		2,4,6-trichlorophenol	<	0.2	ug/g				
		2,4,5-trichlorophenol	<	0.2	ug/g				
		2-chloronaphthalene	<	0.5	ug/g				
		2-nitroaniline	<	0.2	ug/g				
		acenaphthylene	<	0.05	ug/g				
		dimethylphthalate	<	0.5	ug/g				
		2,6-dinitrotoluene	<	0.2	ug/g				
		2,4-dinitrotoluene	<	0.2	ug/g				
		acenaphthene	<	0.05	ug/g				
		3-nitroaniline	<	0.2	ug/g				
		2,4-dinitrophenol	<	5.0	ug/g				
		dibenzofuran	<	0.05	ug/g				
		4-nitrophenol	<	1.0	ug/g				
		fluorene	<	0.05	ug/g				
		diethyl phthalate	<	0.5	ug/g				
		4-chlorophenyl phenyl ether	<	0.5	ug/g				
		4-nitroaniline	<	0.5	ug/g				
		4,6-dinitro-2-methylphenol	<	2.0	ug/g				
		azobenzene	<	0.2	ug/g				
		N-nitrosodiphenylamine	<	0.2	ug/g				
		4-bromophenyl phenyl ether	<	0.2	ug/g				
		hexachlorobenzene	<	0.2	ug/g ug/g				
		HONGOINGONG	•	0.2	49/9				

Method	QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Lin	nits	RPD	RPD Limit
SW3546/8270D	BLK4314	phenanthrene		<	0.05	ug/g					
		anthracene		<	0.05	ug/g					
		carbazole		<	0.2	ug/g					
		di-n-butylphthalate		<	0.5	ug/g					
		fluoranthene		<	0.05	ug/g					
		benzidine		<	3.0	ug/g					
		pyrene		<	0.05	ug/g					
		butyl benzyl phthalate		<	0.5	ug/g					
		benzo(a)anthracene		<	0.05	ug/g					
		chrysene		<	0.05	ug/g					
		3,3'-dichlorobenzidine		<	3.0	ug/g					
		bis(2-ethylhexyl)phthalate		<	0.5	ug/g					
		di-n-octyl phthalate		<	0.2	ug/g					
		benzo(b)fluoranthene		<	0.05	ug/g					
		benzo(k)fluoranthene		<	0.05	ug/g					
		benzo(a)pyrene		<	0.02	ug/g					
		indeno(1,2,3-cd)pyrene		<	0.05	ug/g					
		dibenzo(a,h)anthracene		<	0.05	ug/g					
		benzo(g,h,i)perylene		<	0.05	ug/g					
		2-fluorophenol SUR			43	%		21	100		
		phenol-D5 SUR			46	%		10	102		
		2,4,6-tribromophenol SUR			40	%		10	123		
		nitrobenzene-D5 SUR			38	%		35	114		
		2-fluorobiphenyl SUR			49	%		43	116		
		p-terphenyl-D14 SUR			66	%		33	141		

Method	QC ID	Parameter	Associated Sample		Result	Units A	hmt Added	%R	Li	mits	RPD	RPD Limit
SW3546/8270D	LCS4314	N-nitrosodimethylamine		<	0.2	ug/g						
		aniline		<	0.2	ug/g						
		phenol			5.6	ug/g	10	56	30	130		
		2-chlorophenol			6.5	ug/g	10	65	30	130		
		bis(2-chloroethyl)ether		<	0.2	ug/g						
		1,3-dichlorobenzene		<	0.2	ug/g						
		1,4-dichlorobenzene		<	0.2	ug/g						
		1,2-dichlorobenzene		<	0.2	ug/g						
		benzyl alcohol		<	0.2	ug/g						
		2-methylphenol		<	0.2	ug/g						
		bis(2-chloroisopropyl) ethe	r	<	0.2	ug/g						
		hexachloroethane		<	0.2	ug/g						
		N-nitroso-di-N-propylamine	e	<	0.2	ug/g						
		4-methylphenol		<	0.2	ug/g						
		nitrobenzene		<	0.2	ug/g						
		isophorone		<	0.5	ug/g						
		2-nitrophenol		<	0.2	ug/g						
		2,4-dimethylphenol		<	0.2	ug/g						
		bis(2-chloroethoxy)methan	ne	<	0.5	ug/g						
		2,4-dichlorophenol		<	0.5	ug/g						
		1,2,4-trichlorobenzene		<	0.5	ug/g						
		naphthalene			2.4	ug/g	4	59	40	140		
		benzoic acid		<	5.0	ug/g						
		4-chloroaniline		<	0.2	ug/g						
		hexachlorobutadiene		<	0.2	ug/g						
		4-chloro-3-methylphenol			6.6	ug/g	10	66	30	130		
		2-methylnaphthalene			2.45	ug/g	4	61	40	140		
		hexachlorocyclopentadiene	е	<	1.0	ug/g						
		2,4,6-trichlorophenol		<	0.2	ug/g						
		2,4,5-trichlorophenol		<	0.2	ug/g						
		2-chloronaphthalene		<	0.5	ug/g						
		2-nitroaniline		<	0.2	ug/g						
		acenaphthylene			2.9	ug/g	4	72	40	140		
		dimethylphthalate		<	0.5	ug/g						
		2,6-dinitrotoluene		<	0.2	ug/g						
		2,4-dinitrotoluene		<	0.2	ug/g						
		acenaphthene			2.8	ug/g						
		3-nitroaniline		<	0.2	ug/g						
		2,4-dinitrophenol		<	5.0	ug/g						
		dibenzofuran		<	0.05	ug/g						
		4-nitrophenol			6.4	ug/g	10	64	30	130		
		fluorene			3.0	ug/g	4	76	40	140		
		diethyl phthalate		<	0.5	ug/g						
		4-chlorophenyl phenyl ethe	er	<	0.5	ug/g						
		4-nitroaniline		<	0.5	ug/g						
		4,6-dinitro-2-methylphenol		<	2.0	ug/g						
		azobenzene		<	0.2	ug/g						
		N-nitrosodiphenylamine		<	0.2	ug/g						
		4-bromophenyl phenyl ethe	er	<	0.2	ug/g						
		hexachlorobenzene		<	0.2	ug/g						
						-3.3						

SW3546/8270D LCS4314	phenanthrene anthracene carbazole di-n-butylphthalate		2.9 3.0	ug/g	4	72	40	110	
	carbazole		3.0			1 4	40	140	
			0.0	ug/g	4	75	40	140	
	di-n-butylphthalate	<	0.2	ug/g					
		<	0.5	ug/g					
	fluoranthene		3.3	ug/g	4	81	40	140	
	benzidine	<	3.0	ug/g					
	pyrene		3.5	ug/g	4	87	40	140	
	butyl benzyl phthalate	<	0.5	ug/g					
	benzo(a)anthracene		3.3	ug/g	4	82	40	140	
	chrysene		3.3	ug/g	4	82	40	140	
	3,3'-dichlorobenzidine	<	3.0	ug/g					
	bis(2-ethylhexyl)phthalate	<	0.5	ug/g					
	di-n-octyl phthalate	<	0.2	ug/g					
	benzo(b)fluoranthene		3.4	ug/g	4	85	40	140	
	benzo(k)fluoranthene		3.0	ug/g	4	76	40	140	
	benzo(a)pyrene		3.3	ug/g	4	82	40	140	
	indeno(1,2,3-cd)pyrene		3.2	ug/g	4	81	40	140	
	dibenzo(a,h)anthracene		3.2	ug/g	4	79	40	140	
	benzo(g,h,i)perylene		3.2	ug/g	4	79	40	140	
	2-fluorophenol SUR		53	%			21	100	
	phenol-D5 SUR		57	%			10	102	
	2,4,6-tribromophenol SUR		52	%			10	123	
	nitrobenzene-D5 SUR		50	%			35	114	
	2-fluorobiphenyl SUR		64	%			43	116	
	p-terphenyl-D14 SUR		71	%			33	141	

Method	QC ID	Parameter Associat	ed Sample	Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limit
SW3546/8270D	LCSD4314	N-nitrosodimethylamine	<	0.2	ug/g						
		aniline	<	0.2	ug/g						
		phenol		5.4	ug/g	10	54	30	130	4	30
		2-chlorophenol		5.9	ug/g	10	59	30	130	9	30
		bis(2-chloroethyl)ether	<	0.2	ug/g						
		1,3-dichlorobenzene	<	0.2	ug/g						
		1,4-dichlorobenzene	<	0.2	ug/g						
		1,2-dichlorobenzene	<	0.2	ug/g						
		benzyl alcohol	<	0.2	ug/g						
		2-methylphenol	<	0.2	ug/g						
		bis(2-chloroisopropyl) ether	<	0.2	ug/g						
		hexachloroethane	<	0.2	ug/g						
		N-nitroso-di-N-propylamine	<	0.2	ug/g						
		4-methylphenol	<	0.2	ug/g						
		nitrobenzene	<	0.2	ug/g						
		isophorone	<	0.5	ug/g						
		2-nitrophenol	<	0.2	ug/g						
		2,4-dimethylphenol	<	0.2	ug/g						
		bis(2-chloroethoxy)methane	<	0.5	ug/g						
		2,4-dichlorophenol	<	0.5	ug/g						
		1,2,4-trichlorobenzene	<	0.5	ug/g						
		naphthalene		2.2	ug/g	4	56	40	140	6	30
		benzoic acid	<	5.0	ug/g						
		4-chloroaniline	<	0.2	ug/g						
		hexachlorobutadiene	<	0.2	ug/g						
		4-chloro-3-methylphenol		6.4	ug/g	10	64	30	130	2	30
		2-methylnaphthalene		2.32	ug/g	4	58	40	140	5	30
		hexachlorocyclopentadiene	<	1.0	ug/g						
		2,4,6-trichlorophenol	<	0.2	ug/g						
		2,4,5-trichlorophenol	<	0.2	ug/g						
		2-chloronaphthalene	<	0.5	ug/g						
		2-nitroaniline	<	0.2	ug/g						
		acenaphthylene		2.9	ug/g	4	72	40	140	0	30
		dimethylphthalate	<	0.5	ug/g						
		2,6-dinitrotoluene	<	0.2	ug/g						
		2,4-dinitrotoluene	<	0.2	ug/g						
		acenaphthene		2.7	ug/g						
		3-nitroaniline	<	0.2	ug/g						
		2,4-dinitrophenol	<	5.0	ug/g						
		dibenzofuran	<	0.05	ug/g						
		4-nitrophenol		6.2	ug/g	10	62	30	130	3	30
		fluorene		3.0	ug/g	4	75	40	140	1	30
		diethyl phthalate	<	0.5	ug/g						
		4-chlorophenyl phenyl ether	<	0.5	ug/g						
		4-nitroaniline	<	0.5	ug/g						
		4,6-dinitro-2-methylphenol	<	2.0	ug/g						
		azobenzene	<	0.2	ug/g						
		N-nitrosodiphenylamine	<	0.2	ug/g						
		4-bromophenyl phenyl ether	<	0.2	ug/g						
		hexachlorobenzene	<	0.2	ug/g						
		pentachlorophenol		3.6	ug/g	10	36	30	130	17	30

Method	QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limit
SW3546/8270D	LCSD4314	phenanthrene			2.9	ug/g	4	72	40	140	0	30
		anthracene			3.0	ug/g	4	76	40	140	0	30
		carbazole		<	0.2	ug/g						
		di-n-butylphthalate		<	0.5	ug/g						
		fluoranthene			3.4	ug/g	4	84	40	140	3	30
		benzidine		<	3.0	ug/g						
		pyrene			3.5	ug/g	4	88	40	140	2	30
		butyl benzyl phthalate		<	0.5	ug/g						
		benzo(a)anthracene			3.4	ug/g	4	84	40	140	2	30
		chrysene			3.4	ug/g	4	84	40	140	2	30
		3,3'-dichlorobenzidine		<	3.0	ug/g						
		bis(2-ethylhexyl)phthalate		<	0.5	ug/g						
		di-n-octyl phthalate		<	0.2	ug/g						
		benzo(b)fluoranthene			3.5	ug/g	4	87	40	140	3	30
		benzo(k)fluoranthene			3.2	ug/g	4	80	40	140	5	30
		benzo(a)pyrene			3.3	ug/g	4	84	40	140	1	30
		indeno(1,2,3-cd)pyrene			3.2	ug/g	4	81	40	140	0	30
		dibenzo(a,h)anthracene			3.2	ug/g	4	79	40	140	0	30
		benzo(g,h,i)perylene			3.2	ug/g	4	80	40	140	1	30
		2-fluorophenol SUR			49	%			21	100		
		phenol-D5 SUR			51	%			10	102		
		2,4,6-tribromophenol SUR			49	%			10	123		
		nitrobenzene-D5 SUR			46	%			35	114		
		2-fluorobiphenyl SUR			63	%			43	116		
		p-terphenyl-D14 SUR			70	%			33	141		
SW3550B8100m	n BLK4312	TPH C10-C36		<	200	ug/g						
		2-fluorobiphenyl SUR			68	%			40	140		
		o-terphenyl SUR			88	%			40	140		
SW3550B8100m	n DUP4312	2-fluorobiphenyl SUR	21913-001		115	%			40	140		
		o-terphenyl SUR	21913-001		104	%			40	140		
SW3550B8100m	n LCS4312	TPH C10-C36			1500	ug/g	2500	59	40	140		
		2-fluorobiphenyl SUR			73	%			40	140		
		o-terphenyl SUR			89	%			40	140		
SW3550B8100m	n MS4312	2-fluorobiphenyl SUR	21913-001		78	%			40	140		
		o-terphenyl SUR	21913-001		108	%			40	140		

Method QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limi
SW3550B8270D BLK4315	naphthalene		<	0.50	ug/g						
	2-methylnaphthalene		<	0.50	ug/g						
	acenaphthylene		<	0.50	ug/g						
	acenaphthene		<	0.50	ug/g						
	dibenzofuran		<	0.50	ug/g						
	fluorene		<	0.50	ug/g						
	phenanthrene		<	0.50	ug/g						
	anthracene		<	0.50	ug/g						
	fluoranthene		<	0.50	ug/g						
	pyrene		<	0.50	ug/g						
	benzo(a)anthracene		<	0.50	ug/g						
	chrysene		<	0.50	ug/g						
	benzo(b)fluoranthene		<	0.50	ug/g						
	benzo(k)fluoranthene		<	0.50	ug/g						
	benzo(a)pyrene		<	0.50	ug/g						
	indeno(1,2,3-cd)pyrene		<	0.50	ug/g						
	dibenzo(a,h)anthracene		<	0.50	ug/g						
	benzo(g,h,i)perylene		<	0.50	ug/g						
	2-fluorobiphenyl SUR			78	%			43	116		
	o-terphenyl SUR			79	%			33	141		
SW3550B8270D LCS4315	naphthalene			3.1	ug/g	4	78	40	140		
	2-methylnaphthalene			3.6	ug/g	4	90	40	140		
	acenaphthylene			3.5	ug/g	4	88	40	140		
	acenaphthene			3.3	ug/g	4	82	40	140		
	dibenzofuran		<	0.50	ug/g						
	fluorene			3.4	ug/g	4	84	40	140		
	phenanthrene			3.2	ug/g	4	81	40	140		
	anthracene			3.4	ug/g	4	84	40	140		
	fluoranthene			3.3	ug/g	4	83	40	140		
	pyrene			3.8	ug/g	4	95	40	140		
	benzo(a)anthracene			3.6	ug/g	4	90	40	140		
	chrysene			3.8	ug/g	4	95	40	140		
	benzo(b)fluoranthene			3.9	ug/g	4	96	40	140		
	benzo(k)fluoranthene			3.2	ug/g	4	79	40	140		
	benzo(a)pyrene			3.3	ug/g	4	82	40	140		
	indeno(1,2,3-cd)pyrene			3.1	ug/g	4	78	40	140		
	dibenzo(a,h)anthracene			2.8	ug/g	4	71	40	140		
	benzo(g,h,i)perylene			3.3	ug/g	4	83	40	140		
	2-fluorobiphenyl SUR			76	%			43	116		
	o-terphenyl SUR			78	%			33	141		

Method	QC ID	Parameter	Associated Sample		Result	Units A	Amt Added	%R	Li	mits	RPI	D	RPD Limit
SW3051A6010	OC BLK4310	Silver		<	0.25	ug/g							
		Arsenic		<	0.50	ug/g							
		Barium		<	2.5	ug/g							
		Cadmium		<	0.20	ug/g							
		Chromium		<	2.5 2.5	ug/g							
		Copper Nickel		<	2.5	ug/g ug/g							
		Lead		<	0.50	ug/g ug/g							
		Selenium			2.5	ug/g							
		Zinc		<	2.5	ug/g							
SW3051A6010	OC CRM4310	Silver			40	ug/g	38		25.1	51.9			
		Arsenic			390	ug/g	400		292	508			
		Barium			24	ug/g	25		0	51.3			
		Cadmium			16	ug/g	15		8.71	22			
		Chromium			13	ug/g	14		2.45	24.7			
		Copper			710	ug/g	730		592	866			
		Nickel			15	ug/g	17		6.2	27.5			
		Lead			5000	ug/g	5100			6469			
		Selenium Zinc			6.2 3000	ug/g ug/g	6.6 3000		0 2447	18.4 3575			
SW3051A6010	OC CRMD4310	Silver			41	ug/g	38		25.1	51.9		2	20
		Arsenic			400	ug/g	400		292	508		2	20
		Barium			26	ug/g	25		0	51.3		7	20
		Cadmium Chromium			16 15	ug/g	15 14		8.71 2.45	22 24.7		1 15	20 20
		Copper			740	ug/g ug/g	730		592	866		4	20
		Nickel			16	ug/g ug/g	17		6.2	27.5		6	20
		Lead			5300	ug/g	5100			6469		5	20
		Selenium			6.2	ug/g	6.6		0	18.4		1	20
		Zinc			3000	ug/g	3000			3575		0	20
SW3051A6010	OC DUP4310	Lead	21906-011		ERROR	ug/g					9		35
SW7471B	BLK4309	Mercury		<	0.02	ug/g							
SW7471B	CRM4309	Mercury			1.3	ug/g	1.1		0.49	1.76			
SW7471B	CRMD4309	Mercury			1.3	ug/g	1.1		0.49	1.76		1	20
SW7471B	DUP4309	Mercury	21894-009		1.4	ug/g					26		35
SW7471B	MS4309	Mercury	21894-009		1.1	ug/g	2.04	1	75	125			
SW7471B	MS4309	Mercury	21907-003		0.20	ug/g	0.172	113	75	125			

Absolute Resource associates

124 Heritage Avenue #10 Portsmouth, NH 03801

Jonathan O'Donnell CREDERE Associates 776 Main Street Westbrook, ME 04092 PO Number: None

Job ID: 21917

Date Received: 7/6/11

Project: POLYCLAD 10001086

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

Sue Sylvester

Maine

NH903

Principal, General Manager

Date of Approval: 7/14/2011

Total number of pages: 38

Absolute Resource Associates Certifications

New Hampshire 1732 Massachusetts M-NH902

Lab ID: 21917

Sample Association Table

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
CA-1	Water	7/5/2011 15:15	21917-001	
				VOCs in water by 8260 Petro & Haz Waste
CA-2	Water	7/5/2011 14:20	21917-002	
				Acid & Base/Neutral Extractables in water by 8270
				Water Digestion for ICP Analysis
				Silver in water by 6010
				Arsenic in water by 6010
				Barium in water by 6010
				Cadmium in water by 6010
				Chromium in water by 6010
				Copper in water by 6010
				Mercury in water by 7470
				Nickel in water by 6010
				Lead in water by 6010
				Selenium in water by 6010
				Zinc in water by 6010
				VOCs in water by 8260 Petro & Haz Waste
CA-3	Water	7/5/2011 15:30	21917-003	
				Water Digestion for ICP Analysis
				Silver in water by 6010
				Arsenic in water by 6010
				Barium in water by 6010
				Cadmium in water by 6010
				Chromium in water by 6010
				Mercury in water by 7470
				Lead in water by 6010
				Selenium in water by 6010
				VOCs in water by 8260 Petro & Haz Waste
MW-2	Water	7/5/2011 13:20	21917-004	
				Water Digestion for ICP Analysis
				Lead in water by 6010
				VOCs in water by 8260 Petro & Haz Waste
SS-3	Solid	7/5/2011 12:00	21917-005	
				Acid & Base/Neutral Extractables in solid by 8270
				Percent Dry Matter for Sample Calc by SM2540B,G

