Waste Management Division PO Box 95, 29 Hazen Drive Concord, NH 03302			
Type of Submittal (Check One-Most Applicable) Work Scope Reimbursement Request	 Remedial Action Remedial Action Plan Bid Plans and Specifications 		
 UST Facility Report AST Facility Report 	 Remedial Action Implementation Report Treatment System and POE O&M Activity and Use Restriction 		
Emergency/Initial Response Action Groundwater Quality Assessment	Temporary Surface Water Discharge Permit		
 ☐ Initial Site Characterization ☐ Site Investigation • Site Investigation Report • Supplemental Site Investigation Report • GMZ Delineation • Source Area Investigation • Data Submittal • Annual Summary Report ☑ Unsolicited Brownfields Submittal □ Closure Documentation 	 Groundwater Management Permit Permit Application Renewal Application Deed Recordation Documentation Abutter Notification Documentation Release of Recordation Data Submittal Annual Summary Report 		

PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

New England Yard (A.K.A. DPW New England Yard) 210 Messer Street Laconia, NH NHDES Site # 200911005

> Prepared For: Lakes Region Planning Commission 103 Main Street – Suite #3 Meredith, NH 03253 Phone: (603) 279-8171 Contact: Mr. Kimon Koulet

> Prepared By: CREDERE ASSOCIATES, LLC 776 Main Street Westbrook, Maine 04092 Phone: (207) 828-1272 ext. 16 Contact: Judd R. Newcomb, CG, PG

May 22, 2012

R	Recommended Risk Category (check one	e)
1. Immediate Human Health Risk (Impacted water supply well, etc.)	4. Surface Water Impact	☐ 7. Alternate Water Available/Low Level Groundwater Contamination (<1,000 X
☐ 2. Potential Human Health Risk (Water supply well within 1,000' or Site	5. No Alternate Water Available/No Existing Wells in Area	AGQS) 8. No AGQS Violation/No Source Remaining
within SWPA)	6. Alternate Water Available/High Level Groundwater Contamination (>1,000 X	Closure Recommended
3. Free Product or Source Hazard	AGQS)	

CREDERE ASSOCIATES, LLC

776 Main Street Westbrook, Maine 04092 Phone: 207-828-1272 Fax: 207-887-1051

May 22, 2012

Mr. Kimon Koulet, Executive Director Lakes Region Planning Commission 103 Main Street, Suite #3 Meredith, New Hampshire 03253

Subject: Phase II Environmental Site Assessment New England Yard (A.K.A. DPW New England Yard) 210 Messer Street, Laconia, New Hampshire NHDES Site # 200911005

Dear Mr. Koulet:

Attached is the Phase II Environmental Site Assessment for the New England Yard (A.K.A. DPW New England Yard) Site located at 210 Messer Street in Laconia, New Hampshire. **Sections 12** and **13** of the attached report present our conclusions and recommendations regarding the Site. Copies of this report have been forwarded to the New Hampshire Department of Environmental Services, the City of Laconia, and the United States Environmental Protection Agency.

Please do not hesitate to contact me at (207) 828-1272 ext. 16 if you have any questions, comments, or require additional information regarding this investigation.

Very truly,

CREDERE ASSOCIATES, LLC

udd R. Newcoul

Judd R. Newcomb, CG, PG Project Manager

cc: Shanna Saunders, City of Laconia
 Luke Powell, City of Laconia
 Mr. John F. Liptak, M.Ed., P.G., NHDES
 Ms. Jerry Minor-Gordon, USEPA

Phase II Environmental Site Assessment Report

New England Yard (A.K.A. DPW New England Yard) 210 Messer Street Laconia, New Hampshire NHDES Site #200911005 EPA Grant #BF-96111801

Prepared for:

Lakes Region Planning Commission 103 Main Street, Suite #3 Meredith, NH 03253

May 22, 2012

In Reference to: Project No. 10001086

Submitted by: Credere Associates, LLC 776 Main Street Westbrook, ME 04092

TABLE OF CONTENTS

Sectio	n Title	Page No.
EXEC	CUTIVE SUMMARY	ES-1
1. I	NTRODUCTION	1-1
2. P	ROJECT BACKGROUND	
2.1 2.2 2.3	Site Description Summary of Previous Environmental Reports and Documents Potential Future Site Use	
3. P	PHASE II ESA OBJECTIVES	
3.1 3.2 3.3 3.4 3.5 3.6	Statement of Objectives Schedule, Cost, and Budget Limitations Informantion and Explanation Scope of Work Comments Regarding Compensation Issues Beyond the Scope of ASTM Practice	
4. P	PHASE II SCOPE OF WORK	
5. P	PHASE II FIELD ACTIVITIES	
5.1 5.2 5.3 5.4 5.5	Soil Boring and Monitoring Well Installation Surficial Soil Sampling Test Pitting and Soil Sampling Groundwater Sampling and Survey Building Material Sampling	
6. S	UMMARY OF REGULATORY STANDARDS	
6.1 6.2 6.3 6.4	Soil and Surficial Fill/Debris Groundwater Lead-Based Paint Potential Asbestos-Containing Materials	
7. P	HASE II RESULTS	
7.1 7.2 7.3 7.4 7.5 7.6	Site Geology Soil Boring Sample Results Surficial Soil Sample Results Test Pit Soil Sample Results Groundwater Sample Results Building Material Sample Results	7-2 7-3 7-3 7-3 7-4 7-4
8. Q	UALITY ASSURANCE/QUALITY CONTROL	

8.1	Precision	
8.2	Bias	
8.3	Accuracy	
8.4	Representativeness	
8.5	6 Comparability	
8.6	5 Completeness	
9.	UPDATED CONCEPTUAL SITE MODEL	
9.1	Stormwater Water Flow	
9.2		
9.3		
9.4	Contaminants of Concern	
9.5	5 Summary of Exposure Pathways and Human Receptors	
10.	DEVIATIONS	
11.	DATA GAPS	
12.	CONCLUSIONS	
13.	RECOMMENDATIONS	
14.	SIGNATURES OF ENVIRONMENTAL PROFESSIONALS	
15.	LIMITATIONS	

LIST OF FIGURES

Figure 1	Site Location Plan
	Detailed Site Plan
	Groundwater Flow Plan
	Asbestos Sample Location Plan
e	Soil Sample Results Plan
	Groundwater Results Plan
6	Updated Conceptual Site Model

LIST OF TABLES

Table 1	Summary of Exploration Locations, Sampling, and Exploration Methods
Table 2	Summary of Soil Sample X-Ray Fluorescence Field Screening Results
Table 3	Summary of Soil Sample Analytical Results
Table 4	Summary of Monitoring Well Construction, Gauging, and Groundwater Elevations
Table 5	
Table 6	

LIST OF APPENDICES

Appendix A	Site-Specific Quality Assurance Project Plan Addendum
Appendix B	
	Soil Boring Logs
	Groundwater Sampling Logs
	Laboratory Analytical Reports

EXECUTIVE SUMMARY

Credere Associates, LLC (Credere) conducted a Phase II Environmental Site Assessment (Phase II ESA) at the New England Yard (A.K.A. DPW New England Yard) located at 210 Messer Street in Laconia, New Hampshire (the Site) in conformance with the ASTM International (ASTM) Standard Guide for Environmental Site Assessments: *Phase II Environmental Site Assessment Process* E 1903-11. This Phase II ESA was undertaken using United States Environmental Protection Agency (EPA) funds awarded to the Lakes Region Planning Commission (LRPC) for their Brownfields Assessment Program.

Phase II ESA activities were performed specifically to confirm or dismiss *recognized environmental conditions* (RECs) and other ASTM non-scope considerations (NCs) identified during a Phase I Environmental Site Assessment (Phase I ESA) for the Site that was completed by Credere in May 2011.

The Phase II ESA work at the Site included: the advancement of six (6) soil borings and installation of six (6) groundwater monitoring wells; collection and laboratory analysis of six (6) groundwater samples, thirteen (13) soil samples, and one (1) catch basin sample; and, field screening and sampling associated with surveys or screenings for asbestos-containing materials, lead-based paint, and polychlorinated biphenyl (PCB)-containing bulk products.

Based on the findings of this work, Credere's conclusions include the following:

- REC-1 concerning potential soil and groundwater contamination from the historical uses of the Site by coal and ice companies with a railroad spur, a blacksmith shop, and for storage by the City of Laconia Department of Public Works is <u>confirmed</u> because polycyclic aromatic hydrocarbons (PAHs) were identified in groundwater throughout the Site and a limited area of PAH contaminated soil was identified beneath the Vactor Shed.
- REC-2 concerning the oil stained soil observed within the Blacksmith Shop is <u>dismissed</u> because the oil stained soil has been consolidated into drums for disposal and no contaminants were detected above the New Hampshire Department of Environmental Services (NHDES) Soil Remediation Standards (SRS) beneath the floor of the building.
- REC-3 concerning impact to the Site from a historical undocumented gasoline underground storage tank (UST) on the east adjoining property is <u>dismissed</u> because no gasoline related compounds were identified in soil or groundwater along the eastern Site boundary in soil boring/monitoring well CA-4.
- REC-4 concerning potential releases from a historical bulk oil storage tank adjacent to the Sand/Salt Shed is <u>dismissed</u> because no concentrations of total petroleum hydrocarbons (TPH) were identified above the NHDES SRS in soil borings CA-5 or CA-6 in the vicinity of the tank.
- REC-5 concerning the potential landfilling or burying of wastes reported in the northern portion of the Site is <u>confirmed</u> because buried ash, metal, asphalt, refuse, and other

materials were observed in test pits excavated in this area of the Site and PAHs and arsenic were detected in laboratory samples above the applicable NHDES SRS. It should be noted that although not a contaminant of concern for the investigation, chromium was also detected above the SRS during field screening with an X-ray fluorescence (XRF) meter in test pit TP-1.

- REC-6 concerning the potential for contaminants to be present from dumping or incidental spills of painting products into the Vactor Shed catch basin is <u>confirmed</u> because the sampled material within the catch basin structure was determined to be impacted by lead and chromium, which are components of paint, at concentrations exceeding the NHDES SRS.
- REC-7 concerning the open pail of waste oil and approximately 30-gallon drum of unknown contents observed in the Horse Barn building; and one (1) 55-gallon drum of unknown contents observed outside the Blacksmith Shop building <u>remains a REC</u> because these items have not been removed to date, and represent a material threat of release to the environment.
- NC-1, which was associated with the presence of asbestos-containing material (ACM) in the Site buildings, was <u>dismissed</u> because no ACMs were identified in/on the Site buildings. However, the known bailed asbestos piping (DMEC-1) that is being stored in the Horse Barn Shed should be removed from the Site and property disposed.
- NC-2, which was associated with the presence of lead-based paint (LBP) in/on the Site buildings, was <u>confirmed</u> because LBP was identified on the green doors of the Rodder Shed and the off-white door of the Horse Barn.
- NC-3, which was associated with potential PCB-containing bulk products within the Site buildings, is <u>inconclusive</u> because with the exception of painted exterior surfaces and a limited number of painted interior surfaces, no potential PCB-containing bulk products were observed at the Site during the completed inventory of building materials. Regarding the painted surfaces, no paints that, in Credere's experience, have a high probability to contain PCBs, such as heat resistant or moisture resistant paints, were observed during the screening.

Based on these conclusions, Credere recommends the following tasks be completed for the Site:

- To further assess REC-1, Credere recommends that the monitoring well network at the Site be resampled for laboratory analysis of PAHs, and that the groundwater samples be filtered to determine if the identified PAHs are the result of suspended solids in the samples or reflect dissolved phase concentrations.
- Credere recommends that the drum of consolidated oily soil (REC-2) from the Blacksmith Shop be removed from the Site and properly disposed of.
- Contaminated fill material (REC-5) is present in the northern portion of the Site where this material was historically land filled (see **Figure 2**). This material represents a potential health risk during redevelopment; therefore, Credere recommends that a

remedial action plan be developed and implemented to appropriately address this material. Because redevelopment plans have not been formally developed for the Site, necessary remedial measures cannot be determined at this time; however, such measures would likely include either capping the material in place to prevent exposure, the excavation and off-site disposal of this material, or a combination thereof. Once redevelopment plans have been developed, some additional soil and/or groundwater assessment work may be warranted to determine accurate horizontal and vertical extents of these materials. Based on XRF field screening results, collected samples should also be analyzed for chromium during any additional assessment work in this area. Once redevelopment plans have been established, if this material is to be capped in place, Credere recommends that this portion of the Site be registered as a Pre-1981 landfill according to NHDES Solid Waste Rules Env-Sw 309.

- The area of contaminated fill in the northern portion of the Site was identified as a landfill with concentrations of PAHs, arsenic, and chromium (via XRF field screening) analyzed above the NHDES SRS. As the extent of environmental impact from this area has not been fully assessed, Credere recommends that sediments along the toe of the landfill within Opechee Bay be sampled to determine if impacts to the bay have occurred.
- Contaminated soil was identified beneath the Vactor Shed (REC-1). This material also represents a potential health risk during redevelopment; therefore, Credere recommends that a remedial action plan be developed and implemented to appropriately address this material. Because redevelopment plans have not been formally developed for the Site, necessary remedial measures cannot be determined at this time; however, such plans would likely include either the capping in place or excavation and off-site disposal of this material to prevent exposure. Once redevelopment plans have been developed or the building has been demolished, additional assessment work may be warranted to determine the horizontal and vertical extent of these materials.
- Credere recommends that the accumulated chromium and lead contaminated material identified within the Vactor Shed catch basin (REC-6) be removed for proper disposal. In addition, if an outlet to this drain is identified during redevelopment, additional assessment would be necessary to determine the extent of potential impact from these contaminants.
- Credere recommends that the unknown 55-gallon drum outside the Blacksmith Shop and the pail of waste oil within the Horse Barn (REC-7) be removed from the Site and properly disposed.
- Credere recommends that the bailed asbestos piping stored in the Horse Barn Shed (DMEC-1), the pail of waste oil and 30-gallon drum of unknown contents in the Horse Barn (REC-7) should be removed from the Site and properly disposed.
- Credere recommends that the City of Laconia DPW workers and future Site users or occupants should be notified of the presence of LBP (NC-2) on the green doors of the Rodder Shed and on the off-white door of the Horse Barn. If paint is removed from these surfaces, the paint waste should be properly disposed.

ES-3

• Based on the PCB bulk products inventory observations and the lack of paint applications for which, in Credere's experience, there is a high risk of PCBs, Credere recommends that PCB sampling of building materials be deferred until redevelopment begins at the Site and bulk samples of demolition materials can be collected for waste characterization prior to disposal.

1. INTRODUCTION

This report presents the objectives, scope of work, and results of a Phase II Environmental Site Assessment (Phase II ESA) conducted by Credere Associates, LLC (Credere) at the New England Yard facility (A.K.A. DPW New England Yard), the 'Site', located at 210 Messer Street in Laconia, New Hampshire.

The Phase II ESA was completed in conformance with the ASTM International (ASTM) Standard Guide for Environmental Site Assessments: *Phase II Environmental Site Assessment Process* E 1903-11 as part of the Lakes Region Planning Commission's (LRPC) Brownfields Program using United States Environmental Protection Agency (EPA) Brownfields assessment grant funds. **Figure 1** shows the location of the Site in Laconia.

The objective of this Phase II ESA was to confirm or dismiss seven (7) recognized environmental conditions (RECs) and three (3) ASTM non-scope considerations (NCs) that were identified in a Phase I Environmental Site Assessment (Phase I ESA) completed by Credere on May 2, 2011, and are further discussed in **Section 2**. The field program and preliminary conceptual site model (CSM) used during this Phase II ESA was included within the EPA approved Site-Specific Quality Assurance Project Plan (SSQAPP) Addendum for the Site, which is included in **Appendix A**. The SSQAPP is an addendum to Credere's previously approved New Hampshire Generic Quality Assurance Project Plan (QAPP) EPA RFA #08166 and #09036, which was prepared for all of Credere's EPA work in New Hampshire. Photographs taken during the completion of this Phase II ESA are included in **Appendix B**.

2. PROJECT BACKGROUND

2.1 SITE DESCRIPTION

The Site is composed of a 2.40-acre parcel of land located at 210 Messer Street in Laconia, New Hampshire. The Site's entire western frontage is located on Opechee Bay, which is part of Lake Winnipesaukee. Five (5) buildings are located on the Site, which include: a 'Horse Barn' building (**Picture 1**), a 'Blacksmith Shop' building (**Picture 2**), the 'Sand/Salt Shed' building (**Picture 3**), the 'Vactor Shed' building (**Picture 4**), and the 'Rodder Shed' building (**Picture 5**). The Site and buildings are currently in use by the City of Laconia Department of Public Works for the cold storage of equipment, seasonal items (e.g. trash cans, planters, etc.), and road sand storage and loading. It should be noted that road salt has not been stored at the facility since 2005.

A paved walking/biking trail, known as the Laconia Winnisquam, Opechee, Winnipesaukee (WOW) Paved Trail, bounds the Site to the east, beyond which is a state-owned rail line and a fuel oil company. Exterior portions of the Site consist of a paved driveway/parking area, a gravel lot, unpaved grassy areas, and a small wooded/brushy area. A grassy area located in the northern portion of the Site was reportedly formerly used to store cold patch asphalt and reclaimed asphalt.

2.2 SUMMARY OF PREVIOUS ENVIRONMENTAL REPORTS AND DOCUMENTS

Credere completed a Phase I ESA for the Site in May 2011, in accordance with ASTM Standard Practice E 1527-05. The Phase I ESA identified the following *recognized environmental conditions* (RECs) at the Site:

- REC-1 The historical uses of the Site by coal and ice companies with a railroad spur, a blacksmith shop, and for storage by the City of Laconia Department of Public Works represent a REC because soil or groundwater beneath the Site may have been affected by the use of heavy oils, metals, and other petroleum and/or hazardous materials associated with these uses.
- REC-2 Oil stained soil observed within the Blacksmith Shop (**Pictures 5 and 6**) represents a REC because it is indicative of a release of oil and/or hazardous substances, which may have affected soil and/or groundwater at the Site.
- REC-3 The historical presence of an undocumented gasoline underground storage tank (UST) on the east adjoining property represents a REC because undocumented spills or releases associated with this tank may have affected soil or groundwater beneath the Site. In addition, the presence of nearby leaking UST sites may have affected groundwater beneath the Site.

- REC-4 A bulk oil storage tank noted in the vicinity of the Sand/Salt Shed on historical Sanborn Fire Insurance Maps represents a REC because spills or releases associated with this tank may have affected soil or groundwater at the Site.
- REC-5 The potential landfilling or burying of wastes reported in the northern portion of the Site (**Picture 7**) represents a REC because unknown types and quantities of materials placed in this area are unknown and may have impacted soil and groundwater beneath the Site.
- REC-6 The catch basin (**Picture 8**) located within the Vactor Shed building represents a REC because evidence of dumping was observed around the drain (i.e. paint covered grate and floor) that may have resulted in releases to the environment.
- REC-7 The open pail of waste oil (**Picture 9**) and approximately 30-gallon drum of unknown contents (**Picture 11**) observed in the Horse Barn building, and 55-gallon drum of unknown contents (**Picture 12**) observed outside the Blacksmith Shop building represent a REC because these items are improperly stored and labeled and represent a material threat of release.