Job ID: 21917

Sample#: 21917-001

Sample ID: CA-1

Oranglada 7/5/44 45:45						_	_		
Sampled: 7/5/11 15:15		Quant		Instr Dil'n		Prep		alysis 	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time	Reference
dichlorodifluoromethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
chloromethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
vinyl chloride	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
bromomethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
chloroethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
trichlorofluoromethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
diethyl ether	< 5	5	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
acetone	< 50	50	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
1,1-dichloroethene	< 1	1	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
methylene chloride	< 5	5	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
carbon disulfide	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
methyl t-butyl ether (MTBE)	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
trans-1,2-dichloroethene	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
isopropyl ether (DIPE)	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
ethyl t-butyl ether (ETBE)	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
1,1-dichloroethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
t-butanol (TBA)	< 30	30	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
2-butanone (MEK)	< 10	10	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
2,2-dichloropropane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
cis-1,2-dichloroethene	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
chloroform	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
bromochloromethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
tetrahydrofuran (THF)	< 10	10	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
1,1,1-trichloroethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
1,1-dichloropropene	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
t-amyl-methyl ether (TAME)	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
carbon tetrachloride	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
trichloroethene	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
1,2-dichloropropane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
bromodichloromethane	< 0.6	0.6	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
1,4-dioxane	< 50	50	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
dibromomethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
4-methyl-2-pentanone (MIBK)	< 10	10	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
cis-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
toluene	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
trans-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
2-hexanone	< 10	10	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
1,1,2-trichloroethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
1,3-dichloropropane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
tetrachloroethene	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
dibromochloromethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:21	SW5030B8260B
			5						

Job ID: 21917

Sample#: 21917-001

Sample ID: CA-1

Sampled: 7/5/11 15:15		Quant		Instr Dil'n		Prep		Δna	lysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
chlorobenzene	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
1,1,1,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
styrene	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
bromoform	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
isopropylbenzene	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
1,1,2,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
1,2,3-trichloropropane	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
n-propylbenzene	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
bromobenzene	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
1,3,5-trimethylbenzene	4	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
2-chlorotoluene	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
4-chlorotoluene	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
tert-butylbenzene	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
1,2,4-trimethylbenzene	9	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
sec-butylbenzene	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
1,3-dichlorobenzene	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
4-isopropyltoluene	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
1,4-dichlorobenzene	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
1,2-dichlorobenzene	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
n-butylbenzene	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
1,2,4-trichlorobenzene	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
1,3,5-trichlorobenzene	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
hexachlorobutadiene	< 0.5	0.5	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
1,2,3-trichlorobenzene	< 2	2	ug/L	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
Surrogate Recovery		Limits	S							
dibromofluoromethane SUR	88	78-114	%	1	LMM		1101353 7		15:21	SW5030B8260B
toluene-D8 SUR	92	88-110	%	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B
4-bromofluorobenzene SUR	93	86-115	%	1	LMM		1101353 7	7/7/11	15:21	SW5030B8260B

Job ID: 21917

Sample#: 21917-002

Sample ID: CA-2
Matrix: Water

Sampled: 7/5/11 14:20		Quant	ı	Instr Dil'n		Prep	Ana	llysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time	Reference
dichlorodifluoromethane	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
chloromethane	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
vinyl chloride	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
bromomethane	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
chloroethane	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
trichlorofluoromethane	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
diethyl ether	< 25	25	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
acetone	< 250	250	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
1,1-dichloroethene	< 5	5	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
methylene chloride	< 25	25	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
carbon disulfide	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
methyl t-butyl ether (MTBE)	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
trans-1,2-dichloroethene	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
isopropyl ether (DIPE)	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
ethyl t-butyl ether (ETBE)	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
1,1-dichloroethane	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
t-butanol (TBA)	< 150	150	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
2-butanone (MEK)	< 50	50	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
2,2-dichloropropane	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
cis-1,2-dichloroethene	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
chloroform	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
bromochloromethane	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
tetrahydrofuran (THF)	< 50	50	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
1,1,1-trichloroethane	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
1,1-dichloropropene	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
t-amyl-methyl ether (TAME)	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
carbon tetrachloride	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
1,2-dichloroethane	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
benzene	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
trichloroethene	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
1,2-dichloropropane	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
bromodichloromethane	< 3.0	3.0	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
1,4-dioxane	< 250	250	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
dibromomethane	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
4-methyl-2-pentanone (MIBK)	< 50	50	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
cis-1,3-dichloropropene	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
toluene	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
trans-1,3-dichloropropene	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
2-hexanone	< 50	50	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
1,1,2-trichloroethane	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
1,3-dichloropropane	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
tetrachloroethene	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B
dibromochloromethane	< 10	10	ug/L	5	LMM		1101353 7/7/11	23:16	SW5030B8260B

Job ID: 21917

Sample#: 21917-002

Sample ID: CA-2
Matrix: Water

Sampled: 7/5/11 14:20		Quant	ĺ	Instr Dil'n		Prep	A	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time	Reference
1,2-dibromoethane (EDB)	< 10	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
chlorobenzene	< 10	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
1,1,1,2-tetrachloroethane	< 10	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
ethylbenzene	< 10	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
m&p-xylenes	< 10	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
o-xylene	< 10	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
styrene	< 10	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
bromoform	< 10	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
isopropylbenzene	< 10	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
1,1,2,2-tetrachloroethane	< 10	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
1,2,3-trichloropropane	< 10	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
n-propylbenzene	29	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
bromobenzene	< 10	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
1,3,5-trimethylbenzene	320	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
2-chlorotoluene	< 10	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
4-chlorotoluene	< 10	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
tert-butylbenzene	< 10	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
1,2,4-trimethylbenzene	710	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
sec-butylbenzene	43	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
1,3-dichlorobenzene	< 10	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
4-isopropyltoluene	100	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
1,4-dichlorobenzene	< 10	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
1,2-dichlorobenzene	< 10	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
n-butylbenzene	< 10	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	< 10	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
1,2,4-trichlorobenzene	< 10	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
1,3,5-trichlorobenzene	< 10	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
hexachlorobutadiene	< 2.5	2.5	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
naphthalene	< 25	25	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
1,2,3-trichlorobenzene	< 10	10	ug/L	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
Surrogate Recovery		Limits	s						
dibromofluoromethane SUR	85	78-114	%	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
toluene-D8 SUR	92	88-110	%	5	LMM		1101353 7/7/1	23:16	SW5030B8260B
4-bromofluorobenzene SUR	99	86-115	%	5	LMM		1101353 7/7/1	23:16	SW5030B8260B

Job ID: 21917

Sample#: 21917-003

Sample ID: CA-3
Matrix: Water

Sampled: 7/5/11 15:30		Quant	ı	nstr Dil'n		Prep	Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time	Reference
dichlorodifluoromethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
chloromethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
vinyl chloride	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
bromomethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
chloroethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
trichlorofluoromethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
diethyl ether	< 5	5	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
acetone	< 50	50	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
1,1-dichloroethene	< 1	1	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
methylene chloride	< 5	5	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
carbon disulfide	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
methyl t-butyl ether (MTBE)	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
trans-1,2-dichloroethene	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
isopropyl ether (DIPE)	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
ethyl t-butyl ether (ETBE)	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
1,1-dichloroethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
t-butanol (TBA)	< 30	30	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
2-butanone (MEK)	< 10	10	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
2,2-dichloropropane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
cis-1,2-dichloroethene	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
chloroform	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
bromochloromethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
tetrahydrofuran (THF)	< 10	10	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
1,1,1-trichloroethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
1,1-dichloropropene	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
t-amyl-methyl ether (TAME)	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
carbon tetrachloride	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
trichloroethene	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
1,2-dichloropropane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
bromodichloromethane	< 0.6	0.6	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
1,4-dioxane	< 50	50	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
dibromomethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
4-methyl-2-pentanone (MIBK)	< 10	10	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
cis-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
toluene	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
trans-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
2-hexanone	< 10	10	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
1,1,2-trichloroethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
1,3-dichloropropane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
tetrachloroethene	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B
dibromochloromethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	15:52	SW5030B8260B

Job ID: 21917

Sample#: 21917-003

Sample ID: CA-3

Sampled: 7/5/11 15:30		Quant		Instr Dil'n		Prep		Δna	lysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
chlorobenzene	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
1,1,1,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
styrene	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
bromoform	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
isopropylbenzene	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
1,1,2,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
1,2,3-trichloropropane	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
n-propylbenzene	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
bromobenzene	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
2-chlorotoluene	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
4-chlorotoluene	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
tert-butylbenzene	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
sec-butylbenzene	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
1,3-dichlorobenzene	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
4-isopropyltoluene	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
1,4-dichlorobenzene	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
1,2-dichlorobenzene	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
n-butylbenzene	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
1,2,4-trichlorobenzene	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
1,3,5-trichlorobenzene	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
hexachlorobutadiene	< 0.5	0.5	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
1,2,3-trichlorobenzene	< 2	2	ug/L	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
Surrogate Recovery		Limits	S							
dibromofluoromethane SUR	90	78-114	%	1	LMM		1101353		15:52	SW5030B8260B
toluene-D8 SUR	93	88-110	%	1	LMM		1101353	7/7/11	15:52	SW5030B8260B
4-bromofluorobenzene SUR	91	86-115	%	1	LMM		1101353	7/7/11	15:52	SW5030B8260B

Job ID: 21917

Sample#: 21917-004 Sample ID: MW-2

Sampled: 7/5/11 13:20		Quant	ı	nstr Dil'n		Prep	Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time	Reference
dichlorodifluoromethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
chloromethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
vinyl chloride	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
bromomethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
chloroethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
trichlorofluoromethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
diethyl ether	< 5	5	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
acetone	< 50	50	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
1,1-dichloroethene	< 1	1	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
methylene chloride	< 5	5	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
carbon disulfide	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
methyl t-butyl ether (MTBE)	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
trans-1,2-dichloroethene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
isopropyl ether (DIPE)	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
ethyl t-butyl ether (ETBE)	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
1,1-dichloroethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
t-butanol (TBA)	< 30	30	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
2-butanone (MEK)	< 10	10	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
2,2-dichloropropane	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
cis-1,2-dichloroethene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
chloroform	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
bromochloromethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
tetrahydrofuran (THF)	< 10	10	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
1,1,1-trichloroethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
1,1-dichloropropene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
t-amyl-methyl ether (TAME)	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
carbon tetrachloride	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
trichloroethene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
1,2-dichloropropane	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
bromodichloromethane	< 0.6	0.6	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
1,4-dioxane	< 50	50	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
dibromomethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
4-methyl-2-pentanone (MIBK)	< 10	10	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
cis-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
toluene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
trans-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
2-hexanone	< 10	10	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
1,1,2-trichloroethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
1,3-dichloropropane	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
tetrachloroethene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
dibromochloromethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B

Job ID: 21917

Sample#: 21917-004 Sample ID: MW-2

Sampled: 7/5/11 13:20		Quant		Instr Dil'n		Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time	Reference
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
chlorobenzene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
1,1,1,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
styrene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
bromoform	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
isopropylbenzene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
1,1,2,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
1,2,3-trichloropropane	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
n-propylbenzene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
bromobenzene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
2-chlorotoluene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
4-chlorotoluene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
tert-butylbenzene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
sec-butylbenzene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
1,3-dichlorobenzene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
4-isopropyltoluene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
1,4-dichlorobenzene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
1,2-dichlorobenzene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
n-butylbenzene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
1,2,4-trichlorobenzene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
1,3,5-trichlorobenzene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
hexachlorobutadiene	< 0.5	0.5	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
1,2,3-trichlorobenzene	< 2	2	ug/L	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
Surrogate Recovery		Limits	s						
dibromofluoromethane SUR	92	78-114	%	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
toluene-D8 SUR	96	88-110	%	1	LMM		1101353 7/7/11	16:24	SW5030B8260B
4-bromofluorobenzene SUR	93	86-115	%	1	LMM		1101353 7/7/11	16:24	SW5030B8260B

Job ID: 21917

Sample#: 21917-002

Sample ID: CA-2
Matrix: Water

Sampled: 7/5/11 14:20		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
N-nitrosodimethylamine	< 20	20	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
aniline	< 20	20	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
phenol	< 2	2	ug/L	1	AJD 7/8/11	4327	7/9/11	17:20	SW3510C8270D
2-chlorophenol	< 5	5	ug/L	1	AJD 7/8/11	4327	7/9/11	17:20	SW3510C8270D
bis(2-chloroethyl)ether	< 20	20	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
1,3-dichlorobenzene	< 20	20	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
1,4-dichlorobenzene	< 20	20	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
1,2-dichlorobenzene	< 20	20	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
benzyl alcohol	< 20	20	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
2-methylphenol	< 2	2	ug/L	1	AJD 7/8/11	4327	7/9/11	17:20	SW3510C8270D
bis(2-chloroisopropyl) ether	< 20	20	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
hexachloroethane	< 20	20	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
N-nitroso-di-N-propylamine	< 20	20	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
4-methylphenol	< 2	2	ug/L	1	AJD 7/8/11	4327	7/9/11	17:20	SW3510C8270D
nitrobenzene	< 20	20	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
isophorone	< 50	50	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
2-nitrophenol	< 2	2	ug/L	1	AJD 7/8/11	4327	7/9/11	17:20	SW3510C8270D
2,4-dimethylphenol	< 2	2	ug/L	1	AJD 7/8/11	4327	7/9/11	17:20	SW3510C8270D
bis(2-chloroethoxy)methane	< 50	50	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
2,4-dichlorophenol	< 5	5	ug/L	1	AJD 7/8/11	4327	7/9/11	17:20	SW3510C8270D
1,2,4-trichlorobenzene	< 50	50	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
naphthalene	< 5.0	5.0	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
benzoic acid	< 50	50	ug/L	1	AJD 7/8/11	4327	7/9/11	17:20	SW3510C8270D
4-chloroaniline	< 20	20	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
hexachlorobutadiene	< 20	20	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
4-chloro-3-methylphenol	< 2	2	ug/L	1	AJD 7/8/11	4327	7/9/11	17:20	SW3510C8270D
2-methylnaphthalene	< 5.0	5.0	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
hexachlorocyclopentadiene	< 100	100	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
2,4,6-trichlorophenol	< 2	2	ug/L	1	AJD 7/8/11	4327	7/9/11	17:20	SW3510C8270D
2,4,5-trichlorophenol	< 2	2	ug/L	1	AJD 7/8/11	4327	7/9/11	17:20	SW3510C8270D
2-chloronaphthalene	< 50	50	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
2-nitroaniline	< 20	20	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
acenaphthylene	< 5.0	5.0	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
dimethylphthalate	< 50	50	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
2,6-dinitrotoluene	< 20	20	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
2,4-dinitrotoluene	< 20	20	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
acenaphthene	< 5.0	5.0	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
3-nitroaniline	< 20	20	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
2,4-dinitrophenol	< 50	50	ug/L	1	AJD 7/8/11	4327	7/9/11	17:20	SW3510C8270D
dibenzofuran	< 5.0	5.0	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
4-nitrophenol	< 10	10	ug/L	1	AJD 7/8/11	4327	7/9/11	17:20	SW3510C8270D
fluorene	< 5.0	5.0	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D
diethyl phthalate	< 50	50	ug/L	10	AJD 7/8/11	4327	7/11/11	12:10	SW3510C8270D

Job ID: 21917

Sample#: 21917-002

Sample ID: CA-2 Matrix: Water

p-terphenyl-D14 SUR

Sampled: 7/5/11 14:20		Quant		Instr Dil'n	Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
4-chlorophenyl phenyl ether	< 50	50	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
4-nitroaniline	< 50	50	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
4,6-dinitro-2-methylphenol	< 20	20	ug/L	1	AJD 7/8/11	4327 7/9/11	17:20	SW3510C8270D
azobenzene	< 20	20	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
N-nitrosodiphenylamine	< 20	20	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
4-bromophenyl phenyl ether	< 20	20	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
hexachlorobenzene	< 20	20	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
pentachlorophenol	< 10	10	ug/L	1	AJD 7/8/11	4327 7/9/11	17:20	SW3510C8270D
phenanthrene	< 5.0	5.0	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
anthracene	< 5.0	5.0	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
carbazole	< 20	20	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
di-n-butylphthalate	< 50	50	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
fluoranthene	< 5.0	5.0	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
benzidine	< 300	300	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
pyrene	< 5.0	5.0	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
butyl benzyl phthalate	< 50	50	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
benzo(a)anthracene	< 5.0	5.0	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
chrysene	< 5.0	5.0	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
3,3'-dichlorobenzidine	< 300	300	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
bis(2-ethylhexyl)phthalate	< 50	50	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
di-n-octyl phthalate	< 20	20	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
benzo(b)fluoranthene	< 5.0	5.0	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
benzo(k)fluoranthene	< 5.0	5.0	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
benzo(a)pyrene	< 2.0	2.0	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
indeno(1,2,3-cd)pyrene	< 5.0	5.0	ug/L	10	AJD 7/8/11	4327 7/11/11		SW3510C8270D
dibenzo(a,h)anthracene	< 5.0	5.0	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
benzo(g,h,i)perylene	< 5.0	5.0	ug/L	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D
Surrogate Recovery		Limits						
2-fluorophenol SUR	31	21-100	%	1	AJD 7/8/11	4327 7/9/11	17:20	SW3510C8270D
phenol-D5 SUR	20	10-102	%	1	AJD 7/8/11	4327 7/9/11	17:20	SW3510C8270D
2,4,6-tribromophenol SUR	70	10-123	%	1	AJD 7/8/11	4327 7/9/11	17:20	SW3510C8270D
nitrobenzene-D5 SUR	69	35-114	%	10	AJD 7/8/11	4327 7/11/11		SW3510C8270D
2-fluorobiphenyl SUR	72	43-116	%	10	AJD 7/8/11	4327 7/11/11	12:10	SW3510C8270D

Note: Dilution was necessary due to the high concentrations of non-target compounds.

72

33-141

%

10

AJD 7/8/11

4327 7/11/11 12:10 SW3510C8270D

Job ID: 21917

Sample#: 21917-005

Sample ID: SS-3

Matrix: Solid Percent Dry: 85.2% Results expressed on a dry weight basis.

Sampled: 7/5/11 12:00		Quant		Instr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
N-nitrosodimethylamine	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
aniline	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
phenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
2-chlorophenol	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
bis(2-chloroethyl)ether	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
1,3-dichlorobenzene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
1,4-dichlorobenzene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
1,2-dichlorobenzene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
benzyl alcohol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
2-methylphenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
bis(2-chloroisopropyl) ether	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
hexachloroethane	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
N-nitroso-di-N-propylamine	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
4-methylphenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
nitrobenzene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
isophorone	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
2-nitrophenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
2,4-dimethylphenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
bis(2-chloroethoxy)methane	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
2,4-dichlorophenol	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
1,2,4-trichlorobenzene	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
naphthalene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
benzoic acid	< 6	6	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
4-chloroaniline	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
hexachlorobutadiene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
4-chloro-3-methylphenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
2-methylnaphthalene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
hexachlorocyclopentadiene	< 1	1	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
2,4,6-trichlorophenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
2,4,5-trichlorophenol	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
2-chloronaphthalene	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
2-nitroaniline	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
acenaphthylene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
dimethylphthalate	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
2,6-dinitrotoluene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
2,4-dinitrotoluene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
acenaphthene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
3-nitroaniline	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
2,4-dinitrophenol	< 6	6	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
dibenzofuran	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
4-nitrophenol	< 2	2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
fluorene	< 0.06	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
diethyl phthalate	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D

Job ID: 21917

Sample#: 21917-005

Sample ID: SS-3

Matrix: Solid Percent Dry: 85.2% Results expressed on a dry weight basis.

Sampled: 7/5/11 12:00		Quant	ĺ	Instr Dil'n	Prep		Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
4-chlorophenyl phenyl ether	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
4-nitroaniline	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
4,6-dinitro-2-methylphenol	< 2	2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
azobenzene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
N-nitrosodiphenylamine	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
4-bromophenyl phenyl ether	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
hexachlorobenzene	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
pentachlorophenol	< 1	1	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
phenanthrene	0.60	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
anthracene	0.12	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
carbazole	< 0.2	0.2	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
di-n-butylphthalate	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
fluoranthene	1.5	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
benzidine	< 3	3	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
pyrene	1.3	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
butyl benzyl phthalate	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
benzo(a)anthracene	0.69	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
chrysene	0.80	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
3,3'-dichlorobenzidine	< 3	3	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
bis(2-ethylhexyl)phthalate	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
di-n-octyl phthalate	< 0.6	0.6	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
benzo(b)fluoranthene	0.82	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
benzo(k)fluoranthene	0.68	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
benzo(a)pyrene	0.71	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
indeno(1,2,3-cd)pyrene	0.34	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
dibenzo(a,h)anthracene	0.14	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
benzo(g,h,i)perylene	0.36	0.06	ug/g	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
Surrogate Recovery		Limits	6						
2-fluorophenol SUR	55	21-100	%	1	AJD 7/6/11		7/9/11	18:35	SW3546/8270D
phenol-D5 SUR	57	10-102	%	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
2,4,6-tribromophenol SUR	54	10-123	%	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
nitrobenzene-D5 SUR	44	35-114	%	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D
2-fluorobiphenyl SUR	57	43-116	%	1	AJD 7/6/11		7/9/11	18:35	SW3546/8270D
p-terphenyl-D14 SUR	55	33-141	%	1	AJD 7/6/11	4314	7/9/11	18:35	SW3546/8270D

Job ID: 21917

Sample#: 21917-002

Sample ID: CA-2 Matrix: Water

Sampled: 7/5/11 14:20		Quant	ı	nstr Dil'n	Prep	Α	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
Arsenic	0.021	0.008	mg/L	1	BJS 7/7/11	4318 7/7/1	1 17:18	SW3005A6010C
Barium	0.13	0.05	mg/L	1	BJS 7/7/11	4318 7/7/1	1 17:18	SW3005A6010C
Cadmium	< 0.004	0.004	mg/L	1	BJS 7/7/11	4318 7/7/1	1 17:18	SW3005A6010C
Chromium	0.13	0.05	mg/L	1	BJS 7/7/11	4318 7/7/1	1 17:18	SW3005A6010C
Copper	0.23	0.05	mg/L	1	BJS 7/7/11	4318 7/7/1	1 17:18	SW3005A6010C
Lead	0.045	0.008	mg/L	1	BJS 7/7/11	4318 7/7/1	1 17:18	SW3005A6010C
Mercury	< 0.0002	0.0002	mg/L	1	BJS 7/12/11	4337 7/12/	11 12:52	SW7470A
Nickel	< 0.05	0.05	mg/L	1	BJS 7/7/11	4318 7/7/1	1 17:18	SW3005A6010C
Selenium	< 0.05	0.05	mg/L	1	BJS 7/7/11	4318 7/7/1	1 17:18	SW3005A6010C
Silver	< 0.007	0.007	mg/L	1	BJS 7/7/11	4318 7/7/1	1 17:18	SW3005A6010C
Zinc	0.12	0.05	mg/L	1	BJS 7/7/11	4318 7/7/1	1 17:18	SW3005A6010C

Sample#: 21917-003 Sample ID: CA-3 Matrix: Water

Sampled: 7/5/11 15:30 Quant Prep **Analysis** Instr Dil'n **Parameter** Limit Analyst Date **Batch** Date Time Result Units **Factor** Reference Arsenic < 0.008 0.008 mg/L 1 BJS 7/7/11 4318 7/7/11 17:25 SW3005A6010C Barium < 0.05 0.05 mg/L BJS 7/7/11 4318 7/7/11 17:25 SW3005A6010C 1 < 0.004 0.004 mg/L BJS 7/7/11 4318 7/7/11 17:25 Cadmium SW3005A6010C Chromium < 0.05 0.05 mg/L BJS 7/7/11 4318 7/7/11 17:25 SW3005A6010C 1 < 0.008 17:25 SW3005A6010C Lead 0.008 mg/L 1 BJS 7/7/11 4318 7/7/11 Mercury < 0.0002 0.0002 mg/L BJS 7/12/11 4337 7/12/11 12:49 SW7470A Selenium < 0.05 0.05 mg/L BJS 7/7/11 4318 7/7/11 17:25 SW3005A6010C 1 Silver < 0.007 0.007 mg/L BJS 7/7/11 4318 7/7/11 17:25 SW3005A6010C

Sample#: 21917-004 Sample ID: MW-2 Matrix: Water

Sampled: 7/5/11 13:20 Quant Instr Dil'n Prep **Analysis** Limit Analyst Date **Batch** Date Time **Parameter Factor** Result Units Reference 4318 7/7/11 17:32 SW3005A6010C Lead 0.008 0.008 mg/L BJS 7/7/11

Quality Control Report

124 Heritage Avenue Unit 10 Portsmouth, NH 03801 www.absoluteresourceassociates.com

Case Narrative Lab # 21917

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 3 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

Calibration

No exceptions noted.

Method Blank

VOC: The compound, hexachlorobutadiene, was detected in the BLK1101353 at 0.5ug/L. There is no impact to the data as this analyte was not detected in the associated field samples.

Surrogate Recoveries

No exceptions noted.

Laboratory Control Sample Results

VOC: The LCS1101353 did not meet the acceptance criteria for dichlorodifluoromethane and dibromochloromethane. These compounds are known to be problematic in the method. The LCSD1101353 did not meet the acceptance criteria for bromomethane. This compound showed high recovery. There is no impact to the data as this analyte was not detected in the associated samples.

ABN: The LCS/D4327 did not meet the acceptance criteria for phenol and 4-nitrophenol. These compounds are known to be problematic in the method.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Not requested for this project.

Other

ABN: The Base/Neutral portion of the sample extract for 21917-002 required a re-analysis at a dilution due to interferences caused by high concentrations of non-target compounds present in the sample chromatogram.

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

- QC Report -

Method QC O Parameter Associated Sample Result Mints MR Limits RPD RPD Limits RW5010882808 BLK1101333 dichlorodilucormshame				Q0 110	Υ'						
chloromehane < 2 uglt viryl chloride 2 uglt chloroehane 2 uglt chloroehane 2 uglt dethyl ether 10 uglt acetone 50 uglt 1,1-dichloroehane 1 uglt methylene chloride 5 uglt carbon disulfide 2 uglt methyl telvuly ether (HTRE) 2 uglt inspropyl ether (HPEF) 2 uglt <	Method	QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Limits	RPD	RPD Limit
viny chloride 2 ug/L chorosebane 2 ug/L trichiorofloromethane 2 ug/L delthyl ether 10 ug/L acetone 50 ug/L 1.1-dichlorosthane 1 ug/L erbron disulfide 2 ug/L rearn - 1.2 deficiorosthane 2 ug/L trans-1.2 deficiorosthane 2 ug/L isorroy ether (DPE) 2 ug/L ethyl E-buly ether (ETBE) 2 ug/L 1.1-dichlorosthane 2 ug/L 1.1-dichlorosthane 2 ug/L 2.2-dichloropropane 2 ug/L 3.5-dichlorosthane 2 ug/L 4.2-dichlorosthane 2 ug/L 4.2-dichlorosthane 2 ug/L 1.1-dichlorosthane 2 ug/L	SW5030B8260B	BLK1101353	dichlorodifluoromethane		<	2					
bomomethane 2 ug/L chloroelhane 2 ug/L inchioroflucromathane 2 ug/L diethyl ether 10 ug/L acetone 50 ug/L 1.1-dichloroefbene 1 ug/L methylevil ether (MTBE) 2 ug/L rams-12-dichloroefbene 2 ug/L isopopyl ether (IDFE) 2 ug/					<	2					
chloroethanen 2 ug/L trichhoroethanen 2 ug/L dieltryl eher 10 ug/L 1,1-dichloroethene 1 ug/L methylkene chloride 5 ug/L carbon disulfide 2 ug/L methyl Eurly ether (FIEE) 2 ug/L trans-1.2-dichloroethene 2 ug/L isorropyl ether (OIPE) 2 ug/L ethyl Eurly ether (ETEE) 2 ug/L 1,1-dichloroethane 2 ug/L Ebutano (TRA) 30 ug/L 2,2-dichloropropane 2 ug/L dis-1,2-dichloroethane 2 ug/L tetrahydrofuran (THF) 10 ug/L 1,1-dichloroethane 2 ug/L 1,1-dichloroethane 2 ug/L 1,2-dichloroethane 2 ug/L			•		<						
trichlorationromehane			bromomethane		<	2					
diethyle ther					<	2					
acetone					<						
1.1-dicklorocethene					<						
methylene chloride <					<	50					
carbon daulifide <					<						
methyl bully lether (MTBE) 2 ug/L isopropyl ether (DIPE) 2 ug/L ethyl bully ether (ETBE) 2 ug/L 1,1-dichloroether 2 ug/L 1-butanol (TBA) 30 ug/L 2-butanone (MEK) 10 ug/L 2-dichloropropane 2 ug/L cis-12-dichloroethene 2 ug/L chloroform 2 ug/L bromochloromethane 2 ug/L tetrahydrofuran (THF) 10 ug/L 1,1-dichloroptopene 2 ug/L t-myl-methyl ether (TAME) 2 ug/L carbon tetarchloride 2 ug/L thichloroethane 2 ug/L borzene 2 ug/L 1,2-dichloroptopane 2 ug/L trans-1,3-dichloroptopane 2			=		<						
trans-1,2-dichloroethene					<						
isopropyl ether (DIPE) <				E)	<	2					
ethyl t-butyl ether (ETBE) 2 ug/L 1,1-dichloroethane 2 ug/L t-butanol (TBA) 30 ug/L 2-butanone (MEK) 10 ug/L 2,2-dichloropropane 2 ug/L cis-1,2-dichloroethane 2 ug/L chloroform 2 ug/L bromochloromethane 2 ug/L tetrahydrofuran (THF) 10 ug/L 1,1-dichloroethane 2 ug/L t-amyl-methyl ether (TAME) 2 ug/L carbon tetrachloride 2 ug/L trichloroethane 2 ug/L benzene 2 ug/L trichloroethane 2 ug/L trichloroethane 2 ug/L trichloroementhane 2 ug/L dibromomethane 2 ug/L					<	2					
1.1-dichloroethane 2 ug/L L-butanon (MEK) 10 ug/L 2.2-dichloropropane 2 ug/L dis-1,2-dichloroethene 2 ug/L chloroform 2 ug/L bromochloromethane 2 ug/L terrahydrofuran (THF) 10 ug/L 1,1-tichloroethane 2 ug/L t-amyl-methyl ether (TAME) 2 ug/L carbon tetraholorde 2 ug/L t-amyl-methyl ether (TAME) 2 ug/L t-tribloroethane 2 ug/L terraholoropropane 2 ug/L tribloropropane 2 ug/L d-methyl-2-pentanone (MIBK) 10 ug/L d-is-1-3-dichloropropene 2 ug/L terraholoroethane 2 ug/L 1,2-dichloropropane			isopropyl ether (DIPE)		<	2					
t-butanol (TBA)					<						
2-butanone (MEK) < 10			1,1-dichloroethane		<	2	ug/L				
2,2-dicihloropropane <			t-butanol (TBA)		<	30	ug/L				
cis-1,2-dichloroethene <			2-butanone (MEK)		<	10	ug/L				
chloroform <			2,2-dichloropropane		<	2	ug/L				
bromochloromethane tetrahydrofuran (THF) 1,1,1-trichloroethane 1,1-dichloropropene 1,1-dichloropropene 1,2-dichloropropene 1,2-dichloroethane 1,2-dichloropthane 1,2-dichloropthane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,3-dichloropthane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,3-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,3-dichloropropane 1,1,1-trichloroethane 1,1,2-dichloropropane 1,2-dichloropropane 1,			cis-1,2-dichloroethene		<	2	ug/L				
tetrahydrofuran (THF) <					<	2	ug/L				
1,1,1-trichloroethane <			bromochloromethane		<	2	ug/L				
1,1-dichloropropene <			tetrahydrofuran (THF)		<	10	ug/L				
t-amyl-methyl ether (TAME)			1,1,1-trichloroethane		<	2	ug/L				
carbon tetrachloride 2 ug/L 1,2-dichloroethane 2 ug/L benzene 2 ug/L trichloroethene 2 ug/L 1,2-dichloropropane 2 ug/L bromodichloromethane 0.6 ug/L 1,4-dioxane 50 ug/L dibromomethane 2 ug/L 4-methyl-2-pentanone (MIBK) 10 ug/L cis-1,3-dichloropropene 2 ug/L trans-1,3-dichloropropene 2 ug/L 2-hexanone 10 ug/L 2-hexanone 10 ug/L 1,1,2-trichloroethane 2 ug/L tetrachloroethane 2 ug/L dibromochloromethane 2 ug/L 1,2-dibromoethane (EDB) 2 ug/L chlorobenzene 2 ug/L <td></td> <td></td> <td>1,1-dichloropropene</td> <td></td> <td><</td> <td>2</td> <td>ug/L</td> <td></td> <td></td> <td></td> <td></td>			1,1-dichloropropene		<	2	ug/L				
1,2-dichloroethane <			t-amyl-methyl ether (TAM	E)	<	2	ug/L				
benzene <			carbon tetrachloride		<	2	ug/L				
trichloroethene <			1,2-dichloroethane		<	2	ug/L				
1,2-dichloropropane <			benzene		<	2	ug/L				
bromodichloromethane < 0.6 ug/L			trichloroethene		<	2	ug/L				
1,4-dioxane < 50			1,2-dichloropropane		<	2	ug/L				
dibromomethane <			bromodichloromethane		<	0.6	ug/L				
4-methyl-2-pentanone (MIBK) <			1,4-dioxane		<	50	ug/L				
cis-1,3-dichloropropene < 2 ug/L			dibromomethane		<	2	ug/L				
toluene <			4-methyl-2-pentanone (Mi	BK)	<	10	ug/L				
trans-1,3-dichloropropene 2 ug/L 2-hexanone 10 ug/L 1,1,2-trichloroethane 2 ug/L 1,3-dichloropropane 2 ug/L tetrachloroethene 2 ug/L dibromochloromethane 2 ug/L 1,2-dibromoethane (EDB) 2 ug/L chlorobenzene 2 ug/L 1,1,1,2-tetrachloroethane 2 ug/L ethylbenzene 2 ug/L m&p-xylenes 2 ug/L o-xylene 2 ug/L			cis-1,3-dichloropropene		<	2	ug/L				
2-hexanone < 10 ug/L					<	2	ug/L				
1,1,2-trichloroethane 2 ug/L 1,3-dichloropropane 2 ug/L tetrachloroethene 2 ug/L dibromochloromethane 2 ug/L 1,2-dibromoethane (EDB) 2 ug/L chlorobenzene 2 ug/L 1,1,1,2-tetrachloroethane 2 ug/L ethylbenzene 2 ug/L m&p-xylenes 2 ug/L o-xylene 2 ug/L			trans-1,3-dichloropropene		<	2	ug/L				
1,3-dichloropropane <					<	10	ug/L				
tetrachloroethene < 2 ug/L dibromochloromethane < 2 ug/L 1,2-dibromoethane (EDB) < 2 ug/L chlorobenzene < 2 ug/L 1,1,1,2-tetrachloroethane < 2 ug/L ethylbenzene < 2 ug/L ethylbenzene < 2 ug/L o-xylene < 2 ug/L			1,1,2-trichloroethane		<	2	ug/L				
dibromochloromethane<2ug/L1,2-dibromoethane (EDB)<			1,3-dichloropropane		<	2	ug/L				
1,2-dibromoethane (EDB) <			tetrachloroethene		<	2	ug/L				
chlorobenzene <			dibromochloromethane		<	2	ug/L				
1,1,1,2-tetrachloroethane<			1,2-dibromoethane (EDB)		<	2	ug/L				
ethylbenzene < 2 ug/L m&p-xylenes < 2 ug/L o-xylene < 2 ug/L			chlorobenzene		<	2					
m&p-xylenes < 2 ug/L o-xylene < 2 ug/L			1,1,1,2-tetrachloroethane		<	2	ug/L				
o-xylene < 2 ug/L			ethylbenzene		<	2	ug/L				
			m&p-xylenes		<	2	ug/L				
styrene < 2 ug/L			o-xylene		<	2	ug/L				
			styrene		<	2	ug/L				

Method	QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Lim	nits	RPD	RPD Limit
SW5030B820	60B BLK1101353	bromoform		<	2	ug/L					
		isopropylbenzene		<	2	ug/L					
		1,1,2,2-tetrachloroethane		<	2	ug/L					
		1,2,3-trichloropropane		<	2	ug/L					
		n-propylbenzene		<	2	ug/L					
		bromobenzene		<	2	ug/L					
		1,3,5-trimethylbenzene		<	2	ug/L					
		2-chlorotoluene		<	2	ug/L					
		4-chlorotoluene		<	2	ug/L					
		tert-butylbenzene		<	2	ug/L					
		1,2,4-trimethylbenzene		<	2	ug/L					
		sec-butylbenzene		<	2	ug/L					
		1,3-dichlorobenzene		<	2	ug/L					
		4-isopropyltoluene		<	2	ug/L					
		1,4-dichlorobenzene		<	2	ug/L					
		1,2-dichlorobenzene		<	2	ug/L					
		n-butylbenzene		<	2	ug/L					
		1,2-dibromo-3-chloropropa	ane	<	2	ug/L					
		1,2,4-trichlorobenzene		<	2	ug/L					
		1,3,5-trichlorobenzene		<	2	ug/L					
		hexachlorobutadiene			0.5	ug/L					
		naphthalene		<	5	ug/L					
		1,2,3-trichlorobenzene		<	2	ug/L					
		dibromofluoromethane SU	R		96	%		78	114		
		toluene-D8 SUR			96	%		88	110		
		4-bromofluorobenzene SU	R		94	%		86	115		

SW5030B8260B	LCS1101353	dichlorodifluoromethane										
		dichiorodinaorometrane			14	ug/L	20	68	*	70	130	
		chloromethane			17	ug/L	20	85		70	130	
		vinyl chloride			18	ug/L	20	92		70	130	
		bromomethane			26	ug/L	20	130		70	130	
		chloroethane			19	ug/L	20	93		70	130	
		trichlorofluoromethane			17	ug/L	20	87		70	130	
		diethyl ether			19	ug/L	20	95		70	130	
		acetone		<	50	ug/L	20	98				
		1,1-dichloroethene			15	ug/L	20	77		70	130	
		methylene chloride			18	ug/L	20	91		70	130	
		carbon disulfide			17	ug/L	20	83		70	130	
		methyl t-butyl ether (MTB	E)		19	ug/L	20	94		70	130	
		trans-1,2-dichloroethene	•		17	ug/L	20	85		70	130	
		isopropyl ether (DIPE)			19	ug/L	20	93		70	130	
		ethyl t-butyl ether (ETBE)			19	ug/L	20	93		70	130	
		1,1-dichloroethane			18	ug/L	20	88		70	130	
		t-butanol (TBA)			100	ug/L	100	103		70	130	
		2-butanone (MEK)			17	ug/L	20	85		70	130	
		2,2-dichloropropane			15	ug/L	20	75		70	130	
		cis-1,2-dichloroethene			19	ug/L	20	94		70	130	
		chloroform			19	ug/L	20	94		70	130	
		bromochloromethane			19	ug/L	20	96		70	130	
		tetrahydrofuran (THF)			19	ug/L	20	93		70	130	
		1,1,1-trichloroethane			17	ug/L	20	86		70	130	
		1,1-dichloropropene			19	ug/L	20	97		70	130	
		t-amyl-methyl ether (TAM	E)		18	ug/L	20	91		70	130	
		carbon tetrachloride	•		16	ug/L	20	82		70	130	
		1,2-dichloroethane			19	ug/L	20	95		70	130	
		benzene			19	ug/L	20	97		70	130	
		trichloroethene			19	ug/L	20	93		70	130	
		1,2-dichloropropane			19	ug/L	20	96		70	130	
		bromodichloromethane			17	ug/L	20	85		70	130	
		1,4-dioxane		<	50	ug/L	40	106		70	130	
		dibromomethane			19	ug/L	20	93		70	130	
		4-methyl-2-pentanone (MI	BK)		17	ug/L	20	84		70	130	
		cis-1,3-dichloropropene	,		17	ug/L	20	85		70	130	
		toluene			19	ug/L	20	95		70	130	
		trans-1,3-dichloropropene			18	ug/L	20	89		70	130	
		2-hexanone			16	ug/L	20	80		70	130	
		1,1,2-trichloroethane			19	ug/L	20	95		70	130	
		1,3-dichloropropane			18	ug/L	20	90		70	130	
		tetrachloroethene			20	ug/L	20	100		70	130	
		dibromochloromethane			14	ug/L	20	69	*	70	130	
		1,2-dibromoethane (EDB)			17	ug/L	20	87		70	130	
		chlorobenzene			19	ug/L	20	97		70	130	
		1,1,1,2-tetrachloroethane			16	ug/L	20	79		70	130	
		ethylbenzene			18	ug/L	20	89		70	130	
		m&p-xylenes			40	ug/L	40	99		70	130	
		o-xylene			21	ug/L ug/L	20	105		70	130	
		styrene			18	ug/L ug/L	20	89		70	130	
		bromoform			16	ug/L ug/L	20	82		70	130	