During the Phase I ESA, Credere also noted one (1) *de minimis* environmental condition (DMEC) and three (3) NCs at the Site which included:

- DMEC-1 –Waste asbestos piping (**Picture 13**) that was observed to be stored in the locked Horse Barn shed.
- NC-1 The potential for asbestos-containing materials (ACMs) to be present on or within the buildings.
- NC-2 The potential for lead-based paint (LBP) to be present on or within the buildings.
- NC-3 The potential for PCB-containing bulk products (i.e. building materials) to be present on or within the buildings.

2.3 POTENTIAL FUTURE SITE USE

No formal redevelopment plans have been established for the Site; however, the City of Laconia would like to redevelop the Site into either a park, mixed-use, or residential development.

3. PHASE II ESA OBJECTIVES

In accordance with section 5.0 of ASTM 1903-11, this section is provided to promote clarity and transparency in communicating and interpreting Phase II ESA results. As this Phase II ESA was developed and performed as a part of Lakes Region Planning Commission's Brownfields program, Mr. Eric Senecal, the former Brownfields Coordinator for LRPC was involved with the review of the draft Scope of Work (Section 4). Mr. Kimon Koulet, the acting Brownfields Coordinator, will review and approve this Phase II ESA report.

3.1 STATEMENT OF OBJECTIVES

We have performed a Phase II ESA at 210 Messer Street, Laconia, New Hampshire in conformance with the scope and limitations of ASTM Practice E-1903-11 and for the following objectives:

- 1. To assess the Site for release(s) of oil and/or hazardous substances that may have resulted from the RECs identified during the May2011 Phase I ESA.
- 2. To determine if asbestos-containing building materials are present in the Site buildings per the non-scope consideration identified during the May 2011 Phase I ESA.
- 3. To determine if PCB-containing building materials are present in the Site buildings per the non-scope consideration identified during the May 2011 Phase I ESA.
- 4. To determine if lead-based paint is present on the Site buildings per the non-scope consideration identified during the May 2011 Phase I ESA.

The scope of work that was developed in consideration of these objectives is discussed in **Section 4** below.

3.2 SCHEDULE, COST, AND BUDGET LIMITATIONS

Due to budget constraints, this Phase II ESA was designed to confirm or dismiss the presence of source areas of contamination on the Site and the need for additional assessment or remediation. As such, this Phase II ESA was not designed to wholly delineate the nature and extent of any identified contaminant areas.

3.3 INFORMANTION AND EXPLANATION

Information and explanation of the Phase II ESA process was provided to LRPC as a part of developing the above referenced statement of objectives and the work scope noted in **Section 4**.

3.4 SCOPE OF WORK

Section 4 details Credere's scope of work as it relates to this Phase II ESA.

3.5 COMMENTS REGARDING COMPENSATION

Credere's compensation for conducting this Phase II ESA was not in any way connected to the results obtained or conclusions drawn from the data.

3.6 ISSUES BEYOND THE SCOPE OF ASTM PRACTICE

No issues were identified beyond scope ASTM 1903-11 or the developed Scope of Work.

4. PHASE II SCOPE OF WORK

Credere performed this Phase II ESA to assess the RECs and NCs identified in Credere's Phase I ESA for the Site. An SSQAPP Addendum was developed that outlined a preliminary CSM, the work to be completed to achieve the objectives of this Phase II ESA, the field and laboratory methodologies to be used, and data quality objectives for the project (see **Appendix A**). The SSQAPP Addendum was approved by EPA and NHDES on August 30, 2011. The Phase II ESA tasks completed included the following:

- 1. Six (6) soil borings (CA-1 through CA-6) were advanced at the Site and seven (7) soil samples were submitted for off-site laboratory analysis to assess REC-1, REC-2, REC-3, and REC-4. Each of these soil borings were also completed as groundwater monitoring wells and sampled for off-site laboratory analysis.
- 2. Three (3) surficial soil samples (SS-1 through SS-3) were collected from the Site and submitted for off-site laboratory analysis to assess REC-1. In addition, one (1) soil sample (CA-2 Floor) was collected from the stained soil on the floor of the Blacksmith Shop to assess REC-2.
- 3. Four (4) test pits (TP-1 through TP-4) were excavated and two (2) soil samples were submitted for off-site laboratory analysis to assess REC-5.
- 4. The catch basin in the Vactor Shed was inspected for a potential outlet and a soil/sediment sample (CB-1) was collected from the base of the structure and submitted for off-site laboratory analysis to assess REC-6.
- 5. A survey of potential ACMs within and on the Site buildings was conducted to assess NC-1.
- 6. A survey of potential LBP within and on the Site buildings was conducted to assess NC-2.
- 7. The Site buildings were surveyed to inventory potential PCB-containing building materials to assess NC-3.

5. PHASE II FIELD ACTIVITIES

Summaries of the Phase II ESA tasks conducted in accordance with the EPA and NHDES approved SSQAPP Addendum (**Appendix A**) are presented below. Any deviations from the SSQAPP Addendum are described in **Section 10** of this report. All laboratory analytical samples collected by Credere were submitted to Absolute Resource Associates (ARA) of Portsmouth, New Hampshire for analysis. Requirements relative to Chain of Custody, Data Management and Documentation, Data Validation, and Data Usability Assessments contained in the SSQAPP were followed. **Figure 2** shows the approximate locations of the Site buildings, pertinent Site features, and sample locations.

5.1 SOIL BORING AND MONITORING WELL INSTALLATION

Six (6) soil borings (CA-1 through CA-6) were advanced at the Site on September 22, 2011. Soil boring locations are depicted on **Figure 2**. T&K Well Drilling, a licensed New Hampshire well driller from Troy, New Hampshire, was retained by Credere and performed the drilling activities. Credere was on-site during the work to provide oversight of the drilling and monitoring well installation, and to collect soil samples for field screening and laboratory analysis.

Exterior soil borings (CA-1, CA-3, CA-4, and CA-5) were advanced using a truck-mounted hollow stem auger drill rig. Soil samples were continuously collected and logged using hollow stem auger and split-spoon soil sampling methodologies. Interior soil borings (CA-2 and CA-6) were advanced using a truck-mounted direct-push drill rig. Direct push samples were collected in 3-foot polyethylene core tubes. Soil from both the split spoon samplers and core tubes were sampled in whole, or were divided into discrete samples based on visual observations, soil stratigraphy, and/or the depth of the groundwater table.

Each collected sample was logged and visual and/or olfactory evidence of contamination was noted. Samples were then field screened for volatile organic compounds (VOCs) using a Thermo OVM 580B photoionization detector (PID) calibrated to a 100 parts per million by volume (ppm_v) isobutylene standard with the instrument response factor set to 1.0, and for the identified metals of concern at the Site with an Innov-X Alpha 4000 X-ray fluorescence (XRF) meter. Exploration locations and methodologies are summarized in **Table 1**. XRF field screening results are summarized in **Table 2**. PID field screening results are summarized on the soil boring logs included in **Appendix C**.

Monitoring wells were constructed in soil borings CA-1 through CA-6. Exterior monitoring wells CA-1, CA-3, CA-4, and CA-5 were constructed using 2-inch diameter PVC pipe and 0.010-inch wide slotted PVC screen, and interior monitoring wells CA-2 and CA-6 were constructed using 1-inch diameter PVC materials. In both cases, the well annulus were packed with size No. 2 washed sand to approximately 1-foot above the screen depth and a bentonite seal was placed on top of the annulus with a road box and concrete collar at the ground surface to prevent surface water infiltration around each monitoring well. Following installation, each

monitoring well was developed by over pumping and agitation, and allowed to equilibrate for two weeks. **Table 1** is a summary of the exploration methods used at each location including the media that was sampled. Copies of soil boring and monitoring well installation logs are included as **Appendix C.**

The rationale for the location of each soil boring and the soil sample(s) submitted for laboratory analyses is provided below. Soil sample laboratory analytical results are summarized in **Table 3**.

CA-1

Soil boring CA-1 was advanced to a depth of approximately 10 feet below ground surface (bgs) in a location interpreted to be downgradient of the Horse Barn and its floor drain system (REC-1). Groundwater was observed in this boring at approximately 2.5 feet bgs during drilling. The 0 to 2 foot bgs interval soil sample was submitted for laboratory analysis because no additional subsurface samples were able to be collected due to spoon refusals on large subsurface objects (i.e. boulders or concrete). Augers were able to be advanced through the objects to a depth of approximately 10-feet bgs. The 0 to 2 foot bgs interval soil sample was submitted for laboratory analysis of polycyclic aromatic hydrocarbons (PAHs), total petroleum hydrocarbons (TPH), and the metals arsenic, barium, boron, cadmium, copper, lead, mercury, nickel, and zinc. Based on the suspected fill materials in this boring location, sampling spoon refusal has resulted in a data gap for the Site.

The soil boring was completed as a monitoring well and the well screen was placed from approximately 2-feet bgs to 10-feet bgs to allow for adequate room for the installation of a bentonite seal and a road box.

<u>CA-2</u>

Soil boring CA-2 was advanced to the depth of refusal at approximately 7 feet bgs through the interior concrete floor of the Blacksmith Shop to assess soil and groundwater conditions beneath the building (REC-2). One soil sample was also collected from the oil stained soil (sample CA-2 Floor) located on top of the concrete floor, and one sample was collected from the 0 to 3-foot interval, which was directly beneath the concrete floor, to assess impacts from historical oil spills and blacksmith activities within the building. The soil samples were submitted to ARA for laboratory analysis of VOCs, PAHs, TPH, and the metals arsenic, barium, boron, cadmium, copper, lead, mercury, nickel, and zinc.

Groundwater in the boring was observed at approximately 2 feet bgs during drilling. The soil boring was completed as a monitoring well and the well screen was placed from approximately 2 feet bgs to 7 feet bgs to allow for adequate room for the installation of a bentonite seal and a road box.

<u>CA-3</u>

Soil boring CA-3 was advanced to a depth of 14 feet bgs in the northern portion of the Site to assess potential landfilling activities (REC-5), and to assess soil and groundwater

conditions downgradient of fuel oil ASTs located at an upgradient fuel oil company property. The soil sample from 6 to 8 feet bgs, the inferred groundwater table interface, was collected to assess conditions that could be attributed to the potential upgradient source. The soil sample was submitted to ARA for laboratory analysis of VOCs, PAHs, TPH, and lead. In addition, based on XRF field screening results, the surficial soil sample interval from 0 to 2 feet bgs was also collected for laboratory analysis of lead to confirm field screening results.

Groundwater was observed at approximately 7.5 feet bgs during drilling. The soil boring was completed as a monitoring well and the well screen was placed from approximately 4 feet bgs to 14 feet bgs.

<u>CA-4</u>

Soil boring CA-4 was advanced to a depth of approximately 10 feet bgs in a location along the eastern Site boundary to assess soil and groundwater downgradient of a fuel oil company and historical gasoline UST (REC-3) located on an adjacent property. The 6 to 8 foot bgs interval was sampled for laboratory analysis of VOCs, TPH, and PAHs based on the highest PID field screening result and to assess conditions that could be attributed to the potential upgradient source.

Groundwater in the boring was observed at approximately 4 feet bgs during drilling. The soil boring was completed as a monitoring well and the well screen was placed from approximately 3 feet bgs to 10 feet bgs to allow for adequate room for the installation of a bentonite seal and a road box.

<u>CA-5</u>

Soil boring CA-5 was advanced to a depth of approximately 10 feet bgs, adjacent to the Sand/Salt Shed and slightly downgradient of a historical oil tank (REC-4) to assess impacts to soil and groundwater in this area. The 2 to 3 foot bgs interval of soil was selected for laboratory analysis of VOCs, TPH, and PAHs based on an observed black band of soil that exhibited a potential petroleum odor.

Groundwater in the boring was observed at approximately 2.5 feet bgs during drilling. The soil boring was completed as a monitoring well and the well screen was placed from approximately 2-feet bgs to 10-feet bgs to allow for adequate room for the installation of a bentonite seal and a road box.

<u>CA-6</u>

Soil boring CA-6 was advanced to a depth of approximately 7 feet bgs through the interior concrete floor of the Vactor Shed to assess soil and groundwater conditions beneath the building and potential impacts from the catch basin (REC-6). The boring could not be advanced further due to refusal of the direct-push drilling equipment. The 0 to 3 foot bgs interval of soil was selected for laboratory analysis based on observed soil discoloration at the inferred water table interface. The sample was submitted to ARA for

analysis of VOCs, TPH, semi-volatile organic compounds (SVOCs), and Resource Conservation and Recovery Act (RCRA) 8 Metals.

Concurrently, Credere opened the catch basin within the Vactor Shed to determine if an outlet was present. The drain structure appeared to be a circular brick and concrete structure, and no outlet pipe was observed. Credere explored the material in the base of the drain structure with a hand auger and determined at least several feet of loose sandy material comingled with organic material and paint chips was present in the structure. Credere collected a grab sample of this material (CB-1) for off-site laboratory analysis of VOCs, SVOCs, TPH, and RCRA 8 Metals.

Groundwater in the boring was observed at approximately 2.5 feet bgs during drilling. The soil boring was completed as a monitoring well and the well screen was placed from approximately 2 feet bgs to 7 feet bgs to allow for adequate room for the installation of a bentonite seal and a road box.

5.2 SURFICIAL SOIL SAMPLING

On September 22, 2011, Credere collected three (3) surficial soil samples (SS-1 to SS-3) from the Site to assess conditions associated with the historical uses of the Site for coal storage and railroad activities (REC-1). Surficial soil samples were collected from 0 to 1 feet bgs using hand tools. Any visible organic debris and/or degraded asphalt was removed from samples prior to placement in laboratory glassware.

Each collected sample was logged and field screened for VOCs and metals as described in **Section 5.1**. No VOCs were detected with a PID in any surficial soil sample. Exploration locations and methodologies used are summarized in **Table 1** and XRF field screening results are included in **Table 2**.

The rationale for each surficial sample is described below. Soil sample laboratory analytical results are summarized in **Table 3**.

- Surficial soil sample SS-1 was collected in the location of a reported historical coal pocket and was submitted for laboratory analysis of PAHs, TPH, PCBs, and metals, including arsenic, barium, boron, cadmium, copper, lead, mercury, nickel, and vanadium.
- Surficial soil samples SS-2 and SS-3 were collected in the approximate location of a historical railroad spur and were submitted for laboratory analysis of PAHs, TPH, PCBs, and metals, including arsenic, barium, boron, cadmium, copper, lead, mercury, nickel, and vanadium.

5.3 TEST PITTING AND SOIL SAMPLING

On September 22, 2011, Credere directed City of Laconia DPW personnel in the excavation of four (4) test pits (TP-1 through TP-4) with a backhoe in the northern portion of the Site to determine if landfilling had occurred. Test pits were excavated to the maximum depth limitation of the backhoe (approximately 10 feet bgs) or to a depth where material was caving and no progress was being made. Test pit logs are included in **Appendix D**.

Soil samples were collected at approximate 2-foot depth intervals and were logged and field screened for VOCs and metals as described in **Section 5.1**. No VOCs were detected with a PID in any sample collected from the test pits. Based on field screening results and field observations indicating that the majority of materials in the northern portion of the Site were similar, two soil samples (TP-1 and TP-2) were collected from the 4 to 6 foot bgs interval and submitted for laboratory analysis of PAHs, TPH, and metals, including arsenic, barium, boron, cadmium, copper, lead, mercury, nickel, and vanadium.

5.4 GROUNDWATER SAMPLING AND SURVEY

Credere returned to the Site on October 6, 2011, to collect groundwater samples from the newly installed monitoring wells (CA-1 through CA-6) at the Site (see **Figure 2**), and returned on October 18, 2011, to perform an elevation survey of the wells.

Each of the new monitoring wells was surveyed for elevation relative to a sewer manhole located with the WOW Paved Trail. According to the City of Laconia, this manhole was recently reconstructed and has not been re-surveyed for a real elevation to date; therefore, the manhole was utilized as an arbitrary benchmark of 100 feet. If future groundwater sampling is performed at the Site, Credere will attempt to locate a permanent benchmark to establish a real Site datum. Based on the results of the survey and measured groundwater elevations, a model of groundwater flow within the local overburden aquifer was interpolated to be west (see **Figure 3**). Groundwater measurements and elevations are summarized in **Table 4**.

Samples were collected from each monitoring well using standard low-flow sampling techniques. Groundwater sampling logs are included in **Appendix E**. All collected groundwater samples were submitted to ARA for laboratory analysis of NHDES Full List VOCs and PAHs. However, per the SSQAPP, sample CA-6 was submitted for full SVOC analysis instead to PAH analysis due to the use of paints and related materials in the Vactor Shed building. Sample CA-6 was also analyzed for dissolved RCRA 8 metals. Based on soil sample results, the groundwater samples from monitoring wells CA-1 and CA-2 were also analyzed for dissolved lead. Groundwater sample analytical results are summarized in **Table 5**.

5.5 BUILDING MATERIAL SAMPLING

5.5.1 Potential Asbestos Containing Materials

On September 22, 2011, NH certified Asbestos Inspectors Mr. Jonathan O'Donnell (Certification # AI 000382) and Mr. Judd Newcomb (Certification # AI 000383) of Credere inventoried suspect ACM within and on the Site buildings. Credere identified nine (9) potential ACMs (see **Figure 4** for sample locations) and collected three (3) samples of each material for laboratory analysis of asbestos in accordance with NHDES Env-A 1800. Samples were submitted to EMSL of Woburn, Massachusetts for analysis. In addition, baled asbestos piping (**Picture 13**) is located in the Horse Barn Shed. This material was identified as asbestos by the City of Laconia and was therefore not sampled.

5.5.2 Lead-Based Paint Screening

All accessible painted surfaces in and on the Site buildings were screened for lead concentrations using the XRF on September 22, 2011. Paint with a lead concentration of greater than 1.00 mg/cm² was considered to represent LBP. Additionally, in accordance with the XRF manufacturer specifications, paint with a lead concentration greater than 0.60 mg/cm² was also conservatively considered LBP to account for the potential margin of error that could occur with Credere's specific XRF.

Building sides were described as A to D in a clockwise fashion where Side A included the main entrance to the building. Thus Wall B was to the left, Wall C is across from Side A, and Side D is to the right of Side A. The condition of identified LBP was noted as good, fair, or poor according to the following:

- Good condition is one in which the paint is entirely intact.
- Fair condition is one in which paint is intact, but worn; minor chips are evident as a result of normal wear and tear; no adhesion or substrate problems, e.g., no broken wallboard is present. Individual interior components with large surface areas (walls, ceilings, floors, doors) that evidence less than or equal to 2 square feet of normal wear and tear or direct damage are considered to be in fair condition. Individual interior components with small surface areas (window sills, baseboard) that evidence less than or equal to 10 percent normal wear and tear or direct damage on the total surface area of the component are considered to be in fair condition. Exterior components with large surface areas that evidence less than or equal to 10 square feet of normal wear and tear or direct damage are considered to be in fair condition. Individual exterior components with small surface areas (soffits, trim) that evidence less than or equal to 10 percent normal wear and tear or direct damage on the total surface area feet of normal wear and tear or direct damage are considered to be in fair condition. Individual exterior components with small surface areas (soffits, trim) that evidence less than or equal to 10 percent normal wear and tear or direct damage on the total surface area of the component are considered to be in fair condition. Individual exterior components with small surface areas (soffits, trim) that evidence less than or equal to 10 percent normal wear and tear or direct damage on the total surface area of the component are considered to be in fair condition.

• Poor condition is one in which paint is severely worn, weathered or no longer adhering, i.e., peeling, cracking, flaking, chalking; or the substrate is broken, exposed or otherwise deteriorated. Individual interior components with large surface areas (walls, ceilings, floors, doors) that evidence greater than 2 square feet of normal wear and tear or direct damage are considered to be in poor condition. Individual interior components with small surface areas (window sills, baseboard) that evidence greater than 10 percent normal wear and tear or direct damage on the total surface area of the component are considered to be in poor condition. Exterior components with large surface areas that evidence greater than 10 square feet of normal wear and tear or direct damage are considered to be in poor condition. Individual exterior components with small surface areas that evidence greater than 10 square feet of normal wear and tear or direct damage are considered to be in poor condition. Individual exterior components with small surface areas (soffits, trim) that evidence greater than 10 percent normal wear and tear or direct damage on the total surface area of the component are considered to be in poor condition. Individual exterior components with small surface areas (soffits, trim) that evidence greater than 10 percent normal wear and tear or direct damage on the total surface area of the component are considered to be in poor condition.

Please note that this work was <u>not</u> intended to determine the suitability of the buildings for residential or child-occupied uses, or to assess the risk associated with LBP on the Site for occupants or residents. If the Site buildings are to be used in the future as residences or child-occupied facilities, a formal lead survey of the Site should be conducted in accordance with New Hampshire HE-P 1600.

5.5.3 Potential PCB-Containing Materials

On September 22, 2011, Credere surveyed the Site buildings for suspect PCB-containing building materials. Examples of suspect products typically include, but are not limited to, paint, caulking, sealants, grout, mastic, glazing, insulation, cable insulation, thermal insulation, adhesives and tapes, plastics, floor finishes, gaskets, ceiling tile coatings, flooring sealants, roofing materials, and siding materials.

With the exception of painted exterior surfaces and a limited number of painted interior surfaces, no potential PCB-containing bulk products were observed at the Site during a screening of building materials. Regarding the painted surfaces, paint applications for which, in Credere's experience, there is a high risk of PCBs, such as heat resistant or moisture resistant paints, were not observed during the screening. Therefore, no samples were collected for off-site laboratory analysis at this time.

6. SUMMARY OF REGULATORY STANDARDS

As a part of this Phase II ESA, Credere collected samples of soil, groundwater, and building materials to confirm or dismiss the presence of contaminants associated with the RECs and NCs identified at the Site. Sample results were compared to the applicable state and federal standards described below.

6.1 SOIL AND SURFICIAL FILL/DEBRIS

Concentrations in soil samples and the material collected from the Vactor Shed catch basin were compared to New Hampshire's Soil Remediation Standards (SRS) detailed in NHDES Env-Or 600 Contaminated Site Management.

6.2 GROUNDWATER

Concentrations in groundwater samples were compared to New Hampshire's Ambient Groundwater Quality Standards (AGQS) detailed in NHDES Env-Or 600 Contaminated Site Management.

6.3 LEAD-BASED PAINT

Concentrations of lead in paint as determined through the use of the XRF analyzer were compared to the limit of 1.0 mg/cm^2 or 0.5% by weight. Additionally, in accordance with the Credere's XRF manufacturer specifications, paint with a lead concentration greater than 0.60 mg/cm^2 was also conservatively considered LBP. All construction work involving exposure or potential exposure to lead is covered by the OSHA Lead in Construction Standard 29 CFR 1926.62.

6.4 POTENTIAL ASBESTOS-CONTAINING MATERIALS

Concentrations of asbestos in bulk building material samples were compared to the limit of 1% by weight detailed in NHDES Env-A 1800 Asbestos Management and Control.

7. PHASE II RESULTS

The following subsections present the results of the data collected during the field work portion of this Phase II ESA. Sample locations are depicted on **Figure 2**.

7.1 SITE GEOLOGY

7.1.1 Surficial Geology

Surficial material observed in the northern portion of the Site consist of fill material including sand, gravel, ash, metal, asphalt, brick, and refuse (i.e. ceramic, plastic, etc.). A layer of leaves and other organic materials overlying cobbles was observed beneath the fill layer and was interpreted to be native former lake bottom (See test pit logs in **Appendix D**).

Surficial materials observed to the west of the Horse Barn included sand and gravel over large objects that were inferred to be bricks, concrete, and boulders. Due to the proximity to the lake, these materials are probably fill materials used to level the Site during its historical development.

Surficial materials observed in the east areas of the Site included mixtures of sand and gravel consistent with the stratified drift materials mapped in the vicinity of the Site. These materials have likely been historically re-worked to establish existing Site grades.

7.1.2 Bedrock Geology

Bedrock outcrops have not been observed on the Site and bedrock was not encountered during Phase II ESA explorations. Bedrock beneath the northern portion of the Site is mapped as Concord Granite, which is known for its fine texture and uniformity. According to the *Bedrock Geologic Map of New Hampshire* prepared by the United States Geological Survey (USGS), bedrock beneath the southern portion of the Site is mapped as the upper Rangeley Formation, which is described as a pelitic schist, metasandstone, and locally coarse-grained metasandstone with rusty weathering.

7.1.3 Site Hydrogeology

Area topography generally slopes west on and in the vicinity of the Site and groundwater flow at the Site has been interpreted to mimic surface topography and flow west toward Opechee Bay (see **Figure 3**). Due to the close proximity of the lake, the depth to groundwater at the Site is shallow and likely varies with seasonal fluctuations in precipitation and water level changes in the lake. Based on the groundwater contours depicted on **Figure 3**, the hydraulic gradient at the Site ranges from 0.001 to 0.004 feet per foot. It should be noted that local groundwater flow may be highly varied due to precipitation events, stormwater runoff, infiltration/recharge, and varying subsurface hydrogeologic conditions.

7.2 SOIL BORING SAMPLE RESULTS

Staining was observed on soil throughout the Blacksmith Shop floor during the Phase I ESA that was centered on the approximate location of soil boring CA-2. Prior to Credere's Phase II ESA activities, the City of Laconia DPW personnel consolidated the stained soil into 55-gallon drums. The sample of this material (CA-2 Floor) contained concentrations of xylenes, TPH, arsenic, barium, boron, cadmium, copper, lead, nickel, and vanadium, but no compounds exceeded the NHDES SRS. No PAHs were detected above the laboratory practical quantitation limit (PQL) in the sample.

Samples collected from soil borings CA-2, CA-3, CA-4, CA-5, and CA-6, and the catch basin sample CB-1 were analyzed for NDHES Full List VOCs. No VOCs were detected above the laboratory PQL in any soil boring sample analyzed.

Samples collected from soil borings CA-1 through CA-5 were analyzed for PAHs, and the samples collected from soil boring CA-6 and the catch basin (CB-1) were analyzed for the full list of SVOCs. No PAHs were detected above the laboratory PQL in soil borings CA-1 through CA-3, or CA-5. The following PAHs were detected in soil boring CA-4 at concentrations exceeding their respective NHDES SRS: benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, and indeno(1,2,3-cd)pyrene. Several PAHs were also detected in soil boring CA-6 exceeding their respective NHDES SRS: benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, and dibenzo(a,h)anthracene. No other SVOCs were detected above the laboratory PQL in CA-6. While several PAHs were detected in CB-1, none were quantified in excess of their respective SRSs.

Samples collected from soil borings CA-1 through CA-6 were analyzed for TPH. TPH was detected in samples collected from soil borings CA-2, CA-3, CA-4, CA-5, and CA-6, but all of the concentrations were below the NHDES SRS of 10,000 micrograms per gram (ug/g).

Samples collected from soil borings CA-1 and CA-2 were analyzed for the metals arsenic, barium, boron, cadmium, copper, lead, mercury, nickel, and vanadium; samples from soil boring CA-3 were analyzed for lead; and, the sample collected from soil boring CA-6 and the catch basin bottom sample CB-1 was analyzed for RCRA 8 metals, which include, arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. No metals were detected above the applicable NHDES SRS in any soil boring sample. Chromium and lead were detected above the NHDES SRS in sample CB-1.

Soil boring sample results are summarized in **Table 3** and copies of the laboratory analytical reports are included in **Appendix F**. NHDES SRS exceedances in soil samples are depicted on **Figure 5**.

7.3 SURFICIAL SOIL SAMPLE RESULTS

Surficial soil samples SS-1 through SS-3 were submitted for laboratory analysis of PAHs, PCBs, TPH, and the metals arsenic, barium, boron, cadmium, copper, lead, mercury, nickel, and vanadium.

No PAHs were detected above the laboratory PQL in SS-1 or SS-3. Fluoranthene and pyrene were detected in SS-2, but the concentrations were below their respective NHDES SRS. No other PAHs were detected above the laboratory PQL in SS-2.

No PCB congeners were detected above the laboratory PQL in any of the collected surficial soil samples.

No TPH was detected above the laboratory PQL in SS-1 or SS-3, but TPH was detected at a concentration of 500 ug/g in SS-2, which is below the NHDES SRS of 10,000 ug/g.

The metals arsenic, barium, copper, lead, nickel, and vanadium were detected in SS-1 through SS-3, and boron was also detected in SS-2; however, no metals were detected above their respective NHDES SRSs.

Surficial soil sample laboratory analytical results are summarized in **Table 3**. Copies of the laboratory analytical reports are included as **Appendix F**.

7.4 TEST PIT SOIL SAMPLE RESULTS

Soil samples were collected from test pits TP-1 and TP-2 and were submitted for laboratory analysis of PAHs, TPH, and the metals arsenic, barium, boron, cadmium, copper, lead, mercury, nickel, and vanadium.

Several PAHs were detected in the samples and benzo(a)anthracene, benzo(b)fluoranthene, and benzo(a)pyrene were detected above their respective NHDES SRS in both test pit samples. Indeno(1,2,3-cd)pyrene was also detected above its NHDES SRS in the sample collected from TP-2.

TPH was detected in both soil samples, but the concentrations were below the NHDES SRS.

Arsenic was detected in both samples analyzed. Arsenic in the soil sample from TP-1 was detected below the NHDES SRS, and arsenic in the soil sample from TP-2 was detected above the NHDES SRS. Barium, boron, cadmium, copper, lead, mercury, nickel, and vanadium were detected in both samples, but all were at concentrations below the applicable NHDES SRS. It should also be noted that although not a contaminant of concern during this investigation, chromium was detected in TP-1with an XRF during field screening at a concentration that is above the NHDES SRS.

7.5 GROUNDWATER SAMPLE RESULTS

As indicated in **Section 5.4**, groundwater samples were collected from monitoring wells CA-1 through CA-5 and were analyzed for NHDES Full List VOCs and PAHs. CA-6 was sampled for NHDES Full List VOCs, SVOCs, and dissolved RCRA-8 metals. CA-1 and CA-2 were also analyzed for dissolved lead.

Naphthalene was detected below the NHDES AGQS in CA-1. No other VOCs were detected above the laboratory PQL in any groundwater sample.

Dissolved barium was detected below its NHDES AGQS in CA-6. No other metals were detected above the laboratory PQL in any groundwater sample.

Several PAHs were detected in CA-1, CA-2, CA-3, CA-4, and CA-6. No PAHs were detected above the laboratory PQL in CA-5. Benzo(a)pyrene was detected above the NHDES AGQS in CA-1, CA-2, CA-4, and CA-6; benzo(a)anthracene and benzo(b)fluoranthene were detected above the NHDES AGQS in CA-2 and CA-6; and, benzo(k)fluoranthene was detected above the NHDES AGQS in CA-2. No other PAHs were detected above the NHDES AGQS. It should be noted that PAHs generally have low solubilities and that the samples submitted for PAH analysis were not filtered; therefore, the PAHs detected in groundwater have the potential to be the result of suspended solids in the samples.

Groundwater sample laboratory analytical results are summarized in **Table 5** and sample locations where exceedances of NHDES SRS occurred are depicted on **Figure 6**. Copies of the laboratory analytical results are included in **Appendix F**.

7.6 BUILDING MATERIAL SAMPLE RESULTS

7.6.1 Potential Asbestos Containing Material

Twenty-seven (27) samples from 9 homogeneous areas of potential ACMs were submitted for laboratory analysis. No asbestos was identified in building materials at the Site. Potential ACM sampling locations are depicted on **Figure 4**. The laboratory analytical report is included as **Appendix F**. The only known ACM at the Site is the baled asbestos piping being stored within the Horse Barn Shed.

7.6.2 Lead-Based Paint Screening

The following table summarizes the September 22, 2011, LBP screening results for the Site:

New England Yard LBP Screening Results						
Building	Sample Location	Fixture Type and Material	Building Side	Paint Color	Result	Paint Condition
Vactor Shed	Interior	Concrete Wall	А	White	Negative	Fair
Vactor Shed	Outside	Concrete Wall	В	White	Negative	Fair
Vactor Shed	Outside	Concrete Wall	D	White	Negative	Fair
Vactor Shed	Outside	Metal Door Header	D	White	Negative	Good
Vactor Shed	Outside	Metal Door Header	В	Green	Negative	Good
Vactor Shed	Outside	Metal Door	В	Green	Negative	Good
Vactor Shed	Room 1	Concrete Wall	А	Yellow	Negative	Good
Vactor Shed	Room 1	Concrete Wall	В	White	Negative	Good
Vactor Shed	Room 1	Concrete Wall	С	White	Negative	Good
Vactor Shed	Room 1	Concrete Wall	D	White	Negative	Good
Vactor Shed	Room 1	Metal Door	D	Green	Negative	Good
Vactor Shed	Room 1	Metal Door	В	Blue	Negative	Good
Sand/Salt Shed	Outside	Wood Siding	А	White	Negative	Poor
Sand/Salt Shed	Outside	Wood Siding	А	Grey	Negative	Poor
Rodder Shed	Outside	Concrete Wall	А	White	Negative	Good
Rodder Shed	Outside	Concrete Wall	А	White	Negative	Good
Rodder Shed	Outside	Wood Door	А	Green	Negative	Good
Rodder Shed	Outside	Wood Door	А	Green	Positive	Good
Rodder Shed	Outside	Wood Door	А	Green	Positive	Good
Horse Barn Shed	Outside	Wood Wall	А	Off-white	Negative	Poor
Horse Barn Shed	Outside	Wood Wall	А	Off-white	Negative	Poor
Horse Barn	Outside	Wood Wall	А	Off-white	Negative	Poor
Horse Barn	Outside	Wood Door	А	Off-white	Negative	Poor
Horse Barn	Outside	Wood Door	В	Off-white	Positive	Poor
Horse Barn	Outside	Wood Wall	В	Off-white	Negative	Poor
Horse Barn	Outside	Wood Wall	С	Off-white	Negative	Poor
Horse Barn	Room 1	Wood Wall	А	White	Negative	Poor
Horse Barn	Room 1	Wood Wall	А	Grey	Negative	Poor
Horse Barn	Room 2	Wood Wall	А	White	Negative	Poor
Horse Barn	Room 2	Wood Wall	D	White	Negative	Poor
Horse Barn	Room 2	Wood Wall	В	White	Negative	Poor
Blacksmith Shop	Room 2	Wood Door	А	Green	Negative	Poor

Based on these screening results, LBP is present on the green wood doors of the Rodder Shed and the off-white wood door of the Horse Barn. The off-white paint on the Horse Barn was observed to be in poor condition and peeling or flaking; therefore, can be easily disturbed and pose a health risk.

7.6.3 Potential PCB-Containing Materials

With the exception of painted exterior surfaces and a few painted interior surfaces, no potential PCB-containing bulk products were observed at the Site during a screening of building materials. Regarding the painted surfaces, paint applications for which, in Credere's experience, there is a high risk of PCBs, such as heat resistant or moisture resistant paints, were not observed during the screening. Therefore, no samples were collected for off-site laboratory analysis at this time.

8. QUALITY ASSURANCE/QUALITY CONTROL

The contracted laboratory, ARA of Portsmouth, New Hampshire, provided Level II analytical data according to EPA protocols, EPA laboratory data validation guidance, and the SSQAPP. The laboratories provided the following information in analytical reports:

- Data results sheets
- Method blank results
- Surrogate recoveries and acceptance limits
- Duplicate results/acceptance limits
- Spike/duplicate results/acceptance limits
- Laboratory control sample results
- Description of analytical methods and results
- Other pertinent results/limits as deemed appropriate

As outlined in the SSQAPP, at the completion of the field tasks and upon receipt of the analytical results, a data usability analysis was conducted to document the precision, bias, accuracy, representativeness, comparability, and completeness of the results. The following sections present this analysis.

8.1 PRECISION

Precision measures the reproducibility of measurements. The precision measurement is established using the relative percent difference (RPD) between the sample and duplicate results. Relative percent differences were calculated for soil samples where both sample and duplicate values were greater than five times (5X) the PQL of the analyte. The RPD is calculated as follows:

 $RPD = (Sample Result - Duplicate Result) \times 100$ Mean of the Two Results

The following duplicate samples were collected during this Phase II ESA:

- SB-DUP was a duplicate soil sample collected from the soil boring sample CA-4 at 6-8 feet bgs and was analyzed for NHDES Full List VOCs. All detected analytes in the sample and duplicate were below 5X the PQL; therefore, RPDs were not calculated.
- SS-DUP was a duplicate soil sample collected from the surficial soil sample SS-1 and was analyzed for TPH, PAHs, PCBs, and the metals arsenic, barium, boron, cadmium, copper, lead, mercury, nickel, and vanadium. No TPH, PAHs, or PCBs were detected in the sample or the duplicate; therefore, RPDs were not calculated. Arsenic and lead were detected in both the sample and the duplicate and RPDs were 3.8% and 0%, respectively; therefore, the laboratory analytical results for these analytes were considered to be precise.

- DUP-GW was a duplicate groundwater sample collected from monitoring well CA-4 and was analyzed for NHDES Full List VOCs and PAHs. All detected analytes in the sample and duplicate were below 5X the PQL; therefore, RPDs were not calculated.
- DUP-GW-2 was a duplicate groundwater sample collected from monitoring well CA-1 and was analyzed for dissolved lead. Dissolved lead was not detected in the sample or duplicate; therefore, RPDs were not calculated.

Table 6 summarizes the duplicate sample results and calculated RPDs.

8.2 **BIAS**

Bias is the systematic or persistent distortion of a measurement process that causes errors in one direction. Bias assessments are made using personnel, equipment, and spiking materials or reference materials as independent as possible from those used in the calibration of the measurement system. Bias assessments were based on the analysis of spiked samples so that the effect of the matrix on recovery is incorporated into the assessment. A documented spiking protocol and consistency in following that protocol are important in obtaining meaningful data quality estimates.

Matrix spike and matrix spike duplicate samples (MS/MSD) were used to assess bias as prescribed in the specified methods. Control samples for assessing bias were analyzed at a rate as specified in the analytical SOPs and specified analytical methods.

The laboratory provides quality control non-conformance reports that indicate if Laboratory Control Samples/Laboratory Control Sample Duplicates (LCS/LCSD) and/or MS/MSD had low, failing, or high recoveries, and if the sample result was affected. Likewise, the laboratory reports any compounds that had failing RPDs in the LCS/LCSD pair or the MS/MSD pair. This indicates the percent difference between the laboratory sample and its duplicate or the spike and it's duplicate. According to the laboratory, unless noted in the non-conformance summary, all of the quality control criteria for these analyses were within acceptable limits. Specific comments from the laboratory included:

VOCs (Soil)

The MLCS/D4576 did not meet the acceptance criteria for bromomethane, carbon disulfide, and 1,2-dibromo-3-chloropropane. Since <10% of the compounds were outside of the acceptance criteria, reanalysis is not required. Because no VOCs were detected above the applicable NHDES SRSs at the Site, it is Credere's opinion that this potential laboratory bias has not affected the outcome of the investigation.