Method	QC ID	Parameter Ass	sociated Sample	Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limi
SW5030B82	60B LCS1101353	isopropylbenzene		19	ug/L	20	97	70	130		
		1,1,2,2-tetrachloroethane		21	ug/L	20	105	70	130		
		1,2,3-trichloropropane		20	ug/L	20	98	70	130		
		n-propylbenzene		21	ug/L	20	106	70	130		
		bromobenzene		20	ug/L	20	98	70	130		
		1,3,5-trimethylbenzene		20	ug/L	20	101	70	130		
		2-chlorotoluene		21	ug/L	20	106	70	130		
		4-chlorotoluene		21	ug/L	20	103	70	130		
		tert-butylbenzene		20	ug/L	20	102	70	130		
		1,2,4-trimethylbenzene		21	ug/L	20	103	70	130		
		sec-butylbenzene		21	ug/L	20	106	70	130		
		1,3-dichlorobenzene		21	ug/L	20	107	70	130		
		4-isopropyltoluene		21	ug/L	20	105	70	130		
		1,4-dichlorobenzene		20	ug/L	20	98	70	130		
		1,2-dichlorobenzene		21	ug/L	20	103	70	130		
		n-butylbenzene		20	ug/L	20	102	70	130		
		1,2-dibromo-3-chloropropane		14	ug/L	20	70	70	130		
		1,2,4-trichlorobenzene		18	ug/L	20	91	70	130		
		1,3,5-trichlorobenzene		19	ug/L	20	96	70	130		
		hexachlorobutadiene		20	ug/L	20	101	70	130		
		naphthalene		19	ug/L	20	97	70	130		
		1,2,3-trichlorobenzene		20	ug/L	20	100	70	130		
		dibromofluoromethane SUR		92	%			78	114		
		toluene-D8 SUR		96	%			88	110		
		4-bromofluorobenzene SUR		100	%			86	115		

Method	QC ID	Parameter	Associated Sample		Result	Units /	Amt Added	%R	Li	mits	RPD	RPD Limit
SW5030B8260B	B LCSD1101353	dichlorodifluoromethane			14	ug/L	20	70	70	130	2	20
		chloromethane			17	ug/L	20	87	70	130	2	20
		vinyl chloride			19	ug/L	20	96	70	130	4	20
		bromomethane			26	ug/L	20	131	* 70	130	1	20
		chloroethane			19	ug/L	20	94	70	130	2	20
		trichlorofluoromethane			18	ug/L	20	91	70	130	4	20
		diethyl ether			20	ug/L	20	99	70	130	5	20
		acetone		<	50	ug/L	20	97			1	20
		1,1-dichloroethene			16	ug/L	20	82	70	130	6	20
		methylene chloride			18	ug/L	20	91	70	130	0	20
		carbon disulfide			17	ug/L	20	87	70	130	4	20
		methyl t-butyl ether (MTB	E)		19	ug/L	20	97	70	130	3	20
		trans-1,2-dichloroethene			17	ug/L	20	86	70	130	1	20
		isopropyl ether (DIPE)			20	ug/L	20	99	70	130	6	20
		ethyl t-butyl ether (ETBE)			19	ug/L	20	95	70	130	2	20
		1,1-dichloroethane			18	ug/L	20	91	70	130	3	20
		t-butanol (TBA)			110	ug/L	100	110	70	130	7	20
		2-butanone (MEK)			18	ug/L	20	92	70	130	9	20
		2,2-dichloropropane			15	ug/L	20	76	70	130	1	20
		cis-1,2-dichloroethene			19	ug/L	20	95	70	130	1	20
		chloroform			20	ug/L	20	98	70	130	4	20
		bromochloromethane			20	ug/L	20	99	70	130	2	20
		tetrahydrofuran (THF)			20	ug/L	20	100	70	130	7	20
		1,1,1-trichloroethane			18	ug/L	20	92	70	130	7	20
		1,1-dichloropropene			20	ug/L	20	100	70	130	3	20
		t-amyl-methyl ether (TAM	E)		19	ug/L	20	94	70	130	3	20
		carbon tetrachloride	,		18	ug/L	20	91	70	130	10	20
		1,2-dichloroethane			20	ug/L	20	98	70	130	3	20
		benzene			20	ug/L	20	100	70	130	3	20
		trichloroethene			19	ug/L	20	93	70	130	0	20
		1,2-dichloropropane			20	ug/L	20	100	70	130	3	20
		bromodichloromethane			19	ug/L	20	93	70	130	8	20
		1,4-dioxane		<	50	ug/L	40	121	70	130	13	20
		dibromomethane			19	ug/L	20	97	70	130	4	20
		4-methyl-2-pentanone (M	IBK)		18	ug/L	20	92	70	130	9	20
		cis-1,3-dichloropropene	,		18	ug/L	20	88	70	130	4	20
		toluene			20	ug/L	20	99	70	130	4	20
		trans-1,3-dichloropropene			19	ug/L	20	94	70	130	6	20
		2-hexanone			17	ug/L	20	84	70	130	5	20
		1,1,2-trichloroethane			20	ug/L	20	98	70	130	3	20
		1,3-dichloropropane			18	ug/L	20	92	70	130	3	20
		tetrachloroethene			20	ug/L	20	99	70	130	1	20
		dibromochloromethane			15	ug/L	20	76	70	130	10	20
		1,2-dibromoethane (EDB)			18	ug/L	20	88	70	130	2	20
		chlorobenzene			20	ug/L	20	100	70	130	2	20
		1,1,1,2-tetrachloroethane			17	ug/L	20	84	70	130	7	20
		ethylbenzene			18	ug/L	20	90	70	130	1	20
		m&p-xylenes			40	ug/L	40	101	70	130	1	20
		o-xylene			21	ug/L	20	105	70	130	0	20
		styrene			18	ug/L	20	92	70	130	3	20
		bromoform			18	ug/L ug/L	20	88	70 70	130	7	20
		טוטוטוטוווו			10	ug/L	20	OO	70	130	1	20

Method	QC ID	Parameter	Associated Sample	Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limit
SW5030B826	0B LCSD1101353	isopropylbenzene		19	ug/L	20	97	70	130	1	20
		1,1,2,2-tetrachloroethane		22	ug/L	20	108	70	130	3	20
		1,2,3-trichloropropane		20	ug/L	20	99	70	130	1	20
		n-propylbenzene		21	ug/L	20	106	70	130	0	20
		bromobenzene		20	ug/L	20	100	70	130	2	20
		1,3,5-trimethylbenzene		20	ug/L	20	101	70	130	0	20
		2-chlorotoluene		21	ug/L	20	106	70	130	0	20
		4-chlorotoluene		21	ug/L	20	103	70	130	0	20
		tert-butylbenzene		21	ug/L	20	105	70	130	3	20
		1,2,4-trimethylbenzene		21	ug/L	20	103	70	130	0	20
		sec-butylbenzene		21	ug/L	20	105	70	130	1	20
		1,3-dichlorobenzene		22	ug/L	20	108	70	130	1	20
		4-isopropyltoluene		21	ug/L	20	105	70	130	0	20
		1,4-dichlorobenzene		20	ug/L	20	100	70	130	2	20
		1,2-dichlorobenzene		21	ug/L	20	104	70	130	1	20
		n-butylbenzene		20	ug/L	20	101	70	130	1	20
		1,2-dibromo-3-chloropropa	ne	16	ug/L	20	82	70	130	15	20
		1,2,4-trichlorobenzene		19	ug/L	20	93	70	130	2	20
		1,3,5-trichlorobenzene		19	ug/L	20	95	70	130	1	20
		hexachlorobutadiene		20	ug/L	20	98	70	130	3	20
		naphthalene		20	ug/L	20	101	70	130	5	20
		1,2,3-trichlorobenzene		21	ug/L	20	103	70	130	3	20
		dibromofluoromethane SUI	R	94	%			78	114		
		toluene-D8 SUR		95	%			88	110		
		4-bromofluorobenzene SU	R	104	%			86	115		

Method	QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Limits	RPD	RPD Limit
SW3510C8270	D BLK4327	N-nitrosodimethylamine		<	2	ug/L				
		aniline		<	2	ug/L				
		phenol		<	2	ug/L				
		2-chlorophenol		<	5	ug/L				
		bis(2-chloroethyl)ether		<	2	ug/L				
		1,3-dichlorobenzene		<	2	ug/L				
		1,4-dichlorobenzene		<	2	ug/L				
		1,2-dichlorobenzene		<	2	ug/L				
		benzyl alcohol		<	2	ug/L				
		2-methylphenol		<	2	ug/L				
		bis(2-chloroisopropyl) ethe	r	<	2	ug/L				
		hexachloroethane		<	2	ug/L				
		N-nitroso-di-N-propylamine	9	<	2	ug/L				
		4-methylphenol		<	2	ug/L				
		nitrobenzene		<	2	ug/L				
		isophorone		<	5	ug/L				
		2-nitrophenol		<	2	ug/L				
		2,4-dimethylphenol		<	2	ug/L				
		bis(2-chloroethoxy)methar	ne	<	5	ug/L				
		2,4-dichlorophenol		<	5	ug/L				
		1,2,4-trichlorobenzene		<	5	ug/L				
		naphthalene		<	0.5	ug/L				
		benzoic acid		<	50	ug/L				
		4-chloroaniline		<	2	ug/L				
		hexachlorobutadiene		<	2	ug/L				
		4-chloro-3-methylphenol		<	2	ug/L				
		2-methylnaphthalene		<	0.5	ug/L				
		hexachlorocyclopentadien	е	<	10	ug/L				
		2,4,6-trichlorophenol		<	2	ug/L				
		2,4,5-trichlorophenol		<	2	ug/L				
		2-chloronaphthalene		<	5	ug/L				
		2-nitroaniline		<	2	ug/L				
		acenaphthylene		<	0.5	ug/L				
		dimethylphthalate		<	5	ug/L				
		2,6-dinitrotoluene		<	2	ug/L				
		2,4-dinitrotoluene		<	2	ug/L				
		acenaphthene		<	0.5	ug/L				
		3-nitroaniline		<	2	ug/L				
		2,4-dinitrophenol		<	50	ug/L				
		dibenzofuran		<	0.5	ug/L				
		4-nitrophenol		<	10	ug/L				
		fluorene		<	0.5	ug/L				
		diethyl phthalate		<	5	ug/L				
		4-chlorophenyl phenyl eth	er	<	5	ug/L				
		4-nitroaniline	-	<	5	ug/L				
		4,6-dinitro-2-methylphenol		<	20	ug/L				
		azobenzene		<	2	ug/L				
		N-nitrosodiphenylamine		<	2	ug/L				
		4-bromophenyl phenyl eth	er	<	2	ug/L				
		hexachlorobenzene	~ .	<	2	ug/L				
		HONGOHIOLODOHZOHO		-	_	ug/ -				

Method	QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Lir	nits	RPD	RPD Limit
SW3510C82	270D BLK4327	phenanthrene		<	0.5	ug/L					
		anthracene		<	0.5	ug/L					
		carbazole		<	2	ug/L					
		di-n-butylphthalate		<	5	ug/L					
		fluoranthene		<	0.5	ug/L					
		benzidine		<	30	ug/L					
		pyrene		<	0.5	ug/L					
		butyl benzyl phthalate		<	5	ug/L					
		benzo(a)anthracene		<	0.5	ug/L					
		chrysene		<	0.5	ug/L					
		3,3'-dichlorobenzidine		<	30	ug/L					
		bis(2-ethylhexyl)phthalate		<	5	ug/L					
		di-n-octyl phthalate		<	2	ug/L					
		benzo(b)fluoranthene		<	0.5	ug/L					
		benzo(k)fluoranthene		<	0.5	ug/L					
		benzo(a)pyrene		<	0.2	ug/L					
		indeno(1,2,3-cd)pyrene		<	0.5	ug/L					
		dibenzo(a,h)anthracene		<	0.5	ug/L					
		benzo(g,h,i)perylene		<	0.5	ug/L					
		2-fluorophenol SUR			30	%		21	100		
		phenol-D5 SUR			19	%		10	102		
		2,4,6-tribromophenol SUR			54	%		10	123		
		nitrobenzene-D5 SUR			61	%		35	114		
		2-fluorobiphenyl SUR			73	%		43	116		
		p-terphenyl-D14 SUR			75	%		33	141		

Method	QC ID	Parameter	Associated Sample		Result	Units A	Amt Added	%R		Li	mits	RPD	RPD Limit
SW3510C827	0D LCS4327	N-nitrosodimethylamine		<	2	ug/L							
		aniline		<	2	ug/L							
		phenol			22	ug/L	100	22	*	30	130		
		2-chlorophenol			64	ug/L	100	64		30	130		
		bis(2-chloroethyl)ether		<	2	ug/L							
		1,3-dichlorobenzene		<	2	ug/L							
		1,4-dichlorobenzene		<	2	ug/L							
		1,2-dichlorobenzene		<	2	ug/L							
		benzyl alcohol		<	2	ug/L							
		2-methylphenol		<	2	ug/L							
		bis(2-chloroisopropyl) ethe	er	<	2	ug/L							
		hexachloroethane		<	2	ug/L							
		N-nitroso-di-N-propylamin	е	<	2	ug/L							
		4-methylphenol		<	2	ug/L							
		nitrobenzene		<	2	ug/L							
		isophorone		<	5	ug/L							
		2-nitrophenol		<	2	ug/L							
		2,4-dimethylphenol		<	2	ug/L							
		bis(2-chloroethoxy)methal	ne	<	5	ug/L							
		2,4-dichlorophenol		<	5	ug/L							
		1,2,4-trichlorobenzene		<	5	ug/L							
		naphthalene			26	ug/L	40	65		40	140		
		benzoic acid		<	50	ug/L							
		4-chloroaniline		<	2	ug/L							
		hexachlorobutadiene		<	2	ug/L							
		4-chloro-3-methylphenol			64	ug/L	100	64		30	130		
		2-methylnaphthalene			26	ug/L	40	65		40	140		
		hexachlorocyclopentadien	ne	<	10	ug/L							
		2,4,6-trichlorophenol		<	2	ug/L							
		2,4,5-trichlorophenol		<	2	ug/L							
		2-chloronaphthalene		<	5	ug/L							
		2-nitroaniline		<	2	ug/L							
		acenaphthylene			28	ug/L	40	70		40	140		
		dimethylphthalate		<	5	ug/L							
		2,6-dinitrotoluene		<	2	ug/L							
		2,4-dinitrotoluene		<	2	ug/L							
		acenaphthene			27	ug/L							
		3-nitroaniline		<	2	ug/L							
		2,4-dinitrophenol		<	50	ug/L							
		dibenzofuran		<	0.5	ug/L							
		4-nitrophenol			21	ug/L	100	21	*	30	130		
		fluorene			29	ug/L	40	73		40	140		
		diethyl phthalate		<	5	ug/L							
		4-chlorophenyl phenyl eth	er	<	5	ug/L							
		4-nitroaniline	-	<	5	ug/L							
		4,6-dinitro-2-methylphenol	1	<	20	ug/L							
		azobenzene		<	2	ug/L							
		N-nitrosodiphenylamine		<	2	ug/L							
		4-bromophenyl phenyl eth	ier	<	2	ug/L							
		hexachlorobenzene	· = ·	<	2	ug/L							
					_	ug/L	100						

Method	QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limi
SW3510C827	OD LCS4327	phenanthrene			27	ug/L	40	66	40	140		
		anthracene			27	ug/L	40	68	40	140		
		carbazole		<	2	ug/L						
		di-n-butylphthalate		<	5	ug/L						
		fluoranthene			29	ug/L	40	73	40	140		
		benzidine		<	30	ug/L						
		pyrene			32	ug/L	40	80	40	140		
		butyl benzyl phthalate		<	5	ug/L						
		benzo(a)anthracene			29	ug/L	40	73	40	140		
		chrysene			30	ug/L	40	74	40	140		
		3,3'-dichlorobenzidine		<	30	ug/L						
		bis(2-ethylhexyl)phthalate		<	5	ug/L						
		di-n-octyl phthalate		<	2	ug/L						
		benzo(b)fluoranthene			29	ug/L	40	71	40	140		
		benzo(k)fluoranthene			30	ug/L	40	76	40	140		
		benzo(a)pyrene			30	ug/L	40	75	40	140		
		indeno(1,2,3-cd)pyrene			28	ug/L	40	71	40	140		
		dibenzo(a,h)anthracene			28	ug/L	40	70	40	140		
		benzo(g,h,i)perylene			28	ug/L	40	71	40	140		
		2-fluorophenol SUR			34	%			21	100		
		phenol-D5 SUR			23	%			10	102		
		2,4,6-tribromophenol SUR			64	%			10	123		
		nitrobenzene-D5 SUR			68	%			35	114		
		2-fluorobiphenyl SUR			78	%			43	116		
		p-terphenyl-D14 SUR			80	%			33	141		

Method	QC ID	Parameter	Associated Sample		Result	Units A	Amt Added	%R		Li	mits	RPD	RPD Limit
SW3510C827	OD LCSD4327	N-nitrosodimethylamine		<	2	ug/L							
		aniline		<	2	ug/L							
		phenol			21	ug/L	100	21	*	30	130	5	20
		2-chlorophenol			64	ug/L	100	64		30	130	0	20
		bis(2-chloroethyl)ether		<	2	ug/L							
		1,3-dichlorobenzene		<	2	ug/L							
		1,4-dichlorobenzene		<	2	ug/L							
		1,2-dichlorobenzene		<	2	ug/L							
		benzyl alcohol		<	2	ug/L							
		2-methylphenol		<	2	ug/L							
		bis(2-chloroisopropyl) ethe	er	<	2	ug/L							
		hexachloroethane		<	2	ug/L							
		N-nitroso-di-N-propylamin	е	<	2	ug/L							
		4-methylphenol		<	2	ug/L							
		nitrobenzene		<	2	ug/L							
		isophorone		<	5	ug/L							
		2-nitrophenol		<	2	ug/L							
		2,4-dimethylphenol		<	2	ug/L							
		bis(2-chloroethoxy)methal	ne	<	5	ug/L							
		2,4-dichlorophenol		<	5	ug/L							
		1,2,4-trichlorobenzene		<	5	ug/L							
		naphthalene			26	ug/L	40	64		40	140	1	20
		benzoic acid		<	50	ug/L							
		4-chloroaniline		<	2	ug/L							
		hexachlorobutadiene		<	2	ug/L							
		4-chloro-3-methylphenol			63	ug/L	100	63		30	130	0	20
		2-methylnaphthalene			25	ug/L	40	64		40	140	3	20
		hexachlorocyclopentadier	ne	<	10	ug/L							
		2,4,6-trichlorophenol		<	2	ug/L							
		2,4,5-trichlorophenol		<	2	ug/L							
		2-chloronaphthalene		<	5	ug/L							
		2-nitroaniline		<	2	ug/L							
		acenaphthylene			28	ug/L	40	70		40	140	0	20
		dimethylphthalate		<	5	ug/L							
		2,6-dinitrotoluene		<	2	ug/L							
		2,4-dinitrotoluene		<	2	ug/L							
		acenaphthene			27	ug/L							
		3-nitroaniline		<	2	ug/L							
		2,4-dinitrophenol		<	50	ug/L							
		dibenzofuran		<	0.5	ug/L							
		4-nitrophenol			19	ug/L	100	19	*	30	130	7	20
		fluorene			28	ug/L	40	70		40	140	3	20
		diethyl phthalate		<	5	ug/L							
		4-chlorophenyl phenyl eth	er	<	5	ug/L							
		4-nitroaniline		<	5	ug/L							
		4,6-dinitro-2-methylpheno	I	<	20	ug/L							
		azobenzene		<	2	ug/L							
		N-nitrosodiphenylamine		<	2	ug/L							
		4-bromophenyl phenyl eth	ner	<	2	ug/L							
		hexachlorobenzene		<	2	ug/L							
		pentachlorophenol			51	ug/L	100	51		30	130	5	20