VOCs (Groundwater)

The LCS/D1102315 did not meet the acceptance criteria for dichlorodifluoromethane and 1,4dioxane. These compounds showed high recovery. There is no impact to the data as these analytes were not detected in the associated samples. The LCS/D1102315 did not meet the acceptance criteria for bromomethane, 2-butanone (MEK), and 2,2dichloropropane. Since

<10% of the compounds were outside of the acceptance criteria, reanalysis is not required. Because no VOCs were detected above the applicable NHDES SRSs at the Site, it is Credere's opinion that this potential laboratory bias has not affected the outcome of the investigation.

SVOCs (Soil)

The LCS/D4577 did not meet the acceptance criteria for dibenzo(a,h)anthracene due to degradation of the spiking solution. Dibenzo(a,h)anthracene was only detected above the NHDES SRS in one sample. Because other PAHs were detected above the NHDES SRS in the same sample, it is Credere's opinion that this potential laboratory bias has not affected the outcome of this investigation.

SVOCs (Groundwater)

The LCS/D4624 did not meet the acceptance criteria for phenol, hexachlorocyclopentadiene, and dimethylphthalate. Since <10% of the compounds were outside of the acceptance criteria, reanalysis is not required. Because these compounds were not detected in any of the submitted samples and other SVOCs (specifically, PAHs) were detected above the applicable NHDES SRSs, it is Credere's opinion that this potential laboratory bias has not affected the outcome of this investigation.

8.3 ACCURACY

Accuracy is a statistical measurement of correctness and includes components of random error (variability due to imprecision) and systemic error. It, therefore, reflects the total error associated with a measurement. A measurement is accurate when the value reported does not differ from the true value or known concentration of the spike or standard. For VOCs and PAHs, surrogate compound recoveries are also used to assess accuracy and method performance for each sample analyzed. Analysis of performance evaluation samples are also used to provide additional information for assessing the accuracy of the analytical data being produced. Both accuracy and precision are calculated for each analytical batch, and the associated sample results are interpreted by considering these specific measurements.

The lab provides a non-conformance summary that reports if all of the quality control criteria including initial calibration, calibration verification, surrogate recovery, holding time and method accuracy/precision for analysis were within acceptable limits. According to the laboratory, unless noted in the non-conformance summary, all of the quality control criteria for these analyses were within acceptable limits. Specific comments from the laboratory included:

SVOCs (Soil)

The surrogates, nitrobenzene-D5 and 2-fluorobiphenyl for sample 22468-009 was outside the acceptance limits as a result of interferences caused by the matrix. This laboratory sample refers to Credere sample CA-6 0-3'. It is Credere's opinion that the unacceptable surrogate recovery has not affected the outcome of the investigation because several PAHs and arsenic were detected above the applicable NHDES SRSs and soil in this sample was discolored, indicating a source area of contaminants may be present in the vicinity.

PAHs (Soil)

The surrogate, 2-fluorobiphenyl for sample 22468-014 was outside the acceptance limits as a result of interferences caused by the matrix. This laboratory sample refers to Credere's sample TP-2 4-6'. It is Credere's opinion that the unacceptable surrogate recovery has not affected the outcome of the investigation because several PAHs and arsenic were detected above the applicable NHDES SRSs and the sample matrix contained large quantities of ash, which would naturally contain high levels of PAHs and would likely require remedial action.

8.4 REPRESENTATIVENESS

Objectives for representativeness are defined for each sampling and analysis task and are a function of the investigative objectives. Representativeness was accomplished during this project through use of standard field, sampling, and analytical procedures.

All objectives for sampling and analytical representativeness for samples that were analyzed, as specified in the SSQAPP Addendum, were met.

8.5 COMPARABILITY

Comparability is the confidence with which one data set can be compared to another data set. The objective for this QA/QC program is to produce data with the greatest possible degree of comparability. Comparability was achieved by using standard methods for sampling and analysis, reporting data in standard units, normalizing results to standard conditions, and using standard and comprehensive reporting formats. Complete field documentation was used, including standardized data collection forms to support the assessment of comparability. Historical comparability shall be achieved through consistent use of methods and documentation procedures throughout the project.

8.6 COMPLETENESS

Completeness is calculated by comparing the number of samples successfully analyzed to the number of samples collected. The goal for completeness is 95 percent. The completeness for this project was 100 percent, as there were no samples that could not be analyzed due to holding time violations, samples spilled or broken, or any other reason.

9. UPDATED CONCEPTUAL SITE MODEL

This Phase II ESA was designed to provide further understanding of the contaminants at the Site and to aid in changing the Site use from a municipal use (DPW facility) to a park, mixed-use, or residential use property. The following section is a description of the updated CSM, which incorporates information from this investigation.

9.1 STORMWATER WATER FLOW

Topography at the Site generally slopes to the west, with an approximate 8 foot elevation differential across the Site from the east to west. Storm water from the Site is expected to generally flow west to Opechee Bay.

9.2 SITE GROUNDWATER AND HYDROGEOLOGY

Groundwater at the Site was determined to be shallow and flow in a similar pattern to surface topography, which slopes west to Opechee Bay.

9.3 GEOLOGICAL CHARACTERISTICS

9.3.1 Surficial Geology

Surficial materials at the Site were determined to be a mixture of native sand and gravel, native organic and cobble lake bottom, and other fill materials including ash, asphalt, metal, and inert material (e.g. brick, concrete).

9.3.2 Bedrock Geology

Bedrock was not encountered during this investigation. According to the *Bedrock Geologic Map of New Hampshire* compiled by the USGS and available through the City of Laconia Public Mapping website, the northern portion of the subject property is underlain by the early to late Devonian aged (410 to 365 million years ago) rocks of the Concord Granite. These rocks are known for their fine texture and uniformity. The southern portion of the subject property is underlain by the Lower Silurian aged (372 million years old ago) upper Rangeley Formation. The Rangeley Formation is described at a pelitic schist, metasandstone, and locally coarse-grained metasandstone with rusty weathering.

9.4 CONTAMINANTS OF CONCERN

The contaminants of concern discussed in this CSM are those compounds that (1) are associated with historic use of the Site, and (2) were detected above applicable regulatory standards. Based on this, the contaminants of concern at the Site include the following:

- PAHs detected in subsurface soils associated with the northern portion of the Site.
- Arsenic and chromium (via XRF field screening) detected in subsurface soils associated with the northern portion of the Site.
- Chromium and lead detected in material accumulated in the catch basin of the Vactor Building.
- PAHs detected in groundwater across the Site, which may be the result of suspended solids.
- LBP identified on the green doors of the Rodder Shed and off-white door of the Horse Barn.
- Known waste asbestos piping currently being stored in the Horse Barn Shed.

To aid in a thorough understanding of the environmental concerns present at the Site, a graphical presentation of the identified contaminants of concern and the migration pathways to potential receptors is included as **Figure 7**. Exposure Pathways and Potential Receptors depicted on the CSM are defined below.

Exposure Pathways describe how a human or environmental receptor comes into contact with contaminants which may be present at the Site. Exposure pathways presented in the CSM include the following:

Inhalation:	This pathway is primarily associated with groundwater contamination within 30 feet of an occupied structure when groundwater elevation is less than 15 feet below surface grade, or when depth to groundwater is unknown. This pathway is applicable when receptors may inhale impacted media in the form of vapor.
Dermal Absorption:	Exposure via dermal absorption occurs when receptors are exposed to chemical concentrations present in soil, groundwater, or surface water through direct contact with the skin.
Active Ingestion:	The Active Ingestion pathway represents exposure which may occur through the active ingestion of contaminant concentrations via a drinking water supply well or through agricultural products.
Incidental Uptake:	This pathway is applicable when receptors may incidentally

ingest impacted media in the form of dust or airborne particulates.

Potential Receptors are categorized by duration of exposure and intensity of use at the Site. The receptor categories described in the CSM include the following:

Resident:	The residential receptor is defined by high durational exposure and high intensity usage which may occur through gardening, digging, and recreational sports. This group includes the occupants of a residential property or a residential neighborhood.
Commercial:	Commercial receptors are those which are present at the Site for long durations but with low intensity exposure such as indoor office workers.
Site Worker:	Site workers are present at the Site for short durations though intensity of use is high, such as during non-routine activities including construction or utility work. Examples include outdoor commercial workers and construction workers.
Visitor:	Visitors are characterized by low duration, i.e. less than two hours per day, and low intensity usage such as that which would occur during activities such as walking, shopping, and bird watching.
Terrestrial and Aquatic Biota:	These receptors include flora and fauna which may be exposed to contaminants in their respective land-based or aquatic environments.

9.5 SUMMARY OF EXPOSURE PATHWAYS AND HUMAN RECEPTORS

Based on the physical and chemical properties of PAHs, these COCs in surficial/subsurface soil have a low affinity to leach significantly into groundwater. In this regard, while the turbidity was low for each of the samples (<25 NTU), the concentrations of PAHs currently observed in groundwater may be the result of suspended solids, and not dissolved concentrations.

Arsenic observed in soil in the northern portion of the Site was not shown to be leaching into groundwater based on data obtained from monitoring well CA-3. Therefore, the primary migration pathways for these COCs would be through stormwater runoff or disturbance of the impacted materials causing a secondary impact to adjacent surface materials or air at the Site. Potential exposure pathways for these COCs to human receptors are dermal contact and incidental uptake. Potential human receptors for these COCs at the Site are nearby or future residents, commercial workers, Site workers, and visitors.

With the exception of commercial workers who would likely be removing the material and would be exposed through incidental uptake, there is currently no identified migration pathway or exposure pathway for chromium and lead detected in the Vactor Shed catch basin structure.

Asbestos stored in the Horse Barn Shed could potentially be released by disturbing the bales of the material, potentially impacting air in the breathing zone and resulting in asbestos dusts within the building. Potential exposure pathways for ACM would be incidental uptake by inhalation. Potential human receptors for ACM at the Site are currently Site workers, and visitors.

Lead in LBP at the Site can potentially be released if the painted surfaces are disturbed, impacting adjacent surfaces and air. Potential exposure pathways for lead from LBP would be from dermal contact and incidental uptake by Site workers and visitors. Potential human receptors for LBP at the Site are Site workers and visitors.

10. DEVIATIONS

The following deviations were made from the SSQAPP Addendum (see **Appendix A**) during the course of the investigation:

- 1. A subsurface soil sample could not be collected from soil boring CA-1 due to large subsurface obstructions including concrete, bricks, and boulders that were impeding soil collection and creating large void spaces when shifted with the hollow stem auger rig. Because fill materials were interpreted to be present in this area, this deviation has resulted in a data gap at the Site.
- 2. Due to height restrictions within the Blacksmith Shop and the Vactor Shed buildings, soil borings CA-2 and CA-6 were completed using direct-push methodologies in place of hollow-stem auger methodologies. Because continuous sampling is used in both methodologies, it is Credere's opinion that this deviation has not impacted the conclusions of this Phase II ESA.
- 3. The location of surficial soil sample SS-1 was moved slightly south from its proposed location due to the presence of pavement. The final location remained within the historical coal pocket area; therefore, Credere does not believe that this deviation has impacted the conclusions of this Phase II ESA.

11. DATA GAPS

The following data gaps were identified at the Site as part of this Phase II ESA:

• Subsurface soil in the vicinity of soil boring CA-1 could not be collected or assessed due to large subsurface obstructions impeding sample collection. Because concrete and brick were observed in boring cuttings, this material is interpreted to be fill material, which has the potential to be impacted with contaminants similar to those identified throughout the rest of the Site.

12. CONCLUSIONS

We have performed a Phase II environmental site assessment at the property at 210 Messer Street in Laconia, New Hampshire in conformance with the scope and limitations of ASTM Practice E 1903-11 and for the following objectives: to confirm or dismiss recognized environmental conditions (RECs) and other ASTM non-scope conditions (NCs) identified during the Phase I ESA that was completed for the Site by Credere in May 2011. A summary of our conclusions in relation to the identified RECs, other environmental concerns, and the investigation results are presented below:

- REC-1 concerning potential soil and groundwater contamination from the historical uses of the Site by coal and ice companies with a railroad spur, a blacksmith shop, and for storage by the City of Laconia Department of Public Works is <u>confirmed</u> because PAHs were identified in groundwater throughout the Site and a limited area of PAH contaminated soil was identified beneath the Vactor Shed.
- REC-2 concerning the oil stained soil observed within the Blacksmith Shop is <u>dismissed</u> because the oil stained soil has been consolidated into drums for disposal and no contaminants were detected above the NHDES SRS beneath the floor of the building.
- REC-3 concerning impact to the Site from a historical undocumented gasoline UST on the east adjoining property is <u>dismissed</u> because no gasoline related compounds were identified in soil or groundwater along the eastern Site boundary in soil boring/monitoring well CA-4.
- REC-4 concerning potential releases from a historical bulk oil storage tank adjacent to the Sand/Salt Shed is <u>dismissed</u> because no concentrations of TPH were identified above the NHDES SRS in soil borings CA-5 or CA-6 in the vicinity of the tank.
- REC-5 concerning the potential landfilling or burying of wastes reported in the northern portion of the Site is <u>confirmed</u> because buried ash, metal, asphalt, refuse, and other materials were observed in test pits excavated in this area of the Site and PAHs and arsenic were detected in laboratory samples above the applicable NHDES SRS. It should be noted that although not a contaminant of concern for the investigation, chromium was also detected above the SRS during field screening with an XRF in TP-1.
- REC-6 concerning the potential for contaminants to be present from dumping or incidental spills of painting products into the Vactor Shed catch basin is <u>confirmed</u> because the sampled material within the catch basin structure was determined to be impacted by lead and chromium, which are components of paint, at concentrations exceeding the NHDES SRS.
- REC-7 concerning the open pail of waste oil and approximately 30-gallon drum of unknown contents observed in the Horse Barn building; and one (1) 55-gallon drum of unknown contents observed outside the Blacksmith Shop building <u>remains a REC</u> because these items have not been removed to date, and represent a material threat of release to the environment.

- DMEC-1 concerning the baled asbestos piping that is being stored in the Horse Barn Shed should be removed from the Site and property disposed of.
- NC-1, which was associated with the presence of ACM in the Site buildings, was <u>dismissed</u> because no ACMs were identified in/on the Site buildings.
- NC-2, which was associated with the presence of LBP in/on the Site buildings, was <u>confirmed</u> because LBP was identified on the green doors of the Rodder Shed and the off-white door of the Horse Barn.
- NC-3, which was associated with potential PCB-containing bulk products within the Site buildings, is <u>inconclusive</u> because with the exception of painted exterior surfaces and a limited number of painted interior surfaces, no potential PCB-containing bulk products were observed at the Site during the completed inventory of building materials. Regarding the painted surfaces, no paints that, in Credere's experience, have a high probability to contain PCBs, such as heat resistant or moisture resistant paints, were observed during the screening.

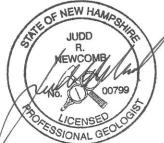
13. RECOMMENDATIONS

Based on these conclusions, Credere recommends the following tasks be completed for the Site:

- To further assess REC-1, Credere recommends that the monitoring well network at the Site be resampled for laboratory analysis of PAHs, and that the groundwater samples be filtered to determine if the identified PAHs are the result of suspended solids in the samples or reflect dissolved phase concentrations.
- Credere recommends that the drum of consolidated oily soil (REC-2) from the Blacksmith Shop be removed from the Site and properly disposed of.
- Contaminated fill material (REC-5) is present in the northern portion of the Site where this material was historically land filled (see Figure 2). This material represents a potential health risk during redevelopment; therefore, Credere recommends that a remedial action plan be developed and implemented to appropriately address this material. Because redevelopment plans have not been formally developed for the Site, necessary remedial measures cannot be determined at this time; however, such measures would likely include either capping the material in place to prevent exposure, the excavation and off-site disposal of this material, or a combination thereof. Once redevelopment plans have been developed, some additional soil and/or groundwater assessment work may be warranted to determine accurate horizontal and vertical extents of these materials. Based on XRF field screening results, collected samples should also be analyzed for chromium during any additional assessment work in this area. Once redevelopment plans have been established, if this material is to be capped in place, Credere recommends that this portion of the Site be registered as a Pre-1981 landfill according to NHDES Solid Waste Rules Env-Sw 309.
- The area of contaminated fill in the northern portion of the Site was identified as a landfill with concentrations of PAHs, arsenic, and chromium (via XRF field screening) analyzed above the NHDES SRS. As the extent of environmental impact from this area has not been fully assessed, Credere recommends that sediments along the toe of the landfill within Opechee Bay be sampled to determine if impacts to the bay have occurred.
- Contaminated soil was identified beneath the Vactor Shed (REC-1). This material also represents a potential health risk during redevelopment; therefore, Credere recommends that a remedial action plan be developed and implemented to appropriately address this material. Because redevelopment plans have not been formally developed for the Site, necessary remedial measures cannot be determined at this time; however, such plans would likely include either the capping in place or excavation and off-site disposal of this material to prevent exposure. Once redevelopment plans have been developed or the building has been demolished, additional assessment work may be warranted to determine the horizontal and vertical extent of these materials.
- Credere recommends that the accumulated chromium and lead contaminated material identified within the Vactor Shed catch basin (REC-6) be removed for proper disposal.

In addition, if an outlet to this drain is identified during redevelopment, additional assessment would be necessary to determine the extent of potential impact from these contaminants.

- Credere recommends that the unknown 55-gallon drum outside the Blacksmith Shop and the pail of waste oil within the Horse Barn (REC-7) be removed from the Site and properly disposed.
- Credere recommends that the bailed asbestos piping stored in the Horse Barn Shed (DMEC-1), the pail of waste oil and 30-gallon drum of unknown contents in the Horse Barn (REC-7) should be removed from the Site and properly disposed.
- Credere recommends that the City of Laconia DPW workers and future Site users or occupants should be notified of the presence of LBP (NC-2) on the green doors of the Rodder Shed and on the off-white door of the Horse Barn. If paint is removed from these surfaces, the paint waste should be properly disposed.
- Based on the PCB bulk products inventory observations and the lack of paint applications for which, in Credere's experience, there is a high risk of PCBs, Credere recommends that PCB sampling of building materials be deferred until redevelopment begins at the Site and bulk samples of demolition materials can be collected for waste characterization prior to disposal.



14. SIGNATURES OF ENVIRONMENTAL PROFESSIONALS

We have performed this Phase II environmental site assessment at the property at 210 Messer Street in conformance with the scope and limitations of ASTM Practice E 1901-11 and for the following objectives:

- 1. To assess the Site for release(s) of oil and/or hazardous substances that may have resulted from the RECs identified during the May 2011 Phase I ESA.
- 2. To determine if asbestos-containing building materials are present in the Site buildings per the non-scope consideration identified during the May 2011 Phase I ESA.
- 3. To determine if PCB-containing building materials are present in the Site buildings per the non-scope consideration identified during the May 2011 Phase I ESA.
- 4. To determine if lead-based paint is present on the Site buildings per the non-scope consideration identified during the May 2011 Phase I ESA.

The following individual(s) meet the qualifications for individuals completing or overseeing all appropriate inquiries, and possess sufficient specific education, training, and experience necessary to exercise professional judgment to develop opinions and conclusions regarding the existence of environmental conditions on the Site. Any work completed on this Phase II environmental site assessment by an individual who is not considered an environmental professional was completed under the supervision or responsible charge of the environmental professional.

Judd R. Newcomb, CG, PG Geologist/Project Manager

Richard S. Vandenberg, CG, PG Senior Hydrogeologist

Jedd Steinglass Senior Geologist

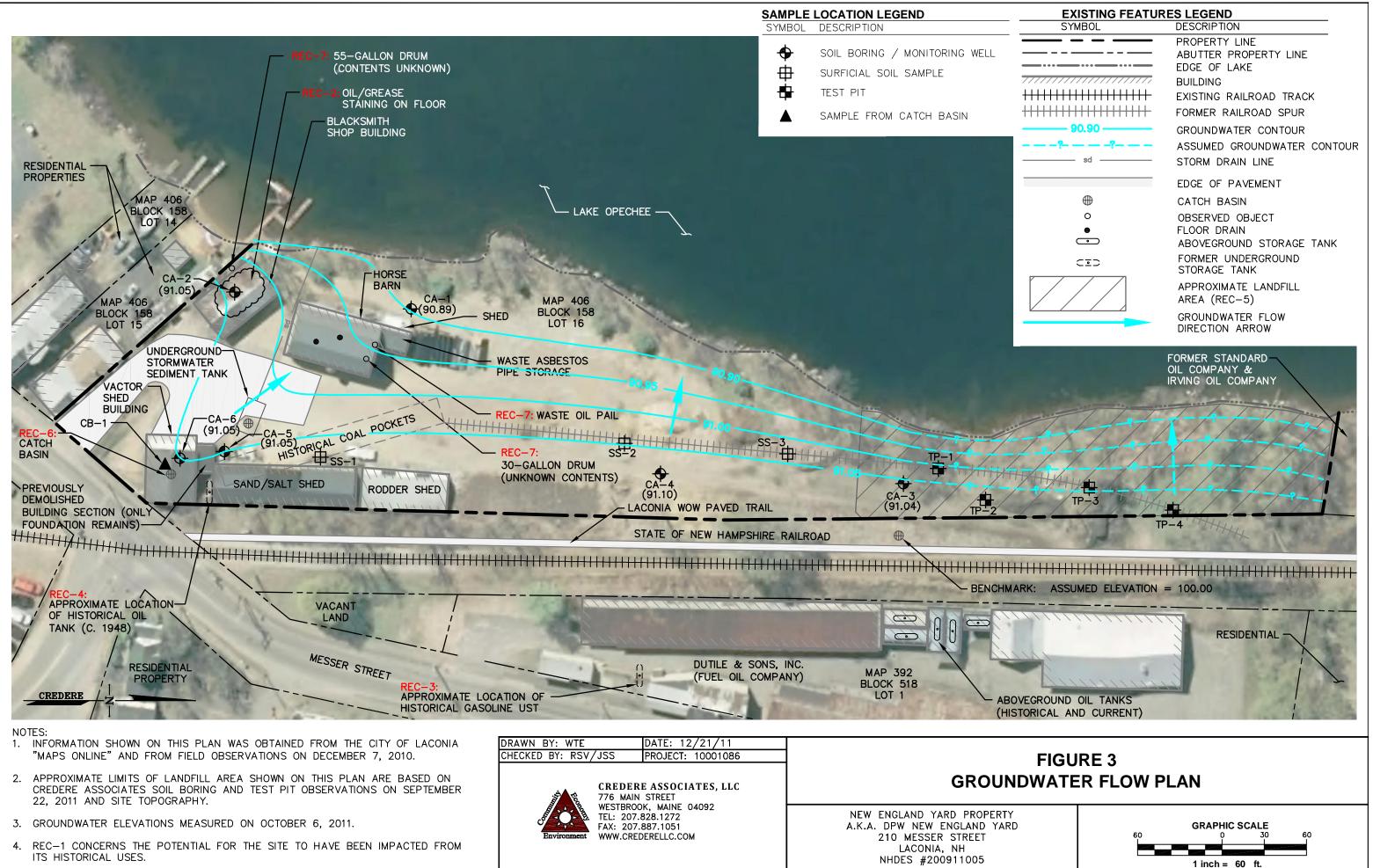
15. LIMITATIONS

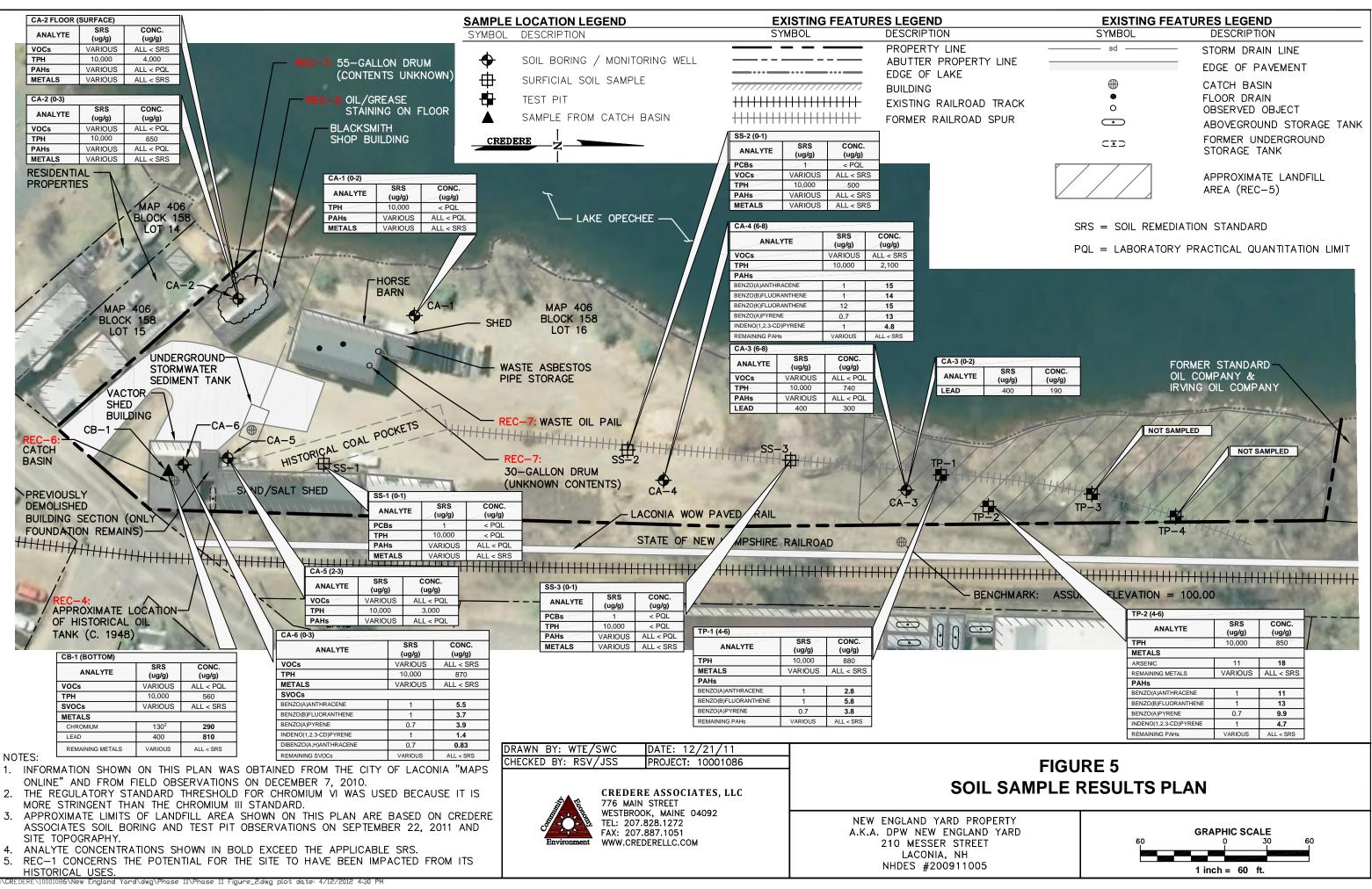
This report has been prepared as part of a contract agreement between Credere Associates, LLC and LRPC for their Brownfields program. This agreement was established in order to provide LRPC with information upon which it can rely concerning the existence or likely existence of various environmental contaminants on or adjacent to the Site.

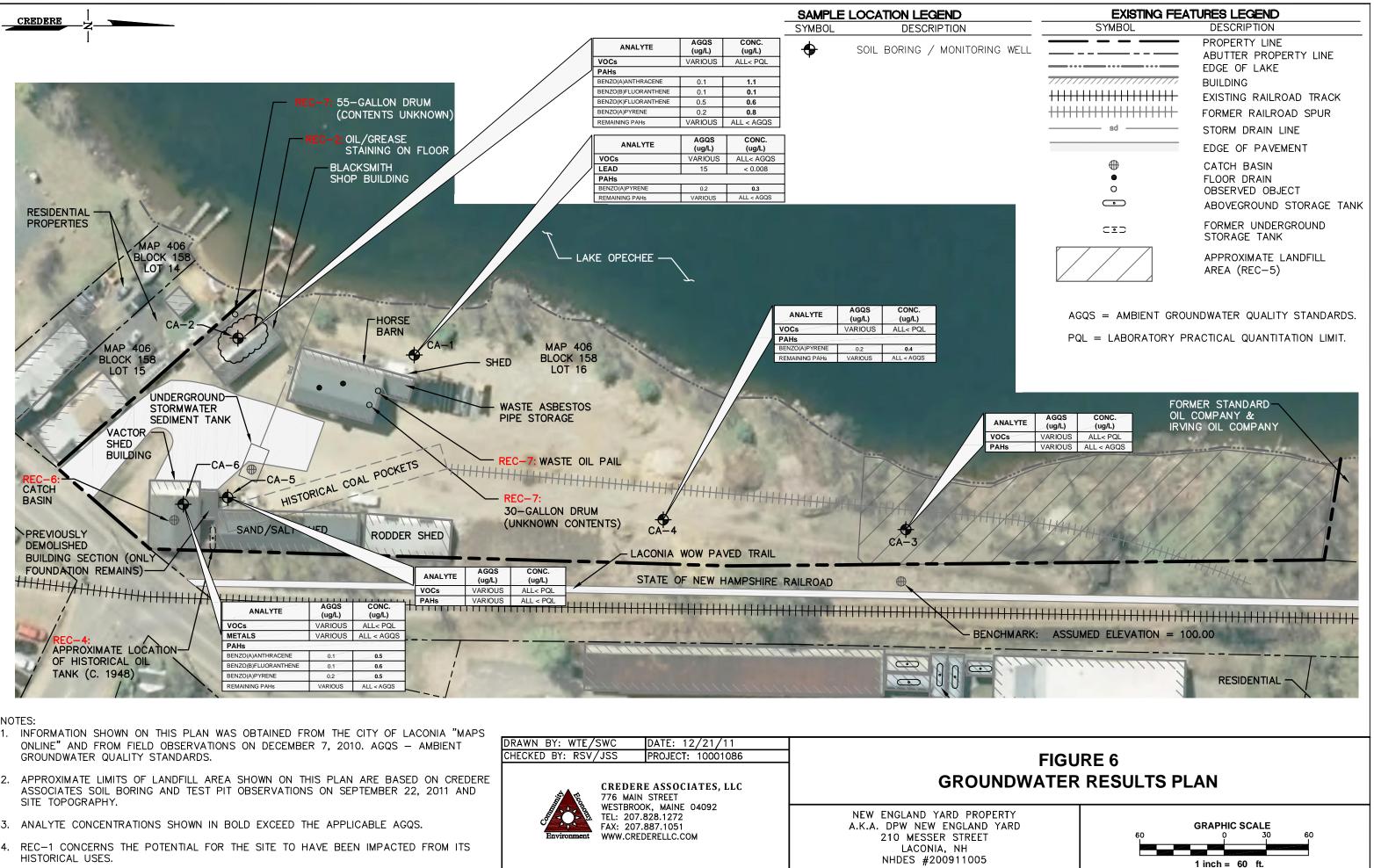
This report does not reflect:

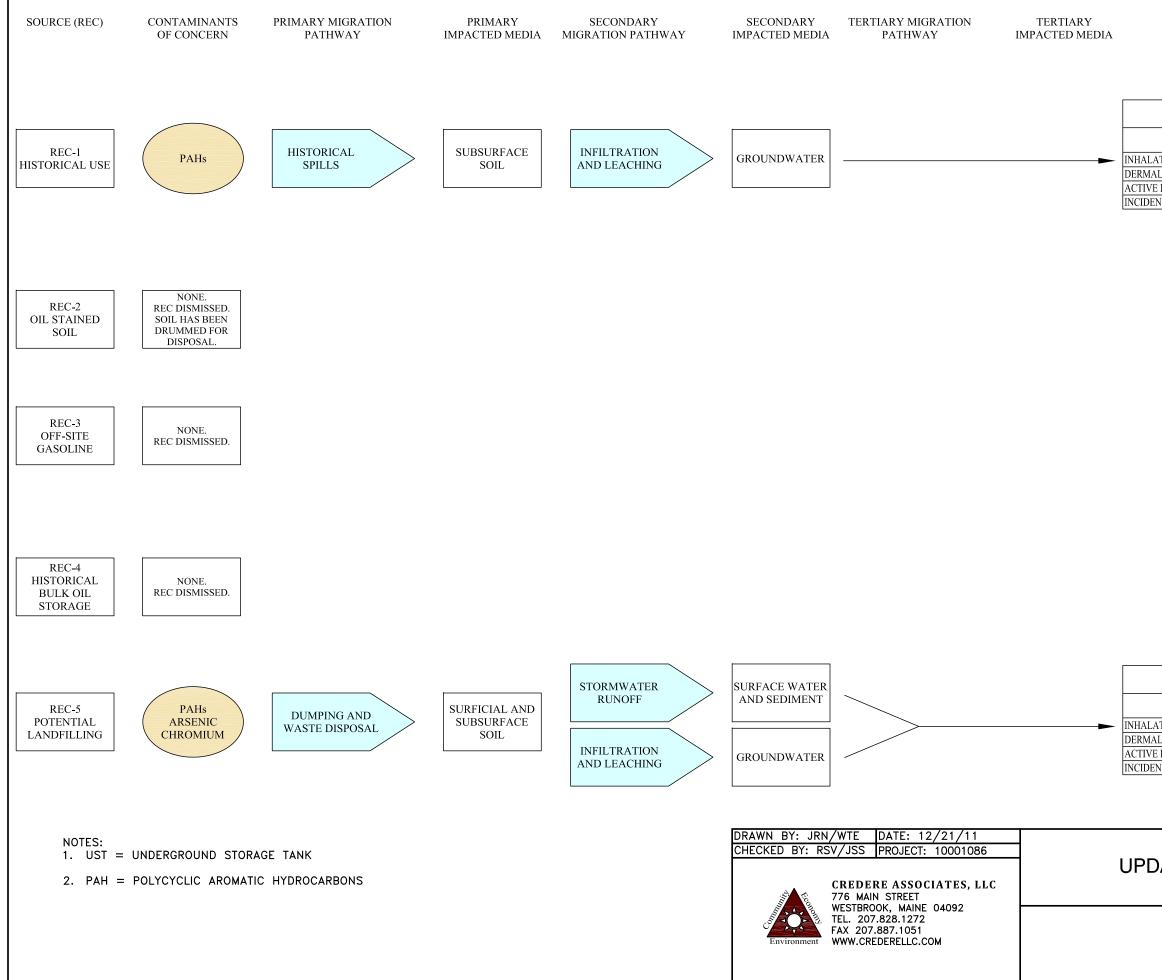
- 1. Conditions in untested areas.
- 2. Variations in chemical concentrations that can occur between sample locations.
- 3. The total understanding of potential influences of off-site areas or historical uses that may have contributed or currently contribute to Site contamination, particularly relating to groundwater and subsurface soil conditions. The limited evaluation of off-site contamination sources was based on available data and records.
- 4. The potential presence of compound sources was based on available data and records.
- 5. The potential presence of analytes that were not analyzed for or that may be present below minimum Practical Quantification Limits for the methods tested.
- 6. The conditions of groundwater and/or surface water beyond available data.
- 7. Variation in the Site conditions that occurred at a time other than when the Site inspection was completed.

In the event that any conditions different from those described herein are encountered at a later time, Credere Associates, LLC requests an opportunity to review such differences and modify the assessment and conclusions of this report. This report was prepared expressly for the purpose described. The information in this report may not be suitable for any other use without adaptation for the specific purpose intended. Any such reuse of this report, without adaptation, shall be at the sole risk and liability of the party undertaking the reuse.

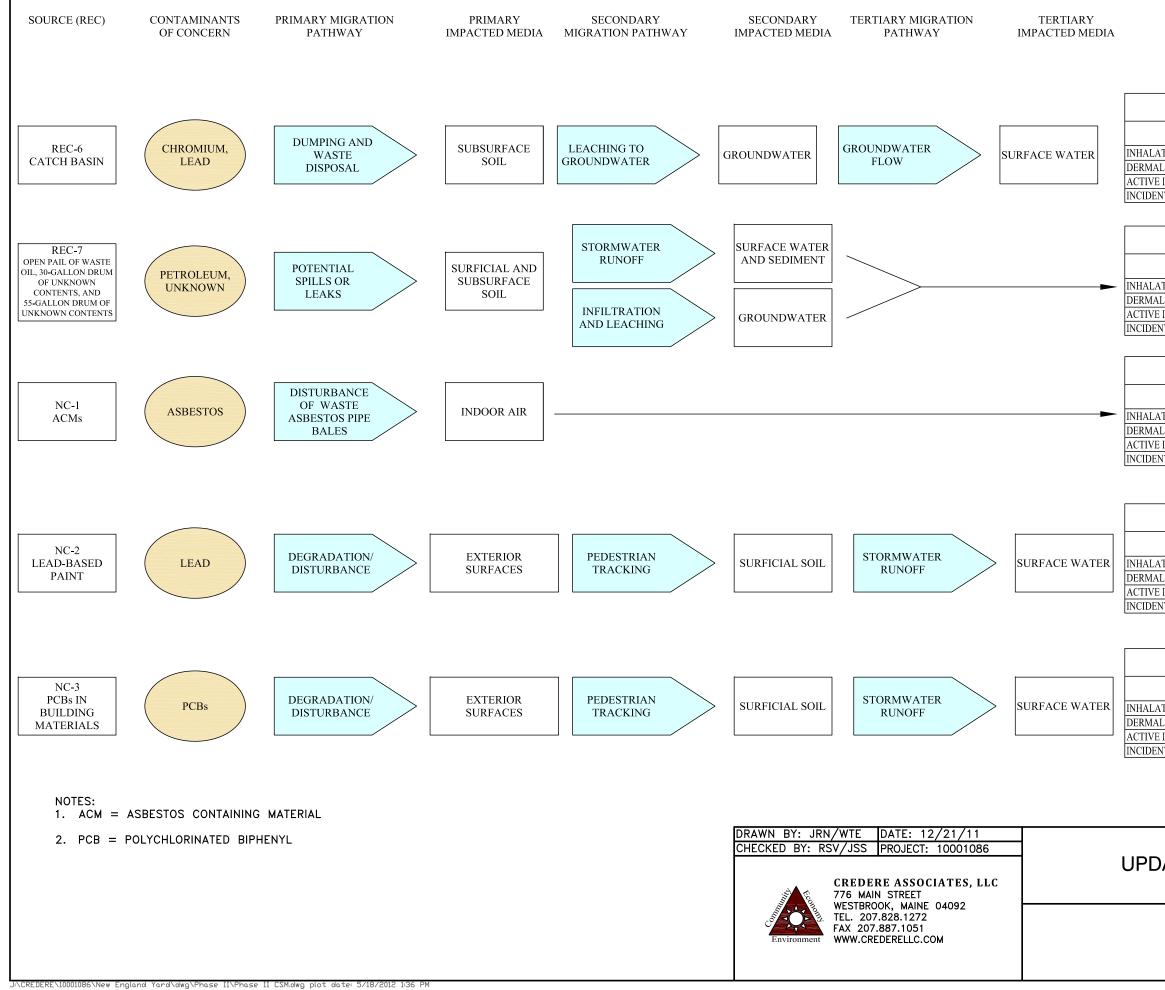

FIGURES







- NOTES:
- 2. APPROXIMATE LIMITS OF LANDFILL AREA SHOWN ON THIS PLAN ARE BASED ON CREDERE
- ANALYTE CONCENTRATIONS SHOWN IN BOLD EXCEED THE APPLICABLE AGQS.
- 4. REC-1 CONCERNS THE POTENTIAL FOR THE SITE TO HAVE BEEN IMPACTED FROM ITS