Method	QC ID	Parameter	Associated Sample		Result	Units A	Amt Added	%R	Liı	mits	RPD	RPD Limit
SW3510C8270	D LCSD4327	phenanthrene			26	ug/L	40	66	40	140	1	20
		anthracene			28	ug/L	40	69	40	140	2	20
		carbazole		<	2	ug/L						
		di-n-butylphthalate		<	5	ug/L						
		fluoranthene			29	ug/L	40	71	40	140	2	20
		benzidine		<	30	ug/L						
		pyrene			32	ug/L	40	81	40	140	1	20
		butyl benzyl phthalate		<	5	ug/L						
		benzo(a)anthracene			29	ug/L	40	73	40	140	0	20
		chrysene			29	ug/L	40	74	40	140	1	20
		3,3'-dichlorobenzidine		<	30	ug/L						
		bis(2-ethylhexyl)phthalate		<	5	ug/L						
		di-n-octyl phthalate		<	2	ug/L						
		benzo(b)fluoranthene			29	ug/L	40	71	40	140	0	20
		benzo(k)fluoranthene			29	ug/L	40	73	40	140	4	20
		benzo(a)pyrene			29	ug/L	40	73	40	140	3	20
		indeno(1,2,3-cd)pyrene			28	ug/L	40	70	40	140	1	20
		dibenzo(a,h)anthracene			28	ug/L	40	70	40	140	1	20
		benzo(g,h,i)perylene			28	ug/L	40	70	40	140	1	20
		2-fluorophenol SUR			34	%			21	100		
		phenol-D5 SUR			22	%			10	102		
		2,4,6-tribromophenol SUR			66	%			10	123		
		nitrobenzene-D5 SUR			66	%			35	114		
		2-fluorobiphenyl SUR			71	%			43	116		
		p-terphenyl-D14 SUR			80	%			33	141		

Method	QC ID	Parameter Associated S	Sample	Result	Units Amt Added	%R	Limits	RPD	RPD Limi
SW3546/8270D	BLK4314	N-nitrosodimethylamine	<	0.2	ug/g				
		aniline	<	0.2	ug/g				
		phenol	<	0.2	ug/g				
		2-chlorophenol	<	0.5	ug/g				
		bis(2-chloroethyl)ether	<	0.2	ug/g				
		1,3-dichlorobenzene	<	0.2	ug/g				
		1,4-dichlorobenzene	<	0.2	ug/g				
		1,2-dichlorobenzene	<	0.2	ug/g				
		benzyl alcohol	<	0.2	ug/g				
		2-methylphenol	<	0.2	ug/g				
		bis(2-chloroisopropyl) ether	<	0.2	ug/g				
		hexachloroethane	<	0.2	ug/g				
		N-nitroso-di-N-propylamine	<	0.2	ug/g				
		4-methylphenol	<	0.2	ug/g				
		nitrobenzene	<	0.2	ug/g				
		isophorone	<	0.5	ug/g				
		2-nitrophenol	<	0.2	ug/g				
		2,4-dimethylphenol	<	0.2	ug/g				
		bis(2-chloroethoxy)methane	<	0.5	ug/g				
		2,4-dichlorophenol	<	0.5	ug/g				
		1,2,4-trichlorobenzene	<	0.5	ug/g				
		naphthalene	<	0.05	ug/g				
		benzoic acid	<	5.0	ug/g				
		4-chloroaniline	<	0.2	ug/g				
		hexachlorobutadiene	<	0.2	ug/g				
		4-chloro-3-methylphenol	<	0.2	ug/g				
		2-methylnaphthalene	<	0.05	ug/g				
		hexachlorocyclopentadiene	<	1.0	ug/g				
		2,4,6-trichlorophenol	<	0.2	ug/g				
		2,4,5-trichlorophenol	<	0.2	ug/g				
		2-chloronaphthalene	<	0.5	ug/g				
		2-nitroaniline	<	0.2	ug/g				
		acenaphthylene	<	0.05	ug/g				
		dimethylphthalate	<	0.5	ug/g				
		2,6-dinitrotoluene	<	0.2	ug/g				
		2,4-dinitrotoluene	<	0.2	ug/g				
		acenaphthene	<	0.05	ug/g				
		3-nitroaniline	<	0.2	ug/g				
		2,4-dinitrophenol	<	5.0	ug/g				
		dibenzofuran	<	0.05	ug/g				
		4-nitrophenol	<	1.0	ug/g				
		fluorene	<	0.05	ug/g				
		diethyl phthalate	<	0.5	ug/g				
		4-chlorophenyl phenyl ether	<	0.5	ug/g				
		4-nitroaniline	<	0.5	ug/g				
		4,6-dinitro-2-methylphenol	<	2.0	ug/g				
		azobenzene	<	0.2	ug/g				
		N-nitrosodiphenylamine	<	0.2	ug/g				
		4-bromophenyl phenyl ether	<	0.2	ug/g				
		hexachlorobenzene	<	0.2	ug/g ug/g				
		HONGOINGONG	•	0.2	49/9				

Method	QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Lin	nits	RPD	RPD Limit
SW3546/8270D	BLK4314	phenanthrene		<	0.05	ug/g					
		anthracene		<	0.05	ug/g					
		carbazole		<	0.2	ug/g					
		di-n-butylphthalate		<	0.5	ug/g					
		fluoranthene		<	0.05	ug/g					
		benzidine		<	3.0	ug/g					
		pyrene		<	0.05	ug/g					
		butyl benzyl phthalate		<	0.5	ug/g					
		benzo(a)anthracene		<	0.05	ug/g					
		chrysene		<	0.05	ug/g					
		3,3'-dichlorobenzidine		<	3.0	ug/g					
		bis(2-ethylhexyl)phthalate		<	0.5	ug/g					
		di-n-octyl phthalate		<	0.2	ug/g					
		benzo(b)fluoranthene		<	0.05	ug/g					
		benzo(k)fluoranthene		<	0.05	ug/g					
		benzo(a)pyrene		<	0.02	ug/g					
		indeno(1,2,3-cd)pyrene		<	0.05	ug/g					
		dibenzo(a,h)anthracene		<	0.05	ug/g					
		benzo(g,h,i)perylene		<	0.05	ug/g					
		2-fluorophenol SUR			43	%		21	100		
		phenol-D5 SUR			46	%		10	102		
		2,4,6-tribromophenol SUR			40	%		10	123		
		nitrobenzene-D5 SUR			38	%		35	114		
		2-fluorobiphenyl SUR			49	%		43	116		
		p-terphenyl-D14 SUR			66	%		33	141		

Method	QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Li	mits	RPD	RPD Lim
SW3546/8270D	LCS4314	N-nitrosodimethylamine		<	0.2	ug/g						
		aniline		<	0.2	ug/g						
		phenol			5.6	ug/g	10	56	30	130		
		2-chlorophenol			6.5	ug/g	10	65	30	130		
		bis(2-chloroethyl)ether		<	0.2	ug/g						
		1,3-dichlorobenzene		<	0.2	ug/g						
		1,4-dichlorobenzene		<	0.2	ug/g						
		1,2-dichlorobenzene		<	0.2	ug/g						
		benzyl alcohol		<	0.2	ug/g						
		2-methylphenol		<	0.2	ug/g						
		bis(2-chloroisopropyl) ether	r	<	0.2	ug/g						
		hexachloroethane		<	0.2	ug/g						
		N-nitroso-di-N-propylamine		<	0.2	ug/g						
		4-methylphenol		<	0.2	ug/g						
		nitrobenzene		<	0.2	ug/g						
		isophorone		<	0.5	ug/g						
		2-nitrophenol		<	0.2	ug/g						
		2,4-dimethylphenol		<	0.2	ug/g						
		bis(2-chloroethoxy)methan	е	<	0.5	ug/g						
		2,4-dichlorophenol		<	0.5	ug/g						
		1,2,4-trichlorobenzene		<	0.5	ug/g						
		naphthalene			2.4	ug/g	4	59	40	140		
		benzoic acid		<	5.0	ug/g						
		4-chloroaniline		<	0.2	ug/g						
		hexachlorobutadiene		<	0.2	ug/g						
		4-chloro-3-methylphenol			6.6	ug/g	10	66	30	130		
		2-methylnaphthalene			2.45	ug/g	4	61	40	140		
		hexachlorocyclopentadiene)	<	1.0	ug/g						
		2,4,6-trichlorophenol		<	0.2	ug/g						
		2,4,5-trichlorophenol		<	0.2	ug/g						
		2-chloronaphthalene		<	0.5	ug/g						
		2-nitroaniline		<	0.2	ug/g						
		acenaphthylene			2.9	ug/g	4	72	40	140		
		dimethylphthalate		<	0.5	ug/g						
		2,6-dinitrotoluene		<	0.2	ug/g						
		2,4-dinitrotoluene		<	0.2	ug/g						
		acenaphthene			2.8	ug/g						
		3-nitroaniline		<	0.2	ug/g						
		2,4-dinitrophenol		<	5.0	ug/g						
		dibenzofuran		<	0.05	ug/g						
		4-nitrophenol			6.4	ug/g	10	64	30	130		
		fluorene			3.0	ug/g	4	76	40	140		
		diethyl phthalate		<	0.5	ug/g			-	-		
		4-chlorophenyl phenyl ethe	r	<	0.5	ug/g						
		4-nitroaniline		<	0.5	ug/g						
		4,6-dinitro-2-methylphenol		<	2.0	ug/g						
		azobenzene		<	0.2	ug/g						
		N-nitrosodiphenylamine		<	0.2	ug/g						
		4-bromophenyl phenyl ethe	er	<	0.2	ug/g						
		hexachlorobenzene		<	0.2	ug/g						
		pentachlorophenol			4.3	ug/g	10	43	30	130		

SW3546/8270D LCS4314	phenanthrene anthracene carbazole di-n-butylphthalate		2.9 3.0	ug/g	4	72	40	110	
	carbazole		3.0			1 4	40	140	
			0.0	ug/g	4	75	40	140	
	di-n-butylphthalate	<	0.2	ug/g					
		<	0.5	ug/g					
	fluoranthene		3.3	ug/g	4	81	40	140	
	benzidine	<	3.0	ug/g					
	pyrene		3.5	ug/g	4	87	40	140	
	butyl benzyl phthalate	<	0.5	ug/g					
	benzo(a)anthracene		3.3	ug/g	4	82	40	140	
	chrysene		3.3	ug/g	4	82	40	140	
	3,3'-dichlorobenzidine	<	3.0	ug/g					
	bis(2-ethylhexyl)phthalate	<	0.5	ug/g					
	di-n-octyl phthalate	<	0.2	ug/g					
	benzo(b)fluoranthene		3.4	ug/g	4	85	40	140	
	benzo(k)fluoranthene		3.0	ug/g	4	76	40	140	
	benzo(a)pyrene		3.3	ug/g	4	82	40	140	
	indeno(1,2,3-cd)pyrene		3.2	ug/g	4	81	40	140	
	dibenzo(a,h)anthracene		3.2	ug/g	4	79	40	140	
	benzo(g,h,i)perylene		3.2	ug/g	4	79	40	140	
	2-fluorophenol SUR		53	%			21	100	
	phenol-D5 SUR		57	%			10	102	
	2,4,6-tribromophenol SUR		52	%			10	123	
	nitrobenzene-D5 SUR		50	%			35	114	
	2-fluorobiphenyl SUR		64	%			43	116	
	p-terphenyl-D14 SUR		71	%			33	141	

Method	QC ID	Parameter	Associated Sample		Result	Units A	Amt Added	%R	Li	mits	RPD	RPD Limit
SW3546/8270D	LCSD4314	N-nitrosodimethylamine		<	0.2	ug/g						
		aniline		<	0.2	ug/g						
		phenol			5.4	ug/g	10	54	30	130	4	30
		2-chlorophenol			5.9	ug/g	10	59	30	130	9	30
		bis(2-chloroethyl)ether		<	0.2	ug/g						
		1,3-dichlorobenzene		<	0.2	ug/g						
		1,4-dichlorobenzene		<	0.2	ug/g						
		1,2-dichlorobenzene		<	0.2	ug/g						
		benzyl alcohol		<	0.2	ug/g						
		2-methylphenol		<	0.2	ug/g						
		bis(2-chloroisopropyl) ethe	er	<	0.2	ug/g						
		hexachloroethane		<	0.2	ug/g						
		N-nitroso-di-N-propylamin	е	<	0.2	ug/g						
		4-methylphenol		<	0.2	ug/g						
		nitrobenzene		<	0.2	ug/g						
		isophorone		<	0.5	ug/g						
		2-nitrophenol		<	0.2	ug/g						
		2,4-dimethylphenol		<	0.2	ug/g						
		bis(2-chloroethoxy)methal	ne	<	0.5	ug/g						
		2,4-dichlorophenol		<	0.5	ug/g						
		1,2,4-trichlorobenzene		<	0.5	ug/g						
		naphthalene			2.2	ug/g	4	56	40	140	6	30
		benzoic acid		<	5.0	ug/g						
		4-chloroaniline		<	0.2	ug/g						
		hexachlorobutadiene		<	0.2	ug/g						
		4-chloro-3-methylphenol			6.4	ug/g	10	64	30	130	2	30
		2-methylnaphthalene			2.32	ug/g	4	58	40	140	5	30
		hexachlorocyclopentadien	е	<	1.0	ug/g						
		2,4,6-trichlorophenol		<	0.2	ug/g						
		2,4,5-trichlorophenol		<	0.2	ug/g						
		2-chloronaphthalene		<	0.5	ug/g						
		2-nitroaniline		<	0.2	ug/g						
		acenaphthylene			2.9	ug/g	4	72	40	140	0	30
		dimethylphthalate		<	0.5	ug/g						
		2,6-dinitrotoluene		<	0.2	ug/g						
		2,4-dinitrotoluene		<	0.2	ug/g						
		acenaphthene			2.7	ug/g						
		3-nitroaniline		<	0.2	ug/g						
		2,4-dinitrophenol		<	5.0	ug/g						
		dibenzofuran		<	0.05	ug/g						
		4-nitrophenol			6.2	ug/g	10	62	30	130	3	30
		fluorene			3.0	ug/g	4	75	40	140	1	30
		diethyl phthalate		<	0.5	ug/g						
		4-chlorophenyl phenyl eth	er	<	0.5	ug/g						
		4-nitroaniline		<	0.5	ug/g						
		4,6-dinitro-2-methylphenol		<	2.0	ug/g						
		azobenzene		<	0.2	ug/g						
		N-nitrosodiphenylamine		<	0.2	ug/g						
		4-bromophenyl phenyl eth	er	<	0.2	ug/g						
		hexachlorobenzene		<	0.2	ug/g						
					3.6	~5′5	10	36	30			30

Method	QC ID	Parameter	Associated Sample		Result	Units A	Amt Added	%R	Li	mits	RPD	RPD Limit
SW3546/8270D	LCSD4314	phenanthrene			2.9	ug/g	4	72	40	140	0	30
		anthracene			3.0	ug/g	4	76	40	140	0	30
		carbazole		<	0.2	ug/g						
		di-n-butylphthalate		<	0.5	ug/g						
		fluoranthene			3.4	ug/g	4	84	40	140	3	30
		benzidine		<	3.0	ug/g						
		pyrene			3.5	ug/g	4	88	40	140	2	30
		butyl benzyl phthalate		<	0.5	ug/g						
		benzo(a)anthracene			3.4	ug/g	4	84	40	140	2	30
		chrysene			3.4	ug/g	4	84	40	140	2	30
		3,3'-dichlorobenzidine		<	3.0	ug/g						
		bis(2-ethylhexyl)phthalate		<	0.5	ug/g						
		di-n-octyl phthalate		<	0.2	ug/g						
		benzo(b)fluoranthene			3.5	ug/g	4	87	40	140	3	30
		benzo(k)fluoranthene			3.2	ug/g	4	80	40	140	5	30
		benzo(a)pyrene			3.3	ug/g	4	84	40	140	1	30
		indeno(1,2,3-cd)pyrene			3.2	ug/g	4	81	40	140	0	30
		dibenzo(a,h)anthracene			3.2	ug/g	4	79	40	140	0	30
		benzo(g,h,i)perylene			3.2	ug/g	4	80	40	140	1	30
		2-fluorophenol SUR			49	%			21	100		
		phenol-D5 SUR			51	%			10	102		
		2,4,6-tribromophenol SUR			49	%			10	123		
		nitrobenzene-D5 SUR			46	%			35	114		
		2-fluorobiphenyl SUR			63	%			43	116		
		p-terphenyl-D14 SUR			70	%			33	141		

Method QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limit
SW3005A6010C BLK4318	Silver		<	0.25	ug/g						
	Arsenic		<	0.50	ug/g						
	Barium		<	2.5	ug/g						
	Cadmium		<	0.20	ug/g						
	Chromium		<	2.5	ug/g						
	Copper		<	2.5	ug/g						
	Nickel		<	2.5	ug/g						
	Lead		<	0.50	ug/g						
	Selenium		<	2.5	ug/g						
	Zinc		<	2.5	ug/g						
SW3005A6010C DUP4318	Arsenic	21885-001	<	0.008	mg/L						20
	Copper	21885-001	<	0.05	mg/L						20
	Lead	21885-001	<	0.01	mg/L						20
	Selenium	21885-001	<	0.05	mg/L						20
	Zinc	21885-001		0.18	mg/L					1	20
SW3005A6010C LCS4318	Silver			0.25	mg/L	0.25	101	80	120		
	Arsenic			0.48	mg/L	0.5	96	80	120		
	Barium			0.49	mg/L	0.5	98	80	120		
	Cadmium			0.50	mg/L	0.5	100	80	120		
	Chromium			0.49	mg/L	0.5	98	80	120		
	Copper			0.49	mg/L	0.5	99	80	120		
	Nickel			0.49	mg/L	0.5	98	80	120		
	Lead			0.50	mg/L	0.5	100	80	120		
	Selenium			0.46	mg/L	0.5	92	80	120		
	Zinc			0.48	mg/L	0.5	96	80	120		
SW3005A6010C LCSD4318	Silver			0.26	mg/L	0.25	104	80	120	3	20
	Arsenic			0.48	mg/L	0.5	97	80	120	1	20
	Barium			0.51	mg/L	0.5	101	80	120	3	20
	Cadmium			0.49	mg/L	0.5	98	80	120	1	20
	Chromium			0.51	mg/L	0.5	101	80	120	3	20
	Copper			0.50	mg/L	0.5	100	80	120	1	20
	Nickel			0.51	mg/L	0.5	101	80	120	3	20
	Lead			0.50	mg/L	0.5	100	80	120	0	20
	Selenium			0.47	mg/L	0.5	95	80	120	3	20
	Zinc			0.50	mg/L	0.5	99	80	120	3	20
SW3005A6010C MS4318	Arsenic	21885-001		0.50	mg/L	0.5	99	70	130		
	Copper	21885-001		0.53	mg/L	0.5	99	70	130		
	Lead	21885-001		0.49	mg/L	0.5	97	70	130		
	Selenium	21885-001		0.47	mg/L	0.5	94	70	130		
	Zinc	21885-001		0.66	mg/L	0.5	97	70	130		

Method	QC ID	Parameter	Associated Sample		Result	Units A	Amt Added	%R	Li	mits	RPD	RPD Limit
SW7470A	BLK4337	Mercury		<	0.0002	mg/L						
SW7470A	LCS4337	Mercury			0.0023	mg/L	0.002	116	80	120		
SW7470A	LCSD4337	Mercury			0.0023	mg/L	0.002	115	80	120	0	20
SW7470A	MS4337	Mercury	21917-002		0.0023	mg/L	0.002	114	75	125		