POTENTIAL EXPOSURE PATHWAYS											
	RESIDENTIAL	COMMERCIAL	SITE	VISITOR	TERRESTRIAL	· ·					
	THE STEP EN (TH IE	COMMERCENTE	WORKER		BIOTA	BIOTA					
ATION											
L ABSORPTION			Х	Х	Х	Х					
E INGESTION					Х	Х					
NTAL UPTAKE			Х	Х	Х	Х					

POTENTIAL EXPOSURE PATHWAYS

	RESIDENTIAL	COMMERCIAL	SITE WORKER	VISITOR	TERRESTRIAL BIOTA	AQUATIC BIOTA
ATION						
AL ABSORPTION			Х	Х	Х	Х
E INGESTION					Х	Х
NTAL UPTAKE			Х	Х	Х	Х

FIGURE 7 UPDATED CONCEPTUAL SITE MODEL (SHEET 1 OF 2)

NEW ENGLAND YARD PROPERTY A.K.A. DPW NEW ENGLAND YARD 210 MESSER STREET LACONIA, NH NHDES #200911005

POTENTIAL EXPOSURE PATHWAYS											
	RESIDENTIAL	COMMERCIAL	SITE WORKER	VISITOR	TERRESTRIAL BIOTA	AQUATIC BIOTA					
TION											
L ABSORPTION			Х	Х	Х	Х					
INGESTION					Х	Х					
NTAL UPTAKE			Х	Х	Х	Х					

POTENTIAL EXPOSURE PATHWAYS											
RESIDENTIAL	COMMERCIAL	SITE	VISITOR	TERRESTRIAL	AQUATIC						
RESIDENTIAL	COMMERCIAL	WORKER	VISITOR	BIOTA	BIOTA						
		Х	Х	Х	Х						
				Х	Х						
		Х	Х	Х	Х						
		DESIDENTIAL COMMEDIAL		DESIDENTIAL COMMEDICIAL SITE VICITOR	DESIDENTIAL CONCEPCIAL SITE VISITOR TERRESTRIAL						

POTENTIAL EXPOSURE PATHWAYS										
RESIDENTIAL	COMMERCIAL	SITE	VISITOR	TERRESTRIAL	AQUATIC					
RESIDENTIAL		WORKER		BIOTA	BIOTA					
		Х	Х							

POTENTIAL EXPOSURE PATHWAYS											
	RESIDENTIAL	COMMERCIAL	SITE WORKER	VISITOR	TERRESTRIAL BIOTA	AQUATIC BIOTA					
ATION											
L ABSORPTION			Х	Х	Х	Х					
INGESTION					Х	Х					
NTAL UPTAKE			Х	Х	Х	Х					

POTENTIAL EXPOSURE PATHWAYS											
	RESIDENTIAL	COMMERCIAL	SITE	VISITOR	TERRESTRIAL	`					
	RESIDENTIALE		WORKER		BIOTA	BIOTA					
ATION											
L ABSORPTION			Х	Х	Х	Х					
E INGESTION					Х	Х					
NTAL UPTAKE			X	X	X	X					

FIGURE 7 UPDATED CONCEPTUAL SITE MODEL (SHEET 2 OF 2)

NEW ENGLAND YARD PROPERTY A.K.A. DPW NEW ENGLAND YARD 210 MESSER STREET LACONIA, NH NHDES #200911005 TABLES

TABLE 1 NEW ENGLAND YARD (A.K.A. DPW NEW ENGLAND YARD) 210 MESSER STREET, LACONIA, NEW HAMPSHIRE NHDES# 200911005

SUMMARY OF EXPLORATION LOCATIONS, SAMPLES, AND EXPLORATION METHODS

Location Name	Media Sampled	Type of Sample(s) Analyzed	Exploration Method
CA-1	Soil	Surficial soil sample	Hollow-stem auger
CA-1	Groundwater	Groundwater sample	Low flow groundwater sampling
CA-2	Soil	Surficial soil sample	Geoprobe
CA-2	Groundwater	Groundwater sample	Low flow groundwater sampling
CA-2 FLOOR	Soil	Grab sample	Hand tools
CA-3	Soil	Subsurface soil sample	Hollow-stem auger
CA-3	Groundwater	Groundwater sample	Low flow groundwater sampling
CA-4	Soil	Subsurface soil sample	Hollow-stem auger
CA-4	Groundwater	Groundwater sample	Low flow groundwater sampling
CA-5	Soil	Subsurface soil sample	Hollow-stem auger
CA-5	Groundwater	Groundwater sample	Low flow groundwater sampling
CA-6	Soil	Surficial soil sample	Hollow-stem auger
CA-0	Groundwater	Groundwater sample	Low flow groundwater sampling
SS-1	Soil	Surficial soil sample	Hand tools
SS-2	Soil	Surficial soil sample	Hand tools
SS-3	Soil	Surficial soil sample	Hand tools
TP-1	Soil	Subsurface soil sample	Test Pit
TP-2	Soil	Subsurface soil sample	Test Pit
TP-3	Soil	Field screening only	Test Pit
TP-4	Soil	Field screening only	Test Pit
CB-1	Soil/Sediment	Material in base of catch basin	Hand tools

	TABLE 2 NEW ENGLAND YARD (A.K.A. DPW NEW ENGLAND YARD) 210 MESSER STREET, LACONIA, NEW HAMPSHIRE NHDES# 200911005 SUMMARY OF SOIL SAMPLE X-RAY FLUORESCENCE FIELD SCREENING RESULTS												
	Sample			NH	IDES Soil Re	emediation S	tandard and	Metal Conce	entration (ug	/g)			
Location	Depth (feet bgs)	Sample Date	As	Ва	Cd	Cr	Cu	Pb	Hg	Ni	Se		
	(*****35)		11	1,000	33	130	NE	400	6	400	180		
CA-1	0-2	9/22/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>30</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>30</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>30</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	30	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
	0-3		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td><td>77</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td><td>77</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>23</td><td>77</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>23</td><td>77</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	23	77	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
CA-2	3-6	9/22/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>17</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>17</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>17</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	17	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
	6-7		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>14</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>14</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>14</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	14	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
	0-2 2-4		<lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>65 118</td><td>706 260</td><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>65 118</td><td>706 260</td><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td>65 118</td><td>706 260</td><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>65 118</td><td>706 260</td><td><lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></td></lod<></lod </td></lod<></lod 	65 118	706 260	<lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></td></lod<></lod 	<lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<>	<lod <lod< td=""></lod<></lod 		
	2-4 4-6		29 <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>63</td><td>131</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>63</td><td>131</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td>63</td><td>131</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>63</td><td>131</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	63	131	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod 	<lod <lod< td=""></lod<></lod 		
CA-3	4-0 6-8	9/22/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>115</td><td>996</td><td>18</td><td><lod <lod< td=""><td><lod< td=""></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>115</td><td>996</td><td>18</td><td><lod <lod< td=""><td><lod< td=""></lod<></td></lod<></lod </td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>115</td><td>996</td><td>18</td><td><lod <lod< td=""><td><lod< td=""></lod<></td></lod<></lod </td></lod<></td></lod<>	<lod< td=""><td>115</td><td>996</td><td>18</td><td><lod <lod< td=""><td><lod< td=""></lod<></td></lod<></lod </td></lod<>	115	996	18	<lod <lod< td=""><td><lod< td=""></lod<></td></lod<></lod 	<lod< td=""></lod<>		
	8-10		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30</td><td>550</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>30</td><td>550</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>30</td><td>550</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>30</td><td>550</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	30	550	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
	10-12		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>69</td><td>191</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>69</td><td>191</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>69</td><td>191</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>69</td><td>191</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	69	191	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
	0-2		<lod< td=""><td>493</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	493	<lod< td=""><td><lod< td=""><td><lod< td=""><td>23</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>23</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>23</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	23	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
<u></u>	2-4	0.000.000.00	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>24</td><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>24</td><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	24	24	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
CA-4	4-6	9/22/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>39</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>39</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>39</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>39</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>39</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	39	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
	6-8		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>37</td><td>219</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>37</td><td>219</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>37</td><td>219</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>37</td><td>219</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	37	219	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
	0-2		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>32</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>32</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>32</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>32</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>32</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	32	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
CA-5	2-3	9/22/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>20</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>20</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>20</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	20	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
07-3	3-4	3/22/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>18</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>18</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>18</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	18	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
	4-6		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>22</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>22</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>22</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	22	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
CA-6	0-3	9/22/2011	<lod< td=""><td>348</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>27</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	348	<lod< td=""><td><lod< td=""><td><lod< td=""><td>27</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>27</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>27</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	27	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
	3-6		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>24</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	24	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
SS-1	0-1	9/22/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>28</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>28</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>28</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>28</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>28</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	28	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
SS-2	0-1	9/22/2011	12	<lod< td=""><td><lod< td=""><td><lod< td=""><td>28</td><td>41</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>28</td><td>41</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>28</td><td>41</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	28	41	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
SS-3	0-1	9/22/2011	10	557	<lod< td=""><td><lod< td=""><td><lod< td=""><td>25</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>25</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>25</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	25	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
	0-2		<lod< td=""><td>488</td><td><lod< td=""><td>120</td><td>84</td><td>303</td><td><lod< td=""><td>48</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	488	<lod< td=""><td>120</td><td>84</td><td>303</td><td><lod< td=""><td>48</td><td><lod< td=""></lod<></td></lod<></td></lod<>	120	84	303	<lod< td=""><td>48</td><td><lod< td=""></lod<></td></lod<>	48	<lod< td=""></lod<>		
TP-1	2-4	9/22/2011	<lod< td=""><td>451</td><td><lod< td=""><td><lod< td=""><td>35</td><td>81</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	451	<lod< td=""><td><lod< td=""><td>35</td><td>81</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>35</td><td>81</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	35	81	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
IP-1	4-6	9/22/2011	28	<lod< td=""><td><lod< td=""><td>466</td><td>287</td><td>367 97</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>466</td><td>287</td><td>367 97</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	466	287	367 97	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
	6-8 8-10		<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>23 45</td><td>97 192</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""><td>23 45</td><td>97 192</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""><td>23 45</td><td>97 192</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td>23 45</td><td>97 192</td><td><lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod </td></lod<></lod 	23 45	97 192	<lod <lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></lod 	<lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod 	<lod <lod< td=""></lod<></lod 		
	0-2		<lod <lod< td=""><td><lod< td=""><td><lod <lod< td=""><td><lod< td=""><td>45 67</td><td>221</td><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<></lod 	<lod< td=""><td><lod <lod< td=""><td><lod< td=""><td>45 67</td><td>221</td><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></td></lod<></td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod< td=""><td>45 67</td><td>221</td><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></td></lod<></td></lod<></lod 	<lod< td=""><td>45 67</td><td>221</td><td><lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<></td></lod<>	45 67	221	<lod< td=""><td><lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod </td></lod<>	<lod <lod< td=""><td><lod <lod< td=""></lod<></lod </td></lod<></lod 	<lod <lod< td=""></lod<></lod 		
	2-4		41	496	<lod< td=""><td><lod< td=""><td>100</td><td>53</td><td>11</td><td>55</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>100</td><td>53</td><td>11</td><td>55</td><td><lod< td=""></lod<></td></lod<>	100	53	11	55	<lod< td=""></lod<>		
TP-2	4-6	9/22/2011	21	<lod< td=""><td><lod< td=""><td><lod< td=""><td>92</td><td>237</td><td>12</td><td>264</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>92</td><td>237</td><td>12</td><td>264</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>92</td><td>237</td><td>12</td><td>264</td><td><lod< td=""></lod<></td></lod<>	92	237	12	264	<lod< td=""></lod<>		
	6-8		<lod< td=""><td>430</td><td><lod< td=""><td><lod <lod< td=""><td>83</td><td>272</td><td>12</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></lod </td></lod<></td></lod<>	430	<lod< td=""><td><lod <lod< td=""><td>83</td><td>272</td><td>12</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></lod </td></lod<>	<lod <lod< td=""><td>83</td><td>272</td><td>12</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></lod 	83	272	12	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
	0-2		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>44</td><td>187</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>44</td><td>187</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>44</td><td>187</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>44</td><td>187</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	44	187	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
TD -	2-4	0/00/2233	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>49</td><td>226</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>49</td><td>226</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>49</td><td>226</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>49</td><td>226</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	49	226	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
TP-3	4-6	9/22/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>29</td><td>36</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>29</td><td>36</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>29</td><td>36</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>29</td><td>36</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	29	36	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
	6-8		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>32</td><td>65</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>32</td><td>65</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>32</td><td>65</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>32</td><td>65</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	32	65	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
	0-2		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>90</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>90</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>90</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>90</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>90</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	90	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
	2-4		<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>53</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>53</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>53</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>53</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>53</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	53	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		
TP-4	4-6	9/22/2011	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>79</td><td>141</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>79</td><td>141</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>79</td><td>141</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>79</td><td>141</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	79	141	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>		

8-10 <LOD - Concentration less than instrument level of detection

6-8

XRF - X-Ray Fluorescence Meter

Bold - detected above instrument level of detection Highlighted cells have concentrations that exceed NHDES Soil Remediation Standards

14

<LOD

<LOD

<LOD

<LOD

<LOD

<LOD

<LOD

55

<LOD

118

94

<LOD

<LOD

<LOD

<LOD

<LOD

<LOD

bgs - below ground surface

TABLE 3 NEW ENGLAND YARD (A.K.A. DPW NEW ENGLAND YARD) 210 MESSER STREET, LACONIA, NEW HAMPSHIRE NHDES# 200911005 SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS

	Regulatory Standard	Soil Sample Location, Sample Date, and Sample Depth Interval (feet)													
Parameter ⁽¹⁾	NH Soil Remediation	CA-1	CA-2	CA-2 FLOOR	с	A-3	CA-4	CA-5	CA-6	CB-1	SS-1	SS-2	SS-3	TP-1	TP-2
	Standards ⁽²⁾ (µg/g)	9/22/2011	9/22/2011	9/22/2011	9/22	2/2011	9/22/2011	9/22/2011	9/22/2011	9/22/2011	9/22/2011	9/22/2011	9/22/2011	9/22/2011	9/22/2011
	(µg/g)	0-2'	0-3'	Surface	0-2'	6-8'	6-8'	2-3'	0-3'	Drain bottom	0-1'	0-1'	0-1'	4-6'	4-6'
Volatile Organic Compounds (µg/g	g) EPA Method 82	60B													
Naphthalene	5	NS	ND<0.1	ND<0.1	NS	ND<0.2	1.0	ND<0.1	0.1	ND<0.1	NS	NS	NS	NS	NS
Xylenes (mixed isomers)	500	NS	ND<0.1	0.3	NS	ND<0.2	ND<0.1	ND<0.1	ND<0.1	ND<0.1	NS	NS	NS	NS	NS
Semi-volatile Organic Compounds							-								
Fluoranthene	960	ND<0.6	ND<2.9	ND<4.9	NS	ND<0.7 ND<0.7	34	ND<5.5	11	0.59	ND<0.5	3.9	ND<0.5	3.9	20
Pyrene	720	ND<0.6 ND<0.6	ND<2.9 ND<2.9	ND<4.9 ND<4.9	NS NS	ND<0.7 ND<0.7	38 15	ND<5.5 ND<5.5	12 5.5	0.68	ND<0.5 ND<0.5	3.5 ND<2.7	ND<0.5 ND<0.5	5.4	20 11
Benzo(a)anthracene	120	ND<0.6	ND<2.9 ND<2.9	ND<4.9 ND<4.9	NS NS	ND<0.7	15	ND<5.5 ND<5.5	5.2	0.45 0.47	ND<0.5 ND<0.5	ND<2.7 ND<2.7	ND<0.5 ND<0.5	2.8 3.8	11 12
Chrysene	120	ND<0.6	ND<2.9	ND<4.9 ND<4.9	NS	ND<0.7	19	ND<5.5 ND<5.5	3.2	0.47	ND<0.5	ND<2.7	ND<0.5 ND<0.5	3.8 5.8	12
Benzo(b)fluoranthene Benzo(k)fluoranthene	1	ND<0.6	ND<2.9	ND<4.9 ND<4.9	NS NS	ND<0.7	14	ND<5.5 ND<5.5	3.7	0.64	ND<0.5 ND<0.5	ND<2.7 ND<2.7	ND<0.5 ND<0.5	<u>5.8</u> 2.9	5.5
Benzo(k)iluoraninene Benzo(a)pyrene	0.7	ND<0.6	ND<2.9	ND<4.9 ND<4.9	NS	ND<0.7	13	ND<5.5	3.7	0.48	ND<0.5	ND<2.7	ND<0.5	3.8	9.9
Fluorene	77	ND<0.6	ND<2.9	ND<4.9	NS	ND<0.7	3.9	ND<5.5	1.3	ND<0.29	ND<0.5	ND<2.7	ND<0.5	ND<2.7	9.9 ND<3.2
Phenanthrene	960	ND<0.6	ND<2.9	ND<4.9	NS	ND<0.7	30	ND<5.5	1.5	ND<0.29	ND<0.5	ND<2.7 ND<2.7	ND<0.5	ND<2.7	9.7
Benzo(g,h,i)perylene	960	ND<0.6	ND<2.9	ND<4.9	NS	ND<0.7	4.3	ND<5.5	1.5	ND<0.29	ND<0.5	ND<2.7	ND<0.5	ND<2.7	5.1
Indeno(1,2,3-cd)pyrene	1	ND<0.6	ND<2.9	ND<4.9	NS	ND<0.7	4.8	ND<5.5	1.4	ND<0.29	ND<0.5	ND<2.7	ND<0.5	ND<2.7	4.7
Acenaphthene	340	ND<0.6	ND<2.9	ND<4.9	NS	ND<0.7	ND<3.1	ND<5.5	1.1	ND<0.29	ND<0.5	ND<2.7	ND<0.5	ND<2.7	ND<3.2
Dibenzofuran	NE	ND<0.6	ND<2.9	ND<4.9	NS	ND<0.7	ND<3.1	ND<5.5	0.79	ND<0.29	ND<0.5	ND<2.7	ND<0.5	ND<2.7	ND<3.2
Anthracene	1.000	ND<0.6	ND<2.9	ND<4.9	NS	ND<0.7	ND<3.1	ND<5.5	2.8	ND<0.29	ND<0.5	ND<2.7	ND<0.5	ND<2.7	ND<3.2
Dibenzo(a,h)anthracene	0.7	ND<0.6	ND<2.9	ND<4.9	NS	ND<0.7	ND<3.1	ND<5.5	0.83	ND<0.29	ND<0.5	ND<2.7	ND<0.5	ND<2.7	ND<3.2
Polychlorinated Biphenyls (µg/g) E	PA Mothod 8082/														
All Araclors	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	All ND<0.03	All ND<0.03	All ND<0.03	NS	NS
7477400000										110	7 112 10100	7 11 112 10100	7	110	NU
Total Petroleum Hydrocarbons (µg						_	-				-	-			-
ТРН	10,000	ND<220	650	4,000	NS	740	2,100	3,000	870	560	ND<200	500	ND<200	880	850
Metals SW3051A (μα/α)				<u> </u>					I			<u> </u>	<u> </u>		
Arsenic	11	5.4	3.4	6.4	NS	NS	NS	NS	3.6	2.8	2.6	5.4	7.7	7.5	18
Barium	1,000	34	35	79	NS	NS	NS	NS	14	86	8	34	37	160	200
Boron	1,000	ND<3	6	35	NS	NS	NS	NS	NS	NS	ND<2	3	ND<3	49	25
Cadmium	33	ND<0.2	ND<0.2	1.6	NS	NS	NS	NS	ND<0.2	0.5	ND<0.2	ND<0.2	ND<0.2	15	0.7
Chromium*	130	NS	NS	NS	NS	NS	NS	NS	5	290	NS	NS	NS	NS	NS
Copper	NE	12	17	86	NS	NS	NS	NS	NS	NS	6	16	15	320	79
Lead	400	17	66	150	190	300	NS	NS	15	810	13	25	9	820	260
Mercury	6	ND<0.17	ND<0.18	ND<0.15	NS	NS	NS	NS	ND<0.16	ND<0.19	ND<0.16	NS<0.16	NS<0.16	0.26	0.44
Nickel	400	7	6	9	NS	NS	NS	NS	NS	NS	5	8	7	22	150
Vanadium	NE	26	18	18	NS	NS	NS	NS	NS	NS	7	22	20	22	24
NOTES															

NOTES:

⁽¹⁾ Only analytes above detection limit are summarized herein. ⁽²⁾ New Hampshire Code of Administrative Rules Soil Remediation Standards (SRS), effective July 2008

ug/g = micrograms per gram (equivalent to milligrams per kilogram) * = The regulatory threshold for Chromium VI was used because it is more stringent than the Chromium III standard

NE = No regulatory guideline established ND = Not detected above quantitation limit (i.e. $0.2 \mu g/g$)

NS = Not sampled Bold Exceeds laboratory quantitation limit

Exceeds NH DES Env-OR 606.19 Soil Remediation Standards

TABLE 4 NEW ENGLAND YARD (A.K.A. DPW NEW ENGLAND YARD) 210 MESSER STREET, LACONIA, NEW HAMPSHIRE NHDES# 200911005

SUMMARY OF MONITORING WELL CONSTRUCTION, GAUGING, AND GROUNDWATER ELEVATIONS

MONITORING WELL ID	CA-1	CA-2	CA-3	CA-4	CA-5	CA-6
WELL LOCATION	Northwest of the Horse Barn	Within the Blacksmith Shop	In northern portion of Site in potential landfill area	In east central portion of Site downgradient of off-site UST		Within the Vactor Building adjacent to catch basin
WELL DEPTH (FEET BELOW TOP OF WELL)	9.47	6.27	13.17	9.30	9.40	6.27
LENGTH OF SCREEN (FEET)	8	5	10 7		8	5
WELL MATERIAL	2" PVC	1" PVC	2" PVC	2" PVC	2" PVC	1" PVC
WELL COVER TYPE	Flush-mounted road box	Flush-mounted road box	Flush-mounted road box	Flush-mounted road box	Flush-mounted road box	Flush-mounted road box
WELL ELEVATION ⁽¹⁾ (ARBITRARY BENCHMARK)	93.57		98.19	95.15	92.71	93.45
GROUNDWATER DEPTH ⁽²⁾ (FEET BELOW TOP OF WELL) October 6, 2011	2.63	1.25	7.15	4.05	1.66	2.40
GROUNDWATER ELEVATION ⁽³⁾ (ARBITRARY BENCHMARK) October 6, 2011	90.89	91.05	91.04	91.10	91.05	91.05

NOTES:

⁽¹⁾ Elevations based on a temporary benchmark of 100 feet at manhole located in W.O.W. Paved Trail

⁽²⁾ Groundwater levels gauged to top of PVC riser

⁽³⁾ Groundwater elevations have been calculated by subtracting the depth to groundwater from the top of PVC Elevation

Credere Associates, LLC

TABLE 5 NEW ENGLAND YARD (A.K.A. DPW NEW ENGLAND YARD) 210 MESSER STREET, LACONIA, NEW HAMPSHIRE NHDES# 200911005

SUMMARY OF GROUNDWATER SAMPLE ANALYTICAL RESULTS

	Regulatory Standard	Sample Location and Date						
Parameter ⁽¹⁾	NH AGQS ⁽²⁾	CA-1	CA-2	CA-3	CA-4	CA-5	CA-6	
	(µg/L)	10/6/2011	10/6/2011	10/6/2011	10/6/2011	10/6/2011	10/6/2011	
olatile Organic Compounds (με	J/L) EPA Method 82	60B						
Naphthalene	20	6	ND<5	ND<5	ND<5	ND<5	ND<5	
tals (µg/L) EPA Methods 60100	C or 7470A							
Barium	2,000	NS	NS	NS	NS	NS	0.06	
mi-Volatile Organic Compound	s or Polycyclic Arc	omatic Hydroc	arbons (µg/L)	EPA Method 8	3270D			
Naphthalene	20	1.4	0.9	0.8	ND<0.5	ND<0.5	ND<0.5	
Acenaphthylene	420	ND<0.5	1.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	
Acenaphthene	420	0.7	0.7	0.6	0.6	ND<0.5	0.6	
Dibenzofuran	NE	0.5	1.1	ND<0.5	ND<0.5	ND<0.5	ND<0.5	
Fluorene	280	0.8	1.4	ND<0.5	0.7	ND<0.5	0.7	
Phenanthrene	210	0.9	4.6	0.7	1.0	ND<0.5	1.1	
Anthracene	2,100	ND<0.5	1.1	ND<0.5	ND<0.5	ND<0.5	ND<0.5	
Fluoranthene	280	0.9	2.7	ND<0.5	1.4	ND<0.5	1.6	
Pyrene	210	0.8	2.6	ND<0.5	1.4	ND<0.5	1.6	
Benzo(a)anthracene	0.1	ND<0.5	1.1	ND<0.5	ND<0.5	ND<0.5	0.5	
Chrysene	5	ND<0.5	1.0	ND<0.5	0.6	ND<0.5	0.7	
Benzo(b)fluoranthene	0.1	ND<0.5	1.0	ND<0.5	ND<0.5	ND<0.5	0.6	
Benzo(k)fluoranthene	0.5	ND<0.5	0.6	ND<0.5	ND<0.5	ND<0.5	ND<0.5	
Benzo(a)pyrene	0.2	0.3	0.8	ND<0.2	0.4	ND<0.2	0.5	
Benzo(g,h,i)anthracene	210	ND<0.5	0.6	ND<0.5	ND<0.5	ND<0.5	ND<0.5	

NOTES:

⁽¹⁾ Only analytes detected above reported method detection level are summarized herein

⁽²⁾ New Hampshire Code of Administrative Rules Ambient Groundwater Quality Standards (AGQS), effective July 2008

ug/L = micrograms per liter

NE = No regulatory guideline established

ND = Not detected above quantitation limit (i.e. $0.2 \mu g/g$)

NS = Not Sampled

Bold Exceeds laboratory quantitation limit

Exceeds NHDES AGQS

TABLE 6 NEW ENGLAND YARD (A.K.A. DPW NEW ENGLAND YARD) 210 MESSER STREET, LACONIA, NEW HAMPSHIRE NHDES# 200911005 SUMMARY OF DUPLICATE SAMPLE ANALYSES						
Parameter	NHDES Standard ^(1,2)	Quantitation Limit	5x Quantitation Limit	Sample ⁽³⁾	Duplicate	Relative Percent Difference
SB-DUP (CA-4 6-8')						
VOCs (μg/g)						
	yte concentratior	ns were below 5X quant	itation limit; therefo	re, RPDs wer	e not calcuat	ted.
SS-DUP (SS-1)						
TPH (µg/g)						
TPH was	not detected in t	he sample or the duplic	ate; therefore a RP	D was not ca	lculated.	
PAHs (µg/g)						
	e not detected in	the sample or the dupli	cate; therefore a R	PD was not c	alculated.	
PCBs (µg/g)						
	e not detected in	the sample or the dupli	cate; therefore a R	PD was not c	alculated.	
Metals (µg/g)						
Arsenic	11	0.5	2.5	2.6	2.7	3.8%
Lead	400	0.6	3	13	13	0.0%
DUP-GW (CA-4)						
VOCs (µg/g)						
	yte concentration	ns were below 5X quant	itation limit; therefo	re, RPDs wer	e not calcuat	ted.
PAHs (µg/g)						
All detected analyte concentrations were below 5X quantitation limit; therefore, RPDs were not calcuated.						
DUP-GW-2 (CA-1)						
Metals (µg/g)						
Lead was not detected in the sample or the duplicate; therefore, RPDs were not calcuated.						

NOTES:

⁽¹⁾ New Hampshire Code of Administrative Rules Soil Remediation Standards (SRS), effective July 2008

⁽²⁾ New Hampshire Code of Administrative Rules Ambient Groundwater Quality Standards (AGQS), effective July 2008

⁽³⁾ Only analytes at or above 5X quantitation limit are summarized herein.

Exceeds Relative Percent Difference quality control limit of 35% for samples as specified in Project Quality Assurance Project Plan (QAPP)

APPENDIX A

SITE-SPECIFIC QUALITY ASSURANCE PROJECT PLAN ADDENDUM

Waste Management Division PO Box 95, 29 Hazen Drive Concord, NH 03302					
Type of Submittal (Check One-Most Applicable)					
 Work Scope Reimbursement Request 	 Remedial Action Remedial Action Plan Bid Plans and Specifications 				
 UST Facility Report AST Facility Report 	 Remedial Action Implementation Report Treatment System and POE O&M Activity and Use Restriction 				
 Emergency/Initial Response Action Groundwater Quality Assessment 	Temporary Surface Water Discharge Permit				
 ☐ Initial Site Characterization ☐ Site Investigation • Site Investigation Report • Supplemental Site Investigation Report • GMZ Delineation • Source Area Investigation • Data Submittal • Annual Summary Report ☑ Unsolicited Site-Specific Quality Assurance Project Plan Addendum ☐ Closure Documentation 	 Groundwater Management Permit Permit Application Renewal Application Deed Recordation Documentation Abutter Notification Documentation Release of Recordation Data Submittal Annual Summary Report 				

SITE SPECIFIC QUALITY ASSURANCE PROJECT PLAN ADDENDUM New England Yard a.k.a DPW New England Yard 210 Messer Street Laconia, New Hampshire NHDES#200911005 Brownfields Grant #BF-96111801

Prepared For: Lakes Region Planning Commission 103 Main Street, Suite #3 Meredith, NH 03253 Phone: (603) 279-8171 Contact: Mr. Kimon Koulet

Prepared By: CREDERE ASSOCIATES, LLC 776 Main Street Westbrook, ME 04902 Phone: (207) 828-1272 ext. 16 Contact: Judd R. Newcomb, CG

July 13, 2011

Recommended Risk Category (check one)						
1. Immediate Human Health Risk (Impacted water supply well, etc.)	4. Surface Water Impact	7. Alternate Water Available/Low Level Groundwater Contamination (<1,000 X				
 2. Potential Human Health Risk (Water supply well within 1,000' or Site within SWPA) 	 5. No Alternate Water Available/No Existing Wells in Area 6. Alternate Water Available/High Level 	AGQS) 8. No AGQS Violation/No Source Remaining Closure Recommended				
3. Free Product or Source Hazard	Groundwater Contamination (>1,000 X AGQS)					

1. TITLE AND APPROVAL PAGE

SITE-SPECIFIC QUALITY ASSURANCE PROJECT PLAN ADDENDUM TO GENERIC QAPP RFA #08166 AND #09036

Revision 1

Site Information: New England Yard a.k.a DPW New England Yard 210 Messer Street, Laconia, New Hampshire New Hampshire Department of Environmental Services (NHDES) Site No. 200911005

Funding Source: Lakes Region Planning Commission (LRPC) Brownfields Assessment Program United States Environmental Protection Agency (EPA) Brownfields Grant # BF96111801

> Prepared By: Judd R. Newcomb, CG Credere Associates, LLC 776 Main Street, Westbrook, Maine 04092 (207) 828-1272 ext. 16

> > Date Prepared: July 13, 2011

Below is a listing of the names, titles, signatures, and signature dates of officials approving this SSQAPP:

Jerry Minor-Gordon Date USEPA Brownfields Project Officer USEPA Quality Assurance Officer Robert Reinhart 8-25-11 John F. Liptak, M.Ed., P.G. New Hampshire DES Project Manager Date Robert Minicucci Date New Hampshire DES QA Manager Richard S. Vandenberg, CG, PG Date Credere Associates, LLC Project QA/QC Manager Robert T Patten, PE, LEED-AP, LSP Date Credere Associates, LLC Project Manager

PA10001086 LRPC Haz Brownfields/work/New Eugland Yard/SSQAPP/SSQAPP_NE Yard 7-13-11.doc

TABLE OF CONTENTS

1.	Т	ITLE AND APPROVAL PAGE1	
2.	I	NTRODUCTION4	ļ
3.	F	INDINGS OF THE PHASE I ESA5	;
3.1 3.2 3.3	2	Site Description and History	5
4.	P	OTENTIAL REDEVELOPMENT SCENARIO9)
5.	С	ONCEPTUAL SITE MODEL)
5.1 5.2 5.3	2	Contaminants of Concern 10 Stormwater Flow, Geology, and Groundwater Flow 11 Definitions of Exposure Pathways and Potential Receptors 11	L
6.	S	AMPLING DESIGN14	ļ
7.	F	IELD ACTIVITY METHODOLOGY17	,
7. 7.2 7.2 7.4 7.4 7.6	2 3 4 5	Soil Borings, Test Pitting, Soil Sampling, and Field Screening17Monitoring Well Installation and Survey18Groundwater Sampling18Sediment Sampling19ACM and Lead-Based Paint Surveys19PCB-Containing Bulk Products19	3
8.	R	EGULATORY STANDARDS21	
8.1 8.2 8.4 8.4 8.4	2 3 4 5	Soil21Groundwater21Sediment21ACM21Lead-Based Paint21PCB Bulk Products22	
9.	P	ROPOSED PROJECT SCHEDULE23	5

FIGURES

- Figure 1Site Location Plan
- Figure 2Detailed Site Plan
- Figure 3 Credere Organization and Responsibility Chart
- Figure 4Conceptual Site Model

TABLES

- **Table 1**Soil and Sediment Sample Reference Table
- **Table 2**Groundwater Sample Reference Table
- **Table 3**Building Materials Sample Reference Table

ATTACHMENTS

Attachment A NOAA Screening Quick Reference Tables (SQuiRTs)

2. INTRODUCTION

The Lakes Region Planning Commission (LRPC) has received a United States Environmental Protection Agency (USEPA) Brownfields Hazardous Substance Assessment Grant to conduct environmental investigations at sites within the 30 member communities of the Lake Winnipesaukee Region. The investigations provide the basis for reuse planning specific to each site's community needs. The assessment of each site will include the completion of Phase I and Phase II Environmental Site Assessments (ESAs), and may also potentially include the development of cleanup and reuse options for selected sites.

On behalf of LPRC's Brownfields Assessment Program, this document is a Site-Specific Quality Assurance Project Plan (SSQAPP) Addendum for the New England Yard, a.k.a DPW New England Yard, located at 210 Messer Street in Laconia, New Hampshire (the Site). Figure 1 shows the general location of the Site in Laconia and Figure 2 is a detailed plan showing the locations of proposed sampling work. Figure 3 shows the project organization chart for the project team. Figure 4 is a graphical summary of the Conceptual Site Model (CSM) described in Section 5.

This SSQAPP presents the following information:

- 1. A summary of the pertinent findings of the Phase I ESA
- 2. The potential redevelopment scenario for the Site
- 3. A conceptual site model
- 4. Credere's proposed sampling design including recommended sample locations and analytical methods for proposed Site assessment activities
- 5. Regulatory standards applicable to the Site
- 6. A proposed project schedule

This SSQAPP was prepared to be used in concert with Credere Associates, LLC (Credere) Generic Quality Assurance Project Plan (QAPP) Rev. 2 (USEPA RFA #08166 and #09036) which was prepared for all of Credere's USEPA work in New Hampshire. The quality assurance and quality control (QA/QC) procedures outlined in Credere's Generic QAPP will be followed for this investigation program including sample collection, handling, and analysis, chain of custody, data management and documentation, data validation, and data usability assessments.

3. FINDINGS OF THE PHASE I ESA

A Phase I ESA was completed by Credere for the Site in March 2011. During the course of the Phase I ESA, Credere conducted a site reconnaissance, reviewed available local, state, and federal documents, and reviewed other available historical documents to identify evidence of *recognized environmental conditions* (RECs) in connection with the Site. The following summarizes the pertinent findings and recommendations from the Phase I ESA.

3.1 SITE DESCRIPTION AND HISTORY

The Site is composed of a 2.40-acre parcel of land located at 210 Messer Street in Laconia, New Hampshire, with its entire western frontage on Opechee Bay, which is a 499 acre lake connected to Lake Winnisquam. A paved walking/biking trail, known as the Laconia Winnisquam, Opechee, Winnipesaukee (WOW) Paved Trail, bounds the Site to the east, beyond which is a state owned rail line and a bulk petroleum distribution company. A residential property adjoins the Site to the south and a property owned by the Irving Oil Company adjoins the Site to the north.

Exterior portions of the Site consist of a paved driveway/parking area, a gravel lot, unpaved grassy areas, and a small wooded/brushy area that is located in the northwest portion of the Site. The Site has five (5) buildings that include: the Vactor Shed building, the Blacksmith Shop building, the Horse Barn building, Sand/Salt Shed building, and the Rodder Shed building.

The Site is currently in use by the City of Laconia Department of Public Works for the cold storage of equipment and seasonal items (e.g. trash cans, planters, etc.), and for sand/salt storage and loading equipment. Historical uses of the Site have been confirmed from standard historical records to include coal and ice companies storage and shipping from at least 1911 to 1917. The City of Laconia purchased the property for use by the Department of Public Works in 1917 and has been used as described above since that time. The Site is known to have had a railroad spur on or adjacent to the Site since at least 1902 to sometime prior to 1948. The historical use of the surrounding area was mixed residential, commercial, and/or industrial in each of the records reviewed. Industrial uses in the surrounding area included petroleum and coal storage, and coal gasification.

3.2 FINDINGS AND OPINIONS

The following summarizes the pertinent findings of the Phase I ESA and Credere's opinions relative to the findings:

• The Site has historically been used for storage and shipping by coal and ice companies and was serviced by a railroad spur. The Site was also used as a blacksmith shop and for storage by the City of Laconia Department of Public Works. The Site may have been impacted by petroleum and/or hazardous substances related to these uses.