Absolute Resource associates

124 Heritage Avenue #10 Portsmouth, NH 03801

PO Number: None

Job ID: 22020

Date Received: 7/18/11

776 Main Street Westbrook, ME 04092

CREDERE Associates

Project: POLYCLAD 10001086

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely,

Absolute Resource Associates

Cliff Chase

Partner, Technical Director

Date of Approval: 7/26/2011

Total number of pages: 3

Absolute Resource Associates Certifications

New Hampshire 1732 Massachusetts M-NH902

Maine NH903

Project ID: POLYCLAD 10001086

Job ID: 22020

Sample#: 22020-001

Sample ID: CA-2

Matrix: Water

Sampled: 7/14/11 15:39		Quant	İ	Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	< 0.008	0.008	mg/L	1	BJS 7/20/11	4369	7/20/11	14:05	SW3005A6010C
Barium	< 0.05	0.05	mg/L	1	BJS 7/20/11	4369	7/20/11	14:05	SW3005A6010C
Cadmium	< 0.004	0.004	mg/L	1	BJS 7/20/11	4369	7/20/11	14:05	SW3005A6010C
Chromium	< 0.05	0.05	mg/L	1	BJS 7/20/11	4369	7/20/11	14:05	SW3005A6010C
Lead	< 0.008	0.008	mg/L	1	BJS 7/20/11	4369	7/20/11	14:05	SW3005A6010C
Mercury	< 0.0002	0.0002	mg/L	1	BJS 7/19/11	4364	7/20/11	11:02	SW7470A
Selenium	< 0.05	0.05	mg/L	1	BJS 7/20/11	4369	7/20/11	14:05	SW3005A6010C
Silver	< 0.007	0.007	mg/L	1	BJS 7/20/11	4369	7/20/11	14:05	SW3005A6010C

QSD-01 Revision 12/23/10	RECORD	CUSTODY	*Date Needed	Standard (10 Business Days)	TAT REQUESTED Priority (24 hr)* Expedited (48 hr)* X						- 70 10 ROLL	Lab Sample Field ID ID		Invoice To:	Phone #: 207-7:	Heport A. O.D.	THE Main St	Company Name:	2 S P	Absolute Resource	
Relinquished by:	Relinquished by: C	Relinguished by Sampler:	☐ HARD COPY REQUIRED ☐ FAX	REPORTING INSTRUCTIONS	See absoluteresourceassociates.com S for sample acceptance policy and current accreditation lists.						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	# CONTAINERS WATER SOLID OTHER		PATTEN	707-772-7225	O'DONNELL	The Main St. Westbrook ME	REDERE ASSOCIATES LLC	ociates (19)	Resource W	
Date Tir	Date Tir	19/6/h 2 Th	□ FAX (FAX#) □ OTH	PDF (e-mail address) oclounelle	SPECIAL INSTRUCTIONS SPECIAL INSTRUCTIONS						and 1521	HCI HNO ₃ H ₂ SO ₄ NaOH MeOH OTHER (Specify) DATE TIME SAMPLER		Quote # Fund Pricing PO #	Reporting QAPP GW-1 S-1 Limits: EPA DW Other	SDWA NPI NHDES OTI	Project Location (NE VI Other	Project #:	absoluteresourceassociates.com	603-436-2001	124 Heritage Avenue #10 Portsmouth, NH 03801
Time Received by Laboratory: Way Bill#:	Time Réceived by	Tippe Received III	☐ OTHER (specify)	ille credeneille.com							×	VOC 8260	V(301)	MEGRO OC 524.2 NI 15 MED 70ABN 8 181 Pesticid ineral 0&G Conduc 1 TS TV. Priority Pot	MIBE, only] GRO 801 H List [] C RO [] EF 625 [] EF es [] 608 SM5520F kivity [] S [] Alka	y LJ VOC 6 5 Gascs-List: PH MADEP DB 504.1 3 Pest/PCS Turbidity	1 TPH Fi		ANALYSIS RE		AND ANALYSIS REQUEST
Date Time	Date Time	7/0ate/ 7/18/4 2-	TEMPERATURE	RECEIVED ON ICE XYES INO		- - - - - -						☐ Ammonia ☐ C ☐ T-Phosphorus ☐ Cyanide ☐ St ☐ Nitrate ☐ Nitr ☐ Corrosivity ☐ ☐ TCLP Metals ☐ Subcontract: ☐ T	ite Ri] Phenols [ide Nitra Chloric Chloric Eactive CN TCLP VOC Grain	Bacteria ele + Nitrile de	P/A Ba Ortho Br Br SVOC I	P omide F gnitibility/FF TCLP Pestid	luoride	REQUEST		22020

EMSL Analytical, Inc.

7 Constitution Way, Suite 107, Woburn, MA 01801

Attn: Jonathan O'Donnell Credere Associates, LLC 776 Main Street Westbrook, ME 04092

Customer ID: Customer PO:

CRED25

Received:

07/01/11 12:35 PM

Achactac

EMSL Order:

131102954

Fax: (207) 887-1051

Project: 10001087

7-1051 Phone: (204) 828-1272

EMSL Proj:

Analysis Date:

Non-Achaetae

ate: 7/9/2011

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

				Non-Asi	<u>bestos</u>	<u>Asbestos</u>
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
D-1-A 131102954-0001	- Blue Floor Tile	Blue Non-Fibrous Homogeneous			95% Non-fibrous (other)	5% Chrysotile
D-1-B 131102954-0002	- Blue Floor Tile					Stop Positive (Not Analyzed)
D-1-C 131102954-0003	- Blue Floor Tile					Stop Positive (Not Analyzed)
D-2-A 131102954-0004	- White Speckled Floor Tile	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
D-2-B 131102954-0005	- White Speckled Floor Tile	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
D-2-C 131102954-0006	- White Speckled Floor Tile	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
D-3-A 131102954-0007	- Gray Floor Tile	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

	00 1 -1
Analyst(s)	Kell Alelon
Alaly Si(S)	

Renaldo Drakes, Laboratory Manager or other approved signatory

Due to magnification limitations inherent in PLM, asbestos fibers in dimensions below the resolution capability of PLM may not be detected. Samples reported as <1% or none dete require additional testing by TEM to confirm asbestos quantities. The above test report relates only to the items tested and may not be reproduced in any form without the express vapproval of EMSL Analytical, Inc. EMSL's liability is limited to the cost of analysis. EMSL bears no responsibility for sample collection activities or analytical method limitations. Ir and use of test results are the responsibility of the client. Samples received in good condition unless otherwise noted.

Samples analyzed by EMSL Analytical, Inc. Woburn, MA NVLAP Lab Code 101147-0, CT PH-0315, MA AA000188, RI AAL-107T3 and VT AL357102

Initial report from 07/11/2011 12:12:20

Kevin Pine (10)

EMSL Analytical, Inc.

7 Constitution Way, Suite 107, Woburn, MA 01801

Fax: (781) 933-8412 Email: bostonlab@emsl.com

Attn: Jonathan O'Donnell **Credere Associates, LLC** 776 Main Street

Westbrook, ME 04092

Customer PO: Received:

Customer ID:

CRED25

07/01/11 12:35 PM

EMSL Order:

131102954

(207) 887-1051 Fax:

Project: 10001087

Phone: (204) 828-1272

EMSL Proj:

Analysis Date:

7/9/2011

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using **Polarized Light Microscopy**

			<u>Asbestos</u>			
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
D-3-B 131102954-0008	- Gray Floor Tile	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
D-3-C 131102954-0009	- Gray Floor Tile	Gray Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
D-4-A 131102954-0010	- Off White Floor Tile	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
D-4-B 131102954-0011	- Off White Floor Tile	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected
D-4-C 131102954-0012	- Off White Floor Tile	White Non-Fibrous Homogeneous			100% Non-fibrous (other)	None Detected

Initial report from 07/11/2011 12:12:20	
Analyst(s)	Rel. S. Jahon
Kevin Pine (10)	Renaldo Drakes, Laboratory Manager

Due to magnification limitations inherent in PLM, asbestos fibers in dimensions below the resolution capability of PLM may not be detected. Samples reported as <1% or none dete require additional testing by TEM to confirm asbestos quantities. The above test report relates only to the items tested and may not be reproduced in any form without the express v approval of EMSL Analytical, Inc. EMSL's liability is limited to the cost of analysis. EMSL bears no responsibility for sample collection activities or analytical method limitations. Ir and use of test results are the responsibility of the client. Samples received in good condition unless otherwise noted.

Samples analyzed by EMSL Analytical, Inc. Woburn, MA NVLAP Lab Code 101147-0, CT PH-0315, MA AA000188, RI AAL-107T3 and VT AL357102

ANALYTICAL REPORT

Lab Number: L1109811

Client: Credere Associates, LLC

222 St. John Street

Suite 314

Portland, ME 04102

ATTN: Rick Vandenberg Phone: (207) 828-1272

Project Name: POLYCLAD
Project Number: 10001087
Report Date: 07/08/11

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NY (11627), CT (PH-0141), NH (2206), NJ (MA015), RI (LAO00299), ME (MA0030), PA (Registration #68-02089), LA NELAC (03090), FL NELAC (E87814), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name:POLYCLADLab Number:L1109811Project Number:10001087Report Date:07/08/11

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1109811-01	CA-SG-2	FRANKLIN, NH	06/28/11 14:30
L1109811-02	CA-SG-10	FRANKLIN, NH	06/28/11 14:40
L1109811-03	CA-SG-DUP	FRANKLIN, NH	06/28/11 14:30
L1109811-04	BLANK	FRANKLIN, NH	06/28/11 00:00

Project Name:POLYCLADLab Number:L1109811Project Number:10001087Report Date:07/08/11

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

Volatile Organics in Air

The canister certification results are provided as an addendum.

For additional information, please contact Client Services at 800-624-9220.

L1109811-04 The RPD of the pre- and post-flow controller calibration check (46% RPD) was outside acceptable limits (< or = 20% RPD).

L1109811-01 through -03 have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the samples.

L1109811-01 through -03 The presence of Propylene could not be determined in these samples due to non-target compounds interfering with the identification and quantification of this compound.

Project Name:POLYCLADLab Number:L1109811Project Number:10001087Report Date:07/08/11

Case Narrative (continued)

The WG477447-3 LCS recoveries for Freon-114 (61%) and trans-1,3-Dichloropropene (68%) are outside the 70%-130% acceptance limit. The LCS was within overall method allowances, therefore the analysis proceeded.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

William M. Which Kathleen O'Brien

Authorized Signature:

Title: Technical Director/Representative

Date: 07/08/11

AIR

06/28/11 14:30

Not Specified

06/30/11

Date Collected:

Date Received:

Field Prep:

Project Name:POLYCLADLab Number:L1109811Project Number:10001087Report Date:07/08/11

SAMPLE RESULTS

Lab ID: L1109811-01 D

Client ID: CA-SG-2
Sample Location: FRANKLIN, NH
Matrix: Soil_Vapor
Anaytical Method: 48,TO-15
Analytical Date: 07/07/11 23:01

Analyst: RY

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Lev	/el) - Mansfield Lab							
Propylene	ND	5.00		ND	8.60			10
Dichlorodifluoromethane	47.6	2.00		235	9.89			10
Chloromethane	ND	2.00		ND	4.13			10
Freon-114	ND	2.00		ND	14.0			10
Vinyl chloride	ND	2.00		ND	5.11			10
1,3-Butadiene	ND	2.00		ND	4.42			10
Bromomethane	ND	2.00		ND	7.77			10
Chloroethane	ND	2.00		ND	5.28			10
Ethanol	3740	25.0		7050	47.1			10
Vinyl bromide	ND	2.00		ND	8.74			10
Acetone	274	10.0		651	23.8			10
Trichlorofluoromethane	4.20	2.00		23.6	11.2			10
Isopropanol	155	5.00		381	12.3			10
1,1-Dichloroethene	ND	2.00		ND	7.93			10
Methylene chloride	16.5	10.0		57.3	34.7			10
3-Chloropropene	ND	2.00		ND	6.26			10
Carbon disulfide	ND	2.00		ND	6.23			10
Freon-113	ND	2.00		ND	15.3			10
trans-1,2-Dichloroethene	ND	2.00		ND	7.93			10
1,1-Dichloroethane	ND	2.00		ND	8.09			10
Methyl tert butyl ether	ND	2.00		ND	7.21			10
Vinyl acetate	ND	2.00		ND	7.04			10
2-Butanone	10.2	2.00		30.1	5.90			10

Project Name:POLYCLADLab Number:L1109811Project Number:10001087Report Date:07/08/11

SAMPLE RESULTS

Lab ID: L1109811-01 D

Client ID: CA-SG-2 Sample Location: FRANKLIN, NH Date Collected: 06/28/11 14:30

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Lev	vel) - Mansfield Lab							
cis-1,2-Dichloroethene	ND	2.00		ND	7.93			10
Ethyl Acetate	ND	5.00		ND	18.0			10
Chloroform	ND	2.00		ND	9.77			10
Tetrahydrofuran	4.82	2.00		14.2	5.90			10
1,2-Dichloroethane	ND	2.00		ND	8.09			10
n-Hexane	8.78	2.00		30.9	7.05			10
1,1,1-Trichloroethane	ND	2.00		ND	10.9			10
Benzene	8.88	2.00		28.4	6.39			10
Carbon tetrachloride	ND	2.00		ND	12.6			10
Cyclohexane	2.22	2.00		7.64	6.88			10
1,2-Dichloropropane	ND	2.00		ND	9.24			10
Bromodichloromethane	ND	2.00		ND	13.4			10
1,4-Dioxane	ND	2.00		ND	7.21			10
Trichloroethene	ND	2.00		ND	10.7			10
2,2,4-Trimethylpentane	ND	2.00		ND	9.34			10
Heptane	3.85	2.00		15.8	8.20			10
cis-1,3-Dichloropropene	ND	2.00		ND	9.08			10
4-Methyl-2-pentanone	ND	2.00		ND	8.20			10
trans-1,3-Dichloropropene	ND	2.00		ND	9.08			10
1,1,2-Trichloroethane	ND	2.00		ND	10.9			10
Toluene	40.9	2.00		154	7.54			10
2-Hexanone	ND	2.00		ND	8.20			10
Dibromochloromethane	ND	2.00		ND	17.0			10
1,2-Dibromoethane	ND	2.00		ND	15.4			10
Tetrachloroethene	ND	2.00		ND	13.6			10
Chlorobenzene	ND	2.00		ND	9.21			10

Project Name:POLYCLADLab Number:L1109811Project Number:10001087Report Date:07/08/11

SAMPLE RESULTS

Lab ID: L1109811-01 D

Client ID: CA-SG-2 Sample Location: FRANKLIN, NH Date Collected: 06/28/11 14:30

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Le	evel) - Mansfield Lab)						
Ethylbenzene	4.60	2.00		20.0	8.69			10
p/m-Xylene	15.0	4.00		65.2	17.4			10
Bromoform	ND	2.00		ND	20.7			10
Styrene	ND	2.00		ND	8.52			10
1,1,2,2-Tetrachloroethane	ND	2.00		ND	13.7			10
o-Xylene	4.13	2.00		17.9	8.69			10
4-Ethyltoluene	ND	2.00		ND	9.83			10
1,3,5-Trimethybenzene	ND	2.00		ND	9.83			10
1,2,4-Trimethylbenzene	2.59	2.00		12.7	9.83			10
Benzyl chloride	ND	2.00		ND	10.4			10
1,3-Dichlorobenzene	ND	2.00		ND	12.0			10
1,4-Dichlorobenzene	ND	2.00		ND	12.0			10
1,2-Dichlorobenzene	ND	2.00		ND	12.0			10
1,2,4-Trichlorobenzene	ND	2.00		ND	14.8			10
Hexachlorobutadiene	ND	2.00		ND	21.3			10

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
	,		
1,4-Difluorobenzene	93		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	95		60-140

Project Name:POLYCLADLab Number:L1109811Project Number:10001087Report Date:07/08/11

SAMPLE RESULTS

Lab ID: L1109811-02 D

Client ID: CA-SG-10
Sample Location: FRANKLIN, NH
Matrix: Soil_Vapor
Anaytical Method: 48,TO-15
Analytical Date: 07/07/11 23:37

Analyst: RY

Date Collected: 06/28/11 14:40

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Level)	- Mansfield Lab							
Propylene	ND	5.00		ND	8.60			10
Dichlorodifluoromethane	3.24	2.00		16.0	9.89			10
Chloromethane	ND	2.00		ND	4.13			10
Freon-114	ND	2.00		ND	14.0			10
Vinyl chloride	ND	2.00		ND	5.11			10
1,3-Butadiene	ND	2.00		ND	4.42			10
Bromomethane	ND	2.00		ND	7.77			10
Chloroethane	ND	2.00		ND	5.28			10
Ethanol	3060	25.0		5760	47.1			10
Vinyl bromide	ND	2.00		ND	8.74			10
Acetone	89.0	10.0		211	23.8			10
Trichlorofluoromethane	18.9	2.00		106	11.2			10
Isopropanol	120	5.00		295	12.3			10
1,1-Dichloroethene	ND	2.00		ND	7.93			10
Methylene chloride	ND	10.0		ND	34.7			10
3-Chloropropene	ND	2.00		ND	6.26			10
Carbon disulfide	ND	2.00		ND	6.23			10
Freon-113	ND	2.00		ND	15.3			10
trans-1,2-Dichloroethene	ND	2.00		ND	7.93			10
1,1-Dichloroethane	ND	2.00		ND	8.09			10
Methyl tert butyl ether	ND	2.00		ND	7.21			10
Vinyl acetate	ND	2.00		ND	7.04			10
2-Butanone	11.1	2.00		32.7	5.90			10

Project Name:POLYCLADLab Number:L1109811Project Number:10001087Report Date:07/08/11

SAMPLE RESULTS

Lab ID: L1109811-02 D

Client ID: CA-SG-10 Sample Location: FRANKLIN, NH

Date Collected: 06/28/11 14:40

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Leve	l) - Mansfield Lab							
cis-1,2-Dichloroethene	ND	2.00		ND	7.93			10
Ethyl Acetate	ND	5.00		ND	18.0			10
Chloroform	ND	2.00		ND	9.77			10
Tetrahydrofuran	5.57	2.00		16.4	5.90			10
1,2-Dichloroethane	ND	2.00		ND	8.09			10
n-Hexane	7.17	2.00		25.3	7.05			10
1,1,1-Trichloroethane	ND	2.00		ND	10.9			10
Benzene	9.38	2.00		30.0	6.39			10
Carbon tetrachloride	ND	2.00		ND	12.6			10
Cyclohexane	2.24	2.00		7.71	6.88			10
1,2-Dichloropropane	ND	2.00		ND	9.24			10
Bromodichloromethane	ND	2.00		ND	13.4			10
1,4-Dioxane	ND	2.00		ND	7.21			10
Frichloroethene	ND	2.00		ND	10.7			10
2,2,4-Trimethylpentane	ND	2.00		ND	9.34			10
Heptane	4.67	2.00		19.1	8.20			10
cis-1,3-Dichloropropene	ND	2.00		ND	9.08			10
4-Methyl-2-pentanone	ND	2.00		ND	8.20			10
rans-1,3-Dichloropropene	ND	2.00		ND	9.08			10
1,1,2-Trichloroethane	ND	2.00		ND	10.9			10
Toluene	47.0	2.00		177	7.54			10
2-Hexanone	ND	2.00		ND	8.20			10
Dibromochloromethane	ND	2.00		ND	17.0			10
1,2-Dibromoethane	ND	2.00		ND	15.4			10
Tetrachloroethene	ND	2.00		ND	13.6			10
Chlorobenzene	ND	2.00		ND	9.21			10

Project Name: Lab Number: **POLYCLAD** L1109811 Project Number: Report Date: 10001087

07/08/11

SAMPLE RESULTS

Lab ID: L1109811-02 D

Client ID: CA-SG-10 Sample Location: FRANKLIN, NH Date Collected: 06/28/11 14:40 Date Received: 06/30/11

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Le	evel) - Mansfield Lab)						
Ethylbenzene	3.97	2.00		17.2	8.69			10
p/m-Xylene	12.7	4.00		55.2	17.4			10
Bromoform	ND	2.00		ND	20.7			10
Styrene	ND	2.00		ND	8.52			10
1,1,2,2-Tetrachloroethane	ND	2.00		ND	13.7			10
o-Xylene	3.26	2.00		14.2	8.69			10
4-Ethyltoluene	ND	2.00		ND	9.83			10
1,3,5-Trimethybenzene	ND	2.00		ND	9.83			10
1,2,4-Trimethylbenzene	ND	2.00		ND	9.83			10
Benzyl chloride	ND	2.00		ND	10.4			10
1,3-Dichlorobenzene	ND	2.00		ND	12.0			10
1,4-Dichlorobenzene	ND	2.00		ND	12.0			10
1,2-Dichlorobenzene	ND	2.00		ND	12.0			10
1,2,4-Trichlorobenzene	ND	2.00		ND	14.8			10
Hexachlorobutadiene	ND	2.00		ND	21.3			10

			Acceptance
Internal Standard	% Recovery	Qualifier	Criteria
1,4-Difluorobenzene	89		60-140
Bromochloromethane	89		60-140
chlorobenzene-d5	91		60-140

Project Name: Lab Number: POLYCLAD L1109811 Project Number: 10001087

Report Date: 07/08/11

SAMPLE RESULTS

Lab ID: L1109811-03 D Date Collected: 06/28/11 14:30

Client ID: CA-SG-DUP Date Received: 06/30/11 Sample Location: Field Prep: FRANKLIN, NH Not Specified Matrix: Soil_Vapor

48,TO-15 Anaytical Method: Analytical Date: 07/08/11 00:14

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Leve	el) - Mansfield Lab)						
Propylene	ND	5.00		ND	8.60			10
Dichlorodifluoromethane	54.1	2.00		268	9.89			10
Chloromethane	ND	2.00		ND	4.13			10
Freon-114	ND	2.00		ND	14.0			10
Vinyl chloride	ND	2.00		ND	5.11			10
1,3-Butadiene	ND	2.00		ND	4.42			10
Bromomethane	ND	2.00		ND	7.77			10
Chloroethane	ND	2.00		ND	5.28			10
Ethanol	4080	25.0		7690	47.1			10
Vinyl bromide	ND	2.00		ND	8.74			10
Acetone	282	10.0		670	23.8			10
Trichlorofluoromethane	4.82	2.00		27.1	11.2			10
Isopropanol	185	5.00		455	12.3			10
1,1-Dichloroethene	ND	2.00		ND	7.93			10
Methylene chloride	ND	10.0		ND	34.7			10
3-Chloropropene	ND	2.00		ND	6.26			10
Carbon disulfide	ND	2.00		ND	6.23			10
Freon-113	ND	2.00		ND	15.3			10
trans-1,2-Dichloroethene	ND	2.00		ND	7.93			10
1,1-Dichloroethane	ND	2.00		ND	8.09			10
Methyl tert butyl ether	ND	2.00		ND	7.21			10
Vinyl acetate	ND	2.00		ND	7.04			10
2-Butanone	10.3	2.00		30.4	5.90			10

Project Name:POLYCLADLab Number:L1109811Project Number:10001087Report Date:07/08/11

SAMPLE RESULTS

Lab ID: L1109811-03 D

Client ID: CA-SG-DUP Sample Location: FRANKLIN, NH

Date Collected: 06/28/11 14:30

Date Received: 06/30/11
Field Prep: Not Specified

,						. tot Opeon		
		ppbV			ug/m3	Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Level)	- Mansfield Lab)						
cis-1,2-Dichloroethene	ND	2.00		ND	7.93			10
Ethyl Acetate	ND	5.00		ND	18.0			10
Chloroform	ND	2.00		ND	9.77			10
Tetrahydrofuran	4.94	2.00		14.6	5.90			10
1,2-Dichloroethane	ND	2.00		ND	8.09			10
n-Hexane	9.28	2.00		32.7	7.05			10
1,1,1-Trichloroethane	ND	2.00		ND	10.9			10
Benzene	9.43	2.00		30.1	6.39			10
Carbon tetrachloride	ND	2.00		ND	12.6			10
Cyclohexane	2.59	2.00		8.92	6.88			10
1,2-Dichloropropane	ND	2.00		ND	9.24			10
Bromodichloromethane	ND	2.00		ND	13.4			10
1,4-Dioxane	ND	2.00		ND	7.21			10
Trichloroethene	ND	2.00		ND	10.7			10
2,2,4-Trimethylpentane	ND	2.00		ND	9.34			10
Heptane	4.57	2.00		18.7	8.20			10
cis-1,3-Dichloropropene	ND	2.00		ND	9.08			10
4-Methyl-2-pentanone	ND	2.00		ND	8.20			10
trans-1,3-Dichloropropene	ND	2.00		ND	9.08			10
1,1,2-Trichloroethane	ND	2.00		ND	10.9			10
Toluene	40.9	2.00		154	7.54			10
2-Hexanone	ND	2.00		ND	8.20			10
Dibromochloromethane	ND	2.00		ND	17.0			10
1,2-Dibromoethane	ND	2.00		ND	15.4			10
Tetrachloroethene	ND	2.00		ND	13.6			10
Chlorobenzene	ND	2.00		ND	9.21			10

Project Name:POLYCLADLab Number:L1109811Project Number:10001087Report Date:07/08/11

SAMPLE RESULTS

Lab ID: L1109811-03 D
Client ID: CA-SG-DUP
Sample Location: FRANKLIN, NH

Date Collected: 06/28/11 14:30 Date Received: 06/30/11

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Le	evel) - Mansfield Lab)						
Ethylbenzene	3.19	2.00		13.8	8.69			10
p/m-Xylene	10.4	4.00		45.2	17.4			10
Bromoform	ND	2.00		ND	20.7			10
Styrene	ND	2.00		ND	8.52			10
1,1,2,2-Tetrachloroethane	ND	2.00		ND	13.7			10
o-Xylene	2.68	2.00		11.6	8.69			10
4-Ethyltoluene	ND	2.00		ND	9.83			10
1,3,5-Trimethybenzene	ND	2.00		ND	9.83			10
1,2,4-Trimethylbenzene	ND	2.00		ND	9.83			10
Benzyl chloride	ND	2.00		ND	10.4			10
1,3-Dichlorobenzene	ND	2.00		ND	12.0			10
1,4-Dichlorobenzene	ND	2.00		ND	12.0			10
1,2-Dichlorobenzene	ND	2.00		ND	12.0			10
1,2,4-Trichlorobenzene	ND	2.00		ND	14.8			10
Hexachlorobutadiene	ND	2.00		ND	21.3			10

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	89		60-140
Bromochloromethane	90		60-140
chlorobenzene-d5	91		60-140

06/28/11 00:00

Not Specified

06/30/11

Project Name: Lab Number: POLYCLAD L1109811 Project Number: 10001087

Report Date: 07/08/11

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1109811-04

Client ID: **BLANK**

Sample Location: FRANKLIN, NH

Matrix: Soil_Vapor 48,TO-15 Anaytical Method: Analytical Date: 07/07/11 22:24

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low L	evel) - Mansfield Lab							
Propylene	ND	0.500		ND	0.860			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	2.50		ND	4.71			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Methylene chloride	ND	1.00		ND	3.47			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	0.200		ND	0.704			1
2-Butanone	ND	0.200		ND	0.590			1

Project Name:POLYCLADLab Number:L1109811Project Number:10001087Report Date:07/08/11

SAMPLE RESULTS

Lab ID: L1109811-04

Client ID: BLANK

Sample Location: FRANKLIN, NH

Date Collected: 06/28/11 00:00

Date Received: 06/30/11

Field Prep: Not Specified

,				- 1			riot opcom		
		ppbV			ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air (Low Level)	- Mansfield Lab								
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1	
Ethyl Acetate	ND	0.500		ND	1.80			1	
Chloroform	ND	0.200		ND	0.977			1	
Tetrahydrofuran	ND	0.200		ND	0.590			1	
1,2-Dichloroethane	ND	0.200		ND	0.809			1	
n-Hexane	ND	0.200		ND	0.705			1	
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1	
Benzene	ND	0.200		ND	0.639			1	
Carbon tetrachloride	ND	0.200		ND	1.26			1	
Cyclohexane	ND	0.200		ND	0.688			1	
1,2-Dichloropropane	ND	0.200		ND	0.924			1	
Bromodichloromethane	ND	0.200		ND	1.34			1	
1,4-Dioxane	ND	0.200		ND	0.721			1	
Trichloroethene	ND	0.200		ND	1.07			1	
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1	
Heptane	ND	0.200		ND	0.820			1	
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
4-Methyl-2-pentanone	ND	0.200		ND	0.820			1	
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1	
Toluene	ND	0.200		ND	0.754			1	
2-Hexanone	ND	0.200		ND	0.820			1	
Dibromochloromethane	ND	0.200		ND	1.70			1	
1,2-Dibromoethane	ND	0.200		ND	1.54			1	
Tetrachloroethene	ND	0.200		ND	1.36			1	
Chlorobenzene	ND	0.200		ND	0.921			1	

Project Name:POLYCLADLab Number:L1109811Project Number:10001087Report Date:07/08/11

SAMPLE RESULTS

Lab ID: L1109811-04

Client ID: BLANK

Sample Location: FRANKLIN, NH

Date Collected: 06/28/11 00:00

Date Received: 06/30/11

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Le	evel) - Mansfield Lab)						
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethybenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

			Acceptance
Internal Standard	% Recovery	Qualifier	Criteria
1,4-Difluorobenzene	83		60-140
Bromochloromethane	85		60-140
chlorobenzene-d5	86		60-140

Project Name:POLYCLADLab Number:L1109811Project Number:10001087Report Date:07/08/11

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 07/07/11 19:52

	ppbV					Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Level)	- Mansfield L	ab for sa	mple(s):	01-04 Batch	: WG47	7447-4		
Propylene	ND	0.500		ND	0.860			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	2.50		ND	4.71			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Methylene chloride	ND	1.00		ND	3.47			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	0.200		ND	0.704			1
2-Butanone	ND	0.200		ND	0.590			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1

Project Name:POLYCLADLab Number:L1109811Project Number:10001087Report Date:07/08/11

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 07/07/11 19:52

	ppbV					Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Level)	- Mansfield L	_ab for sar	nple(s):	01-04 Batch:	WG47	7447-4		
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.200		ND	0.590			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.200		ND	0.820			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1

Project Name:POLYCLADLab Number:L1109811Project Number:10001087Report Date:07/08/11

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 07/07/11 19:52

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Level)	- Mansfield L	ab for sa	mple(s):	01-04 Batch:	WG47	7447-4		
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethybenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Lab Control Sample Analysis Batch Quality Control

L1109811 Lab Number:

07/08/11 Report Date:

> 10001087 Project Number:

POLYCLAD

Project Name:

	rcs		CSD		%Recovery			
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	RPD Limits
Volatile Organics in Air (Low Level) - Mansfield Lab Associated sample(s): 01-04 Batch: WG477447-3	eld Lab Associa	ited sample(s):	01-04 Batcl	n: WG477	447-3			
Propylene	111				70-130	ı		
Dichlorodifluoromethane	102				70-130			
Chloromethane	86				70-130			
1,2-Dichloro-1,1,2,2-tetrafluoroethane	61	Ø			70-130			
Vinyl chloride	101				70-130			
1,3-Butadiene	101				70-130			
Bromomethane	102				70-130			

70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130

102

100

Chloroethane

Vinyl bromide Ethyl Alcohol

Acetone

91

106

Trichlorofluoromethane

1,1-Dichloroethene Methylene chloride

3-Chloropropene Carbon disulfide

iso-Propyl Alcohol

26 86 8 88 94

82

105

1,1,2-Trichloro-1,2,2-Trifluoroethane

trans-1,2-Dichloroethene

96 93 85

Methyl tert butyl ether 1,1-Dichloroethane

Lab Control Sample Analysis Batch Quality Control

L1109811 07/08/11 Lab Number: Report Date:

POLYCLAD 10001087 Project Number: Project Name:

	rcs		CSD		%Recovery			
³ arameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	RPD Limits

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air (Low Level) - Mansfield Lab Associated sample(s): 01-04	eld Lab Associat	ed sample(s		Batch: WG477447-3	147-3			
Vinvl acetate	8		,		70-130			
2-Butanone	06				70-130			
cis-1,2-Dichloroethene	26				70-130			
Ethyl Acetate	88				70-130			
Chloroform	100				70-130			
Tetrahydrofuran	80				70-130			
1,2-Dichloroethane	95				70-130			
n-Hexane	81				70-130			
1,1,1-Trichloroethane	94				70-130			
Benzene	06				70-130			
Carbon tetrachloride	92				70-130			
Cyclohexane	84				70-130			
1,2-Dichloropropane	80				70-130			
Bromodichloromethane	81				70-130			
1,4-Dioxane	98				70-130			
Trichloroethene	06				70-130			
2,2,4-Trimethylpentane	82				70-130			
Heptane	82		•		70-130			
cis-1,3-Dichloropropene	83				70-130			
4-Methyl-2-pentanone	85				70-130			
trans-1,3-Dichloropropene	89	Ø			70-130			

Lab Control Sample Analysis

Batch Quality Control

Lab Number:

L1109811 07/08/11 Report Date:

> 10001087 Project Number:

POLYCLAD

Project Name:

Qual RPD %Recovery Limits Qual LCSD %Recovery Qual LCS %Recovery Parameter

RPD Limits 70-130 Volatile Organics in Air (Low Level) - Mansfield Lab Associated sample(s): 01-04 Batch: WG477447-3 100 100 102 102 124 83 88 93 96 93 87 87 90 94 85 66 94 94 89 92 86 1,1,2,2-Tetrachloroethane Dibromochloromethane 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trichlorobenzene 1,1,2-Trichloroethane 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dibromoethane Tetrachloroethene Chlorobenzene Benzyl chloride 4-Ethyltoluene Ethylbenzene 2-Hexanone p/m-Xylene Bromoform Toluene o-Xylene Styrene

Lab Control Sample Analysis Batch Quality Control

POLYCLAD 10001087

Project Name:

Project Number:

L1109811 Lab Number:

07/08/11 Report Date:

RPD %Recovery Limits Qual LCSD %Recovery Qual LCS %Recovery Parameter

RPD Limits

Qual

Volatile Organics in Air (Low Level) - Mansfield Lab Associated sample(s): 01-04 Batch: WG477447-3

70-130 103 Hexachlorobutadiene

POLYCLAD 10001087

Project Number: Project Name:

L1109811 07/08/11 Lab Number:

Report Date:

Parameter	Native Sample	Duplicate Sample Units	s RPD	Qual RPD Limits
Volatile Organics in Air (Low Level) - Mansfield Lab Associated sample(s): 01-04 Sample	b Associated sample(s): 01-04	QC Batch ID: WG477447-5	QC Sample: L1109857-03	09857-03 Client ID: DUP
Propylene	44.3	44.5 ppbV	0	25
Dichlorodifluoromethane	QN	Vdqq	NO	25
Chloromethane	1.09	1.09	0	25
1,2-Dichloro-1,1,2,2-tetrafluoroethane	1.42	1.16 ppbV	20	25
Vinyl chloride	1.52	1.48 ppbV	3	25
1,3-Butadiene	QN	\UD \UD \UD \UD \UD \UD \UD \UD \UD \UD	NO	25
Bromomethane	QN	\ddd \QN	NC	25
Chloroethane	QN	\UD \UD \UD \UD \UD \UD \UD \UD \UD \UD	NO	25
Ethyl Alcohol	14.7	14.3 ppbV	8	25
Vinyl bromide	QN	Vdqq	NC	25
Acetone	119	121 ppbV	2	25
Trichlorofluoromethane	QN	Vdqq	NC	25
iso-Propyl Alcohol	QN	Vdqq	NC	25
1,1-Dichloroethene	QN	\Addq \QN	NC	25
Methylene chloride	QN	Vdqq	NC	25
3-Chloropropene	QN	Vdqq ON	NO	25
Carbon disulfide	1.28	1.38 ppbV	8	25
1,1,2-Trichloro-1,2,2-Trifluoroethane	QN	Vdqq ON	ON	25
trans-1,2-Dichloroethene	QN	Vdqq	NO	25

POLYCLAD 10001087

Project Number: Project Name:

L1109811 07/08/11 Lab Number: Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics in Air (Low Level) - Mansfield Lab Associated sample(s): 01-04 Sample	Associated sample(s): 01-04	QC Batch ID: WG477447-5		QC Sample: L1109857-03	Client ID: DUP
1,1-Dichloroethane	ND	ND	Vdqq	NC	25
Methyl tert butyl ether	ND	ND	Vdqq	NC	25
Vinyl acetate	QN	QN	Vdqq	S	25
2-Butanone	11.2	11.2	Vdqq	0	25
cis-1,2-Dichloroethene	1.66	1.66	Vdqq	0	25
Ethyl Acetate	QN	QN	Vdqq	NC	25
Chloroform	QN	QN	Vdqq	S	25
Tetrahydrofuran	QN	QN	Vdqq	NC	25
1,2-Dichloroethane	QN	QN	Vdqq	S	25
n-Hexane	29.8	29.9	Vdqq	0	25
1,1,1-Trichloroethane	QN	QN	Vdqq	NC	25
Benzene	4.30	4.48	Vdqq	4	25
Carbon tetrachloride	QN	QN	Vdqq	S	25
Cyclohexane	13.9	14.4	Vdqq	4	25
1,2-Dichloropropane	QN	QN	Vdqq	S	25
Bromodichloromethane	QN	Q	Vdqq	OZ	25
1,4-Dioxane	QN	QN	Vdqq	S	25
Trichloroethene	QN	QN	Vdqq	OZ	25
2,2,4-Trimethylpentane	42.9	43.5	Vdqq	-	25

POLYCLAD 10001087

Project Number: Project Name:

L1109811 07/08/11 Lab Number:

Report Date:

Parameter	Native Sample	Duplicate Sample U	Units	RPD	RPD Limits
Volatile Organics in Air (Low Level) - Mansfield Lab Asso	ciated sample(s): 01-04	QC Batch ID: WG477447-5	-5 QC Sampl	5 QC Sample: L1109857-03 Client ID: DUP	ent ID: DUP

Volatile Organics in Air (Low Level) - Mansfield Lab Associated sample(s): 01-04	Associated sample(s): 01-04	QC Batch ID: WG477447-5	QC Sample: L	QC Sample: L1109857-03 Client ID: DUP
Heptane	8.78	Vdqq 78.8	1	25
cis-1,3-Dichloropropene	QV	Vdqq	NC	25
4-Methyl-2-pentanone	QN	Vadq ON	NC	25
trans-1,3-Dichloropropene	N	Vdqq	NC	25
1,1,2-Trichloroethane	ND	Vdqq	NC	25
Toluene	2.54	2.49 ppbV	2	25
2-Hexanone	N	Vdqq	NC	25
Dibromochloromethane	N	Vdqq	NC	25
1,2-Dibromoethane	N	Vdqq	NC	25
Tetrachloroethene	N	Vdqq	NC	25
Chlorobenzene	ND	Vdqq	NC NC	25
Ethylbenzene	ND	Vdqq	NC NC	25
p/m-Xylene	ND	Vdqq	NC NC	25
Bromoform	ND	Vdqq	NC NC	25
Styrene	ND	Vdqq	NC NC	25
1,1,2,2-Tetrachloroethane	ND	Vdqq	NC NC	25
o-Xylene	ND	Vdqq	NC	25
4-Ethyltoluene	QN	Vdqq ON	NC	25
1,3,5-Trimethylbenzene	QN	Vdqq	NC	25

POLYCLAD 10001087

Project Number: Project Name:

L1109811 07/08/11 Lab Number: Report Date:

Parameter	Native Sample	Duplicate Sample Units	Units	RPD	RPD Limits
Volatile Organics in Air (Low Level) - Mansfield Lab Associated sample(s): 01-04 QC Batch ID: WG477447-5 QC Sample: L1109857-03 Client ID: DUP Sample	Associated sample(s): 01-04	QC Batch ID: WG47	7447-5 QC Sa	ımple: L1109857	-03 Client ID: DUP
1,2,4-Trimethylbenzene	QN	ND	Vdqq	NC	25
Benzyl chloride	ND	QN	Vadq	NC	25
1,3-Dichlorobenzene	ND	Q	Vadq	ON.	25
1,4-Dichlorobenzene	ND	Q	Vadq	ON.	25
1,2-Dichlorobenzene	ND	Q	Vadq	ON.	25
1,2,4-Trichlorobenzene	ND	Q	Vadq	ON.	25
Hexachlorobutadiene	ND	QN	AppV	NO.	25

Serial_No:07081115:31 Lab Number: L1109811

Project Name: POLYCLAD

Report Date: 07/08/11 Project Number: 10001087

Canister and Flow Controller Information

plenum Client ID	Media ID	Media Type	Cleaning Batch ID	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Out mL/min	Flow In mL/min	
811-01 CA-SG-2	0458	#30 SV		-	-	34	34	0
811-01 CA-SG-2	469	2.7L Can	L1107923	-29.4	-4.2	-	-	-
811-02 CA-SG-10	0412	#90 SV		-	-	36	39	8
811-02 CA-SG-10	524	2.7L Can	L1107923	-29.4	-1.6	-	-	-
811-03 CA-SG-DUP	0141	#16 AMB		-	-	33	33	0
811-03 CA-SG-DUP	530	2.7L Can	L1107923	-29.4	-4.0	-	-	-
811-04 BLANK	0293	#90 SV		-	-	32	20	46
811-04 BLANK	554	2.7L Can	L1107923	-29.2	-29.2	-	-	-
811-04 BLANK		554	554 2.7L Can	554 2.7L Can L1107923	554 2.7L Can L1107923 -29.2	554 2.7L Can L1107923 -29.2 -29.2	554 2.7L Can L1107923 -29.2 -	554 2.7L Can L1107923 -29.2

Air Volatiles Can Certification

L1107923

Project Name: BATCH CANISTER CERTIFICATION Lab Number:

Project Number: CANISTER QC BAT Report Date: 07/08/11

Air Canister Certification Results

Lab ID: Date Collected: 06/03/11 00:00

Client ID: CAN 131 SHELF 2 Date Received: 06/03/11

Sample Location: Field Prep: Not Specified

Anaytical Method: 48,TO-15 Analytical Date: 06/15/11 16:38

Air

Analyst: RY

Matrix:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Level)	- Mansfield Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.860			1
Propane	ND	0.200		ND	0.361			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
sopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.200		ND	0.434			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT

Lab Number:

L1107923

Report Date:

07/08/11

Air Canister Certification Results

Lab ID: L1107923-01
Client ID: CAN 131 SHELF 2

Sample Location:

Date Collected:

06/03/11 00:00

Date Received:

06/03/11

Field Prep:

Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Lo	evel) - Mansfield Lab)						
Methylene chloride	ND	1.00		ND	3.47			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
/inyl acetate	ND	0.200		ND	0.704			1
2-Butanone	ND	0.200		ND	0.590			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Fetrahydrofuran	ND	0.200		ND	0.590			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT

Lab Number:

L1107923

Report Date: 07/08/11

Air Canister Certification Results

Lab ID: L1107923-01
Client ID: CAN 131 SHELF 2

Sample Location:

Date Collected:

06/03/11 00:00

Date Received:

06/03/11

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Le	vel) - Mansfield Lab)						
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
2,4,4-trimethyl-1-pentene	ND	0.500		ND	2.29			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.200		ND	0.820			1
2,4,4-trimethyl-2-pentene	ND	0.500		ND	2.29			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.20			1
Nonane	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT

Lab Number:

L1107923

Report Date:

07/08/11

Air Canister Certification Results

Lab ID: L1107923-01
Client ID: CAN 131 SHELF 2

Sample Location:

Date Collected:

06/03/11 00:00

Date Received:

06/03/11

Field Prep:

Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Lev	el) - Mansfield Lab)						
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethybenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
o-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1107923

Project Number: CANISTER QC BAT Report Date: 07/08/11

Air Canister Certification Results

Lab ID: L1107923-01 Date Collected: 06/03/11 00:00

Client ID: CAN 131 SHELF 2 Date Received: 06/03/11

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air (Low Level) - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	100		60-140
Bromochloromethane	98		60-140
chlorobenzene-d5	93		60-140

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1107923

Project Number: CANISTER QC BAT Report Date: 07/08/11

Air Canister Certification Results

Lab ID: Date Collected: 06/03/11 00:00

Client ID: CAN 131 SHELF 2 Date Received: 06/03/11

Sample Location: Field Prep: Not Specified

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 06/15/11 16:38

Analyst: RY

		ppbV			ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air by SIM	- Mansfield Lab								
Dichlorodifluoromethane	ND	0.050		ND	0.247			1	
Chloromethane	ND	0.500		ND	1.03			1	
Freon-114	ND	0.050		ND	0.349			1	
Vinyl chloride	ND	0.020		ND	0.051			1	
1,3-Butadiene	ND	0.020		ND	0.044			1	
Bromomethane	ND	0.020		ND	0.078			1	
Chloroethane	ND	0.020		ND	0.053			1	
Acetone	ND	2.00		ND	4.75			1	
Trichlorofluoromethane	ND	0.050		ND	0.281			1	
Acrylonitrile	ND	0.500		ND	1.08			1	
1,1-Dichloroethene	ND	0.020		ND	0.079			1	
Methylene chloride	ND	1.00		ND	3.47			1	
Freon-113	ND	0.050		ND	0.383			1	
Halothane	ND	0.050		ND	0.404			1	
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1	
1,1-Dichloroethane	ND	0.020		ND	0.081			1	
Methyl tert butyl ether	ND	0.020		ND	0.072			1	
2-Butanone	ND	0.500		ND	1.47			1	
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1	
Chloroform	ND	0.020		ND	0.098			1	
1,2-Dichloroethane	ND	0.020		ND	0.081			1	
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1	
Benzene	ND	0.100		ND	0.319			1	
Carbon tetrachloride	ND	0.020		ND	0.126			1	
1,2-Dichloropropane	ND	0.020		ND	0.092			1	

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT

Lab Number:

L1107923

Report Date: 07/08/11

Air Canister Certification Results

Lab ID: L1107923-01
Client ID: CAN 131 SHELF 2

Sample Location:

Date Collected:

06/03/11 00:00

Date Received:

06/03/11

Field Prep:

Not Specified

		ppbV			ug/m3		Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air by SIM -	Mansfield Lab								
Bromodichloromethane	ND	0.020		ND	0.134			1	
1,4-Dioxane	ND	0.100		ND	0.360			1	
Trichloroethene	ND	0.020		ND	0.107			1	
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1	
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1	
rans-1,3-Dichloropropene	ND	0.020		ND	0.091			1	
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1	
Toluene	ND	0.050		ND	0.188			1	
Dibromochloromethane	ND	0.020		ND	0.170			1	
1,2-Dibromoethane	ND	0.020		ND	0.154			1	
Tetrachloroethene	ND	0.020		ND	0.136			1	
,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1	
Chlorobenzene	ND	0.020		ND	0.092			1	
Ethylbenzene	ND	0.020		ND	0.087			1	
o/m-Xylene	ND	0.040		ND	0.174			1	
Bromoform	ND	0.020		ND	0.207			1	
Styrene	ND	0.020		ND	0.085			1	
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1	
o-Xylene	ND	0.020		ND	0.087			1	
sopropylbenzene	ND	0.500		ND	2.46			1	
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1	
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1	
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1	
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1	
sec-Butylbenzene	ND	0.500		ND	2.74			1	
o-Isopropyltoluene	ND	0.500		ND	2.74			1	
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1	
n-Butylbenzene	ND	0.500		ND	2.74			1	

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1107923

Project Number: CANISTER QC BAT Report Date: 07/08/11

Air Canister Certification Results

Lab ID: L1107923-01 Date Collected: 06/03/11 00:00

Client ID: CAN 131 SHELF 2 Date Received: 06/03/11

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1107923

Project Number: CANISTER QC BAT Report Date: 07/08/11

Air Canister Certification Results

Lab ID: L1107923-01 Date Collected: 06/03/11 00:00

Client ID: CAN 131 SHELF 2 Date Received: 06/03/11

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air by SIM - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	101		60-140
bromochloromethane	99		60-140
chlorobenzene-d5	96		60-140

AIR Petro Can Certification

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1107923

Project Number: CANISTER QC BAT Report Date: 07/08/11

AIR CAN CERTIFICATION RESULTS

Lab ID: L1107923-01 Date Collected: 06/03/11 00:00

Client ID: CAN 131 SHELF 2 Date Received: 06/03/11
Sample Location: Not Specified Field Prep: Not Specified

Matrix: Air
Analytical Method: 96,APH

Analytical Date: 06/10/11 19:04

Analyst: RY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbons in Air -	Mansfield Lab					
1,3-Butadiene	ND	ı	ug/m3	2.0		1
Methyl tert butyl ether	ND	ı	ug/m3	2.0		1
Benzene	ND	ı	ug/m3	2.0		1
Toluene	ND	ı	ug/m3	2.0		1
C5-C8 Aliphatics, Adjusted	ND	ı	ug/m3	12		1
Ethylbenzene	ND	ı	ug/m3	2.0		1
p/m-Xylene	ND	ı	ug/m3	4.0		1
o-Xylene	ND	ı	ug/m3	2.0		1
Naphthalene	ND	ı	ug/m3	2.0		1
C9-C12 Aliphatics, Adjusted	ND	ı	ug/m3	14		1
C9-C10 Aromatics Total	ND	ı	ug/m3	10		1

Project Name:POLYCLADLab Number:L1109811Project Number:10001087Report Date:07/08/11

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

NA Present/Intact

Container Info	rmation	Temp					
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1109811-01A	Canister - 2.7 Liter	NA	NA	NA	NA	Present/Intact	TO15-LL(30)
L1109811-02A	Canister - 2.7 Liter	NA	NA	NA	NA	Present/Intact	TO15-LL(30)
L1109811-03A	Canister - 2.7 Liter	NA	NA	NA	NA	Present/Intact	TO15-LL(30)
L1109811-04A	Canister - 2.7 Liter	NA	NA	NA	NA	Present/Intact	TO15-LL(30)

Project Name:POLYCLADLab Number:L1109811Project Number:10001087Report Date:07/08/11

GLOSSARY

Acronyms

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

 Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: Data Usability Report

Project Name:POLYCLADLab Number:L1109811Project Number:10001087Report Date:07/08/11

Data Qualifiers

than 5x the RL. (Metals only.)

 \boldsymbol{R} — Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

J - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

ND - Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:POLYCLADLab Number:L1109811Project Number:10001087Report Date:07/08/11

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised March 23, 2011 - Mansfield Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0141.

Wastewater/Non-Potable Water (Inorganic Parameters: pH, Turbidity, Conductivity, Alkalinity, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Vanadium, Zinc, Total Residue (Solids), Total Suspended Solids (non-filterable), Total Cyanide. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Acid Extractables, Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, PAHs, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.)

Solid Waste/Soil (Inorganic Parameters: pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Organic Carbon, Total Cyanide, Corrosivity, TCLP 1311. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Volatile Organics, Acid Extractables, Benzidines, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Florida Department of Health Certificate/Lab ID: E87814. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: SM2320B, SM2540D, SM2540G.)

Solid & Chemical Materials (Inorganic Parameters: 6020, 7470, 7471, 9045. Organic Parameters: EPA 8260, 8270, 8082, 8081.)

Air & Emissions (EPA TO-15.)

Louisiana Department of Environmental Quality Certificate/Lab ID: 03090. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: EPA 180.1, 245.7, 1631E, 3020, 6020A, 7470A, 9040, 9050A, SM2320B, 2540D, 2540G, 4500H-B, Organic Parameters: EPA 3510C, 3580A, 3630C, 3640A, 3660B, 3665A, 5030B, 8015D, 3570, 8081B, 8082A, 8260B, 8270C.)

Solid & Chemical Materials (Inorganic Parameters: EPA 1311, 3050, 3051A, 3060A, 6020A, 7196A, 7470A, 7471B, 7474, 9040B, 9045C, 9060. Organic Parameters: EPA 3540C, 3570B, 3580A, 3630C, 3640A, 3660, 3665A, 5035, 8015D, 8081B, 8082A, 8260B, 8270C.)

Biological Tissue (Inorganic Parameters: EPA 6020A. Organic Parameters: EPA 3570, 3510C, 3610B, 3630C, 3640A, 8270C.)

Air & Emissions (EPA TO-15.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 2206. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: EPA, 245.1, 245.7, 1631E, 180.1, 6020A, 7470A, 9040B, 9050A, SM2540D, 2540G, 4500H+B, 2320B. Organic Parameters: EPA 8081, 8082, 8260B, 8270C.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 1311, 1312, 3050B, 3051A, 3060A, 6020A, 7470A, 7471A, 9040B, 9045C, 7196A. Organic Parameters: SW-846 3540C, 3580, 3630C, 3640A, 3660B, 3665A, 5035, 8260B, 8270C, 8015D, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA015. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: SW-846 1312, 3010, 3020A, 3015, SM2320B, EPA 200.8, SM2540D, 2540G, EPA 120.1, SM2510B, EPA 180.1, 245.1, 1631E, SW-846 7470A, 9040B, 6020, 9010B, 9014 Organic Parameters: SW-846 3510C, 3580A, 5030B, 5035L, 5035H, 3630C, 3640C, 3660B, 3665A, 8015B 8081A, 8082, 8260B, 8270C)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6020, 9010B, 9014, 1311, 1312, 3050B, 3051, 3060A, 7196A, 7470A, 7471A, 9040B, 9045C, 9060. Organic Parameters: SW-846 3540C, 3570, 3580A, 5030B, 5035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082, 8260B, 8270C, 8015B.)

Atmospheric Organic Parameters (EPA TO-15)

Biological Tissue (Inorganic Parameters: SW-846 6020 Organic Parameters: SW-846 8270C, 3510C, 3570, 3630C, 3640A)

New York Department of Health Certificate/Lab ID: 11627. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: SM2320B, SM2540D, EPA 200.8, 6020, 1631E, 245.1, 9014, 9040B, 120.1, SM2510B, 4500CN-E, 4500H-B, EPA 376.2, 180.1, 9010B. Organic Parameters: EPA 8260B, 8270C, 8081A, 8082, 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 6020, 7196A, 3060A, 7471A, 7474, 9014, 9040B, 9045C, 9010B. Organic Parameters: EPA 8260B, 8270C, 8081A, DRO 8015B, 8082, 1311, 1312, 3050B, 3580, 3570, 3051, 5035, 5030B.)

Air & Emissions (EPA TO-15.)

Rhode Island Department of Health Certificate/Lab ID: LAO00299. NELAP Accredited via LA-DEQ.

Refer to LA-DEQ Certificate for Non-Potable Water.

Texas Commission of Environmental Quality Certificate/Lab ID: T104704419-08-TX. NELAP Accredited.

Solid & Chemical Materials (Inorganic Parameters: EPA 6020, 7470, 7471, 1311, 7196, 9014, 9040, 9045, 9060. Organic Parameters: EPA 8015, 8270, 8260, 8081, 8082.)

Air (Organic Parameters: EPA TO-15)

Washington State Department of Ecology <u>Certificate/Lab ID</u>: C954. *Non-Potable Water* (<u>Inorganic Parameters</u>: SM2540D, 2510B, EPA 120.1, 180.1, 1631E, 245.7.)

Solid & Chemical Materials (Inorganic Parameters: EPA 9040, 9060, 6020, 7470, 7471, 7474. Organic Parameters: EPA 8081, 8082, 8015 Mod, 8270, 8260.)

U.S. Army Corps of Engineers

Department of Defense Certificate/Lab ID: L2217.01.

Non-Potable Water (Inorganic Parameters: EPA 6020A, SM4500H-B. Organic Parameters: 3020A, 3510C, 5030B, 8260B, 8270C, 8270C-ALK-PAH, 8082, 8081A, 8015D-SHC.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 3050B, 6020A, 7471A, 9045C, 9060, SM 2540G, ASTM D422-63. Organic Parameters: EPA 3580A, 3570, 3540C, 5035A, 8260B, 8270C, 8270-ALK-PAH, 8082, 8081A, 8015D-SHC, 8015-DRO.

Air & Emissions (EPA TO-15.)

Analytes Not Accredited by NELAP

Certification is not available by NELAP for the following analytes: **8270C:** Biphenyl. **TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 2-Methylnaphthalene, 1-Methylnaphthalene.

Form								lo s		हि	(P.)			Q		Em	Fax:	Ser <u>ja</u> ਤੋ	L-No	9:070 a	0811 ଜୁ	15:3 Q	, ,	3	Dec.
Form No: 101-02 (19-Jun-09)	<u>*</u>				61			i		109811-01	ALPHA Lab ID (Lab Use Only)			Other Project Specific Requirements/Comments:	These samples have been previously analyzed by Alpha	Email: RVANDENBERG O EREDERELLE	207-	#Phone: 267- 828-1272	WESTBROOK ME	Address: 776	Sclient: CREDERE	Client Information	TEL: 508-822-9300 FAX: 508-822-3288	320 Earlies Blyd Mansfield MA 02048	
12 (19-Jun-	AMPL						8	03	8	<u>Ö</u>	only)			oject S	mples ha	NOF		17-	Braco	76	60%	ormatio	22-930	RIVE ME	Ú I. V
.09)	EMA		71.30.00				Ž,	CA-	CA.	CA-		- 100		pecifi	we been	り ほぼん	887-105,	Edr-	12 1	MAIN	= ne	on) FAX:	lansfield	
	TRIX						RANK	- 95	- 25 -	- 56	Sg			c Req	previous	0	105	107c	JE.	0			508-8	MAD	
	*SAMPLE MATRIX CODES			:			,	- Dup	10	2	Sample ID			uireme	ly analyz	cneo		٢.	240	1			22-3288	2048)
	O)							9				AII		ents/Co	ed by Alp	ERE			o4092				e for Sign	Ċ	AIR A
	AA = SV = Other							ļ		6				ommer			₹		>	_0	פ	P	P		AIR ANALYSIS
Relinquished By	AA = Ambient Air (Indoor/Outdoor) SV = Soil Vapor/Landfill Gas/SVE Other = Please Specify							(FET	-	6/28/11	Date	Columns		nts:	Date Due:	erz Granda	X Standard	Turn-Around Time	ALPHA Quote #:	Project Manager: RICK	Project #: /000/087	Project Location: デパタベルベル	Project Name: アクレゲ CCチロ	Project Information	TY LY
ahed By	t Air (Inc or/Landi Specify							1256	1300	1256	Start Time	ins		-	**	۵	i.	round	uote #:	anager:	1000	cation:	ame: 1	Inform	SIS
	loor/Outo III Gas/S							<u> </u>	ļ		me End	30				<u> </u>	□ RI IS	Time		RICK	108	FRA	470	ation	
	n)						Charge and the contract of the	1430	1440	1430	O11ection Initial ne End Time Vacuum	Below Must Be				of a long con	RUSH (confirmed if pre-proposed)			VAN	7	NICL	CLAL	:	PAGE_
Date/ (1/20/1/1							1919	-29.4	-294	-29.4	Initial Vacuum	<u>Z</u>			Time:	mmao n pra-			* .	VANDENSERG					
		 					25.2	-3.94	-159	- 4.32	Final Vacuum	StE		-		арриохеці	300000000000000000000000000000000000000			3000		46		٠.	
13:35							ف										1	777					+ -	_	/
								27 4	SV K	ZV/	Sample S Matrix*	Fillec						Report to:	☐ Additi	MEMAIL	<i>a</i>	□ ADEx	□ FAX	Report In	Date Rec'd
Rece	C							The same	200	Ball San	Sampler's Initials	<u>a</u>							onal De	MAIL (standard p	efault base)Ex Criteria Checker:			d in Lab:
Received By:	Container Type							6		<i>و</i> .7	s Can Size	LI F						(if different than Project Manager)	☐ Additional Deliverables:	(standard pdf report)	(Default based on Regulatory Criteria Indicated)	ecker	-	formation - Data Deliverables	Ď.
9	r Type					_		530	Jes	469	I D Can							t Manager)	Š	report)	ilatory Crit			Data E	
							j	1110	04/2	8540	ID - Flow Controller										eria Indica			eliver	
Dat 7SoM			-					×	يعدر		70.14 70.14	Aby	70.15					<i>,</i> -			ted)			ables	
Date/Time:											TO-15 APH	-	0-15						State/Fed	Reg			□ Sa	Bill	ALP
33 8						•					FIXER				_	ANA.			/Fed	ulator			me as C	ng Info	ALPHA Job #:
clo gui Sui Se	iog P				-				30	ļ	104	770.	10		/	ANALYSIS			Program	y Requ			☐ Same as Client info	Billing Information	ф #:
clock will not start until guittes are resolved. // guittes are subject submitted are subject Terms and Conditions. See reverse side.	ase print npletely.						·	PID:	P10 =	P110=	ample (_					ram	iremer			o PO#:	n	1860117
nt start ur resolved. re subject Condition side.	clearly, l Samples d turnare						•	30,	12	Som	ommer								j.C	ոts/Rep			#		1861
clock will not start until any ambi- guittes are resolved. All samples submitted are subject to Alpha's Terms and Conditions. See reverse side.	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time							3	Ž	2	Sample Comments (i.e. PID)								Criteria	Regulatory Requirements/Report Limits					
ਲੋਂ ਨੂੰ ਜ਼ੋ Page 48 of	Ŏ.										ďD)									nits				· A	