- Coal and bulk oil have historically been stored on the adjoining north (former Standard Oil Co. and Irving Oil Co. bulk petroleum facility) and east (Dutile & Sons, Inc. bulk petroleum facility) properties, and several leaking underground storage tank (UST) sites are located in the vicinity of the Site. In addition, a historical Sanborn Fire Insurance map from 1948 indicates that a gasoline UST was present on the east adjoining Dutile & Sons, Inc. property. Based on when this tank was in operation, no NHDES records exist for this tank. Although available information indicates that the documented releases have a low potential to have affected environmental conditions at the Site, undocumented releases may have occurred in the vicinity of the Site that could have affected its soil or groundwater quality.
- A historical Sanborn Fire Insurance map from 1948 indicates that a bulk oil tank was formerly located on the Site in the vicinity of the existing Sand/Salt Shed. Based on when this tank was in operation, no NHDES records exist for this tank. Historical releases of petroleum may have gone undocumented and may have impacted soil or groundwater at the Site.
- a previous Phase I ESA performed by others noted that a former City of Laconia employee stated that the northern portion of the Site had historically been used for landfilling or burying of wastes. This account could not be substantiated during the course of Credere's Phase I ESA; however, the northern portion of the property is raised compared to the surrounding area and may have been filled. No solid waste was observed during our reconnaissance, but concrete and granite blocks were observed protruding from the area. It is unclear whether this area was filled as part of waste disposal or as part of some other historical use of the Site, such as to accommodate the former railroad spur that serviced the historical coal and ice company. If petroleum or hazardous substances were buried in this area as a part of any landfilling, they may have affected soil or groundwater beneath the Site.
- Oil staining was observed throughout the floor of the blacksmith shop. The floor appeared to be concrete with significant accumulation of sandy materials on top of it. It is possible that the staining is due to the accumulation of drips and/or small spills from machinery stored and maintained in the shed. The historic use of this building as a blacksmith shop also may have affected the soil on the floor or soil and/or groundwater beneath the building.
- Floor drains were observed within the Vactor Shed building (a garage building that formerly stored the City's catch basin cleaning vactor truck) and the Horse Barn Building. All drains at the Site reportedly historically discharged directly to Opechee Bay but were recently connected to a sedimentation tank located beneath the Site. The floor drain observed within the Vactor Shed had paint covering its grate and the surrounding floor, indicating that waste paint may have been dumped into the drain. The outlet of this drain could not be confirmed during our reconnaissance. The dumping of materials into the Vactor Shed floor drain may have impacted the environmental media beneath the Site.
- Waste asbestos piping is currently being stored in the Horse Barn attached shed. Information documenting the source of the piping was not available, but it was reportedly generated during an off-site City utility project. The shed is locked and is not accessible to the public.

- A pail of waste oil and an approximate 30-gallon drum with unknown contents were observed in the Horse Barn, and a 55-gallon drum of unknown contents was observed outside the Blacksmith Shop. These containers are not stored in a secure manner and the contents should be determined, properly managed, and disposed of.
- Due to the ages of the buildings, lead-based paint, asbestos-containing materials (ACMs), and polychlorinated biphenyl (PCB) bulk products may be present in the buildings.

3.3 IDENTIFIED RECOGNIZED ENVIRONMENTAL CONDITIONS

Based on the information obtained as a part of the Phase I ESA, the following RECs, *de minimis environmental conditions* (DMECs), and ASTM *Non-Scope considerations* (NCs) were identified at the Site:

- REC-1 The historical uses of the Site for storage and shipping by coal and ice companies, the historical presence of a railroad spur, a blacksmith shop, and for storage by the City of Laconia Department of Public Works, represent a REC because soil or groundwater beneath the Site may have been affected by the use of heavy oils, metals, and other petroleum and/or hazardous materials associated with these uses.
- REC-2 Oil stained soil observed within the Blacksmith Shop represents a REC because it is indicative of a release of oil and/or hazardous substances, which may have affected soil and/or groundwater at the Site.
- REC-3 The historical bulk oil storage and presence of an undocumented gasoline UST on the east adjoining property represents a REC because undocumented spills or releases associated with current and/or historical bulk oil storage may have affected soil or groundwater beneath the Site. In addition, although the potential is low, the presence of nearby leaking UST and bulk petroleum storage sites may have affected groundwater beneath the Site.
- REC-4 A bulk oil storage tank noted in the vicinity of the Sand/Salt Shed on historical Sanborn Fire Insurance Maps represents a REC because spills or releases associated with this former tank may have affected soil or groundwater at the Site.
- REC-5 The potential landfilling or burying of wastes reported in the northern portion of the Site represents a REC because the types and quantities of materials placed in this area are unknown and may have impacted soil and groundwater beneath the Site.
- REC-6 The floor drain located within the Vactor Shed building represents a REC because evidence of dumping was observed around the drain (i.e. paint covered grate and floor) that may have resulted in releases to the environment.

Credere identified the following DMECs at the Site during the Phase I ESA:

- DMEC-1 Waste asbestos piping was observed to be stored in the locked Horse Barn shed.
- DMEC-2 An open pail of waste oil and an approximately 30-gallon drum of unknown contents was observed in the Horse Barn building, and a 55-gallon drum of unknown contents was observed outside the Blacksmith Shop building.

The following NCs were also noted during this Phase I ESA:

- NC-1 The potential for ACMs to be present on or within the buildings.
- NC-2 The potential for lead-based paint to be present on or within the buildings.
- NC-3 The potential for PCB-containing bulk products (caulking, paint, etc.) to be present on the interior and exterior of the buildings.

4. POTENTIAL REDEVELOPMENT SCENARIO

The current owner of the Site, the City of Laconia, has partnered with LRPC to assess the Site so the City can redevelop it into a public waterfront park; however, no formal redevelopment plans have been established.

5. CONCEPTUAL SITE MODEL

The CSM includes a description of source areas and/or RECs, the nature and extent of the identified or suspected releases, potential contaminants of concern (COCs), impacted media, transport mechanisms, and potential human and environmental receptors.

5.1 CONTAMINANTS OF CONCERN

Based on the findings of the Phase I ESA and the identified RECs, DMECs, and NCs, the following COCs were identified for the Site:

Identified COCs								
REC	COCs	Potential Source						
REC-1 Historical Use	Polycyclic aromatic hydrocarbons (PAHs) Total Petroleum Hydrocarbons (TPH) Metals (arsenic, barium, boron, cadmium, copper, lead, mercury, nickel, selenium, and vanadium) PCBs (railroad spur only)	 railroad activities -blacksmith shop -equipment storage -metals – coal dust, coal ash, metal waste 						
REC-2 Oil Staining in Blacksmith Shop Building	PAHs TPH VOCs Metals (arsenic, barium, boron, cadmium, copper, lead, mercury, nickel, selenium, and vanadium)	 oils and fuels released to the blacksmith shop coal ash and metal waste 						
REC-3 Off-site Bulk Petroleum Storage	PAHs TPH VOCs	- petroleum releases						
REC-4 Historical On-Site Bulk Petroleum Storage	PAHs TPH VOCs	- releases from bulk storage near Sand/Salt Shed building						
REC-5 Potential Landfilling	PAHs TPH Metals (arsenic, barium, boron, cadmium, copper, lead, mercury, nickel, selenium, and vanadium)	- landfilled materials						
REC-6 Floor Drains	TPH VOCs Semi-volatile Organic Compounds (SVOCs) Resource Conservation and Recovery Act (RCRA) 8 Metals	-paints and/or petroleum product dumping in the drain in the Vactor Building						
NC-1, 2, 3, 4 Potential hazardous Building Materials	Asbestos Lead-based Paint PCB Bulk Products PCBs	 building materials painted surfaces paint, caulking, mastic, etc. fluorescent lighting ballasts 						

5.2 STORMWATER FLOW, GEOLOGY, AND GROUNDWATER FLOW

The portion of the Site encompassing the buildings and parking area is generally flat. The northern portion of the Site slightly rises from south to north, and the eastern property boundary has been raised to accommodate railroad tracks. Stormwater on the Site either infiltrates the ground surface, sheet flows to Opechee Bay to the west, or is directed into a stormwater catch basin within the parking lot immediately west of the Sand/Salt Shed building that discharges to Opechee Bay.

Surficial materials at the Site are mapped as consisting of fine grained stratified drift materials, or fine over coarse grained stratified drift materials. Fine grained stratified drift materials range from clay to fine sand. Fine over coarse grained drift materials range from fine grained sediment to medium sand or coarse gravel. Based on the long history of use of the Site, it is likely that the surficial materials have been reworked and/or fill materials have been brought to the Site to establish the current grades. In addition, there is a raised area in the northern portion of the Site that reportedly may have been used for landfilling.

Bedrock outcrops have not been observed on the Site. Bedrock beneath the northern portion of the Site is mapped as Concord Granite, which is known for its fine texture and uniformity. Bedrock beneath the southern portion of the Site is mapped as the upper Rangeley Formation, which is described as a pelitic schist, metasandstone, and locally coarse-grained metasandstone with rusty weathering.

Groundwater flow at the Site likely mimics surface topography and flows west toward Opechee Bay. Area topography also generally slopes west toward Opechee Bay. Due to the close proximity of the lake, the depth to groundwater at the Site is likely shallow and varies with seasonal fluctuations in precipitation and water level changes in the lake. It should be noted that local groundwater flow may be highly varied due to precipitation events, stormwater runoff, infiltration/recharge, the presence of subsurface structures and utilities, and varying subsurface hydrogeologic conditions.

5.3 DEFINITIONS OF EXPOSURE PATHWAYS AND POTENTIAL RECEPTORS

To aid in a thorough understanding of the environmental concerns present at the Site, a graphical presentation of the identified contaminants of concern and potential migration pathways to receptors is included as **Figure 4**. Exposure Pathways and Potential Receptors depicted on the CSM are defined below.

Exposure Pathways describe how a human or environmental receptor comes into contact with contaminants which may be present at the Site. Exposure pathways presented in the CSM include the following:

• Inhalation: This pathway is primarily associated with groundwater where

		petroleum contaminated groundwater is within 30 feet (horizontally or vertically), or non-petroleum contaminated groundwater is within 100 feet (horizontally or vertically) of an occupied structure, or when depth to groundwater is unknown. In addition, this pathway is applicable when receptors may incidentally inhale impacted media in the form of dust, vapor, or airborne particulates.
•	Dermal Absorption:	Exposure via dermal absorption occurs when receptors are exposed to chemical concentrations present in soil, groundwater, or surface water through direct contact with the skin.
•	Active Ingestion:	The active ingestion pathway represents exposure which may occur through the active ingestion of contaminant concentrations via a drinking water supply well or through agricultural products.

• Incidental This pathway is applicable when receptors may incidentally ingestion ingest impacted media in the form of dust or airborne particulates.

Potential Receptors are categorized by duration of exposure and intensity of use at the Site. The receptor categories described in the CSM include the following:

- Resident: The residential receptor is defined by high durational exposure and high intensity usage which may occur through gardening, digging, and recreational sports. This group includes the occupants of a residential property or a residential neighborhood.
- Commercial: Commercial receptors are those which are present at the Site for long durations but with low intensity exposure such as indoor office workers.
- Site Worker: Site workers are present at the Site for short durations though intensity of use is high, such as during non-routine activities including construction or utility work. Examples include outdoor commercial workers and construction workers.
- Visitor: Visitors are characterized by low duration, i.e. less than two hours per day, and low intensity usage such as that which would occur during activities such as walking, shopping, and bird watching.
- Terrestrial and Aquatic Biota: These receptors include flora and fauna which may be exposed to contaminants in their respective land-based or aquatic environments.

Based on known history of the Site and area properties, the identified COCs may have been released to the environment through surficial releases associated with coal storage, the blacksmith shop, equipment and bulk petroleum storage, subsurface burying of wastes, or surficial and subsurface releases from the historical on-site bulk oil tank or USTs and ASTs on the adjoining properties. Primary impacted media at the Site include surficial and subsurface soil, and groundwater.

Contaminants present in surficial soil may migrate through stormwater runoff and impact off-site receptors, or they may affect subsurface conditions through infiltration and leaching. Similarly, releases which have impacted subsurface soil conditions have the potential to infiltrate and leach to the overburden groundwater aquifer. Following the redevelopment of the Site, impacted groundwater presents a potential risk to indoor air conditions on adjoining properties through contaminant migration via vaporization and diffusion.

Human receptors identified for the Site include potential future Site workers (i.e. construction workers, etc.) and visitors to the planned park. Site workers may be exposed to the suspected COCs during excavation and construction activities associated with the anticipated redevelopment of the Site, and park users may come into contact with impacted media through typical activities such as recreational sports. Current and future potential environmental receptors include terrestrial and aquatic biota.

Exposure pathways to Site workers may include dermal absorption, inhalation, and incidental ingestion during excavation activities. Visitors (park users) may be exposed to contaminants in surficial soil through dermal absorption and incidental ingestion during routine park activities. An inhalation exposure pathway also may exist for residents on adjoining properties through vapor intrusion. Terrestrial and aquatic biota may be exposed through active ingestion of impacted groundwater or surface water and/or sediment; however, the active ingestion pathway does not currently nor is expected to pose a potential future pathway for human receptors, as the Site and all properties in the vicinity are serviced by a public water supply system.

6. SAMPLING DESIGN

The following section describes the COCs, rationale, and the proposed number of samples to be collected during the Phase II ESA sampling program. This program was developed to confirm or dismiss the RECs and NCs identified during the Phase I ESA. Proposed sample locations are depicted on **Figure 2** and sampling methodologies are described in below in **Section 7**.

REC-1: This REC will be assessed by:

- 1. Advancing one (1) soil boring (CA-1) downgradient of Horse Barn building floor drains and historical coal pockets, collecting one (1) surficial soil sample and one (1) subsurface soil sample from soil boring CA-1 for laboratory analysis of PAHs, TPH, and metals including arsenic, barium, boron, cadmium, copper, lead, mercury, nickel, selenium, and vanadium. This soil boring will be completed as a groundwater monitoring well (CA-1) and one (1) groundwater sample will be collected and submitted for laboratory analysis of PAHs and VOCs. Although VOCs are not listed as a COC in the CSM, the NDHES does not regulate dissolved concentrations of TPH; therefore, analysis of VOCs is warranted to assess potential petroleum related compounds in groundwater. Based on soil sample analytical results, groundwater may also be analyzed for the metals that were detected at concentrations exceeding the NHDES Soil Remediation Standards.
- 2. Collecting three (3) surficial soil samples (SS-1 through SS-3) from the historical coal pockets and railroad spur areas for laboratory analysis of PAHs, TPH, metals including arsenic, cadmium, copper, lead, mercury, nickel, selenium, and vanadium, and PCBs.
- 3. Evaluating the other data collected from the Site during this Phase II ESA (described below) and previous investigations conducted at the Site, which were documented in the Phase I ESA.
- REC-2: This REC will be assessed by advancing one (1) soil boring (CA-2) inside the Blacksmith Shop building through the concrete floor to assess the potential for observed oil staining to have impacted environmental media in this area of the site. One (1) surficial and one (1) subsurface soil sample will be collected from this soil boring for laboratory analysis of PAHs, TPH, metals including arsenic, barium, boron, cadmium, copper, lead, mercury, nickel, selenium, and vanadium, and VOCs. The surficial soil will be collected from the oil stained material on top of the concrete floor and the subsurface sample will be collected below the floor. The soil boring will be completed as a groundwater monitoring well (CA-2) and one (1) groundwater sample will be collected and submitted for laboratory analysis of PAHs and VOCs. Based on soil sample analytical results, groundwater will also be analyzed for the metals that were detected at concentrations exceeding the NHDES Soil Remediation Standards.

- REC-3: This REC will be assessed by advancing two (2) soil borings (CA-3 and CA-4) along the eastern Site boundary and downgradient of the railroad and historical UST and ASTs at the east adjoining Dutile & Sons, Inc. property. One (1) subsurface soil sample will be collected from each of these borings for laboratory analysis of TPH, PAHs, and VOCs. Each of these borings will be completed as monitoring wells CA-3 and CA-4, respectively, and one (1) groundwater sample will be collected from each location and submitted for laboratory analysis of PAHs and VOCs.
- REC-4: This REC will be assessed by advancing one (1) soil boring (CA-5) in the location of the former bulk oil tank located to the south of the Sand/Salt Shed building. One (1) subsurface soil sample will be collected from this soil boring for laboratory analysis of PAHs, TPH, and VOCs. This soil boring will be completed as monitoring well CA-5 and one (1) groundwater sample will be collected from this location and submitted for laboratory analysis of PAHs and VOCs. Dissolved concentrations of TPH are not regulated by the NHDES; therefore, groundwater will not be sampled for TPH.
- REC-5: This REC will be assessed by excavating four (4) test pits (TP-1 through TP-4) to assess the types of materials present in the northern portion of the Site. Based on observed conditions and the results of field screening, between one (1) and four (4) soil samples will be collected from the test pits for laboratory analysis of PAHs, TPH, and metals including arsenic, barium, boron, cadmium, copper, lead, mercury, nickel, selenium, and vanadium.
- REC-6: This REC will be assessed by dye testing or electronically tracing the floor drain within the Vactor Shed building to determine its discharge location. If the discharge location is determined to be Opechee Bay or the recently installed sedimentation tank, one (1) sediment sample (SED-1) will be collected from the drain line terminus at Opechee Bay. Additionally, if appreciable sediment is observed within the floor drain, one (1) sediment sample (CB-1) will be collected from within the drain.

Alternatively, if the discharge location is determined to be a drywell, one (1) soil boring (CA-6) will be performed in the drywell location and one (1) subsurface soil sample will be collected from that location. The sediment or subsurface soil samples will be submitted for laboratory analysis of TPH, VOCs, SVOCs, and RCRA 8 Metals. If installed, this soil boring will be completed as monitoring well CA-6 and one (1) groundwater sample will be collected from this location and submitted for laboratory analysis of VOCs, SVOCs, and dissolved RCRA 8 Metals. Dissolved concentrations of TPH are not regulated by the NHDES; therefore, groundwater will not be sampled for TPH.

DMEC-1 and DMEC-2 should be addressed by properly managing and disposing of the waste asbestos material and open pail of waste oil in the Horse Barn building and attached shed and do not require further evaluation at this time.

- NC-1: This NC will be addressed by performing a survey to identify ACMs on the exterior or within the Site buildings.
- NC-2: This NC will be addressed by performing a lead-based paint screening of Site buildings to determine if lead-based painted surfaces are present.
- NC-3: This NC will be addressed by performing an inspection of the Site buildings for bulk products that may contain PCBs as a screening level assessment. Based on the size of the Site buildings and Credere's experience at similar sites, Credere anticipates that collecting up to six (6) suspect building material samples (BM-1 through BM-6), each representing a distinct building material matrix, would be appropriate as an initial assessment of potential risks posed by suspect PCB bulk products. Each building material sample collected will be submitted for off-site laboratory analysis of PCBs.

Table 1 through **Table 3** includes the number and type of samples that are proposed to be collected, cross-referenced with the appropriate standard operating procedure (SOP) that will be used from Credere's Generic QAPP. The data collected from these activities will serve as the basis for evaluating the Site conditions and will determine if any additional investigation and/or remedial actions are necessary. **Figure 2** shows the proposed locations where media will be collected. Requirements relative to Chain of Custody, Data Management and Documentation, Data Validation, and Data Usability Assessments contained in the Generic QAPP will be followed.

7. FIELD ACTIVITY METHODOLOGY

Field activity methodologies for assessing the RECs and NCs are summarized in the following subsections. Field activities will be conducted in accordance with the SOPs included in Credere's Generic QAPP Rev. 2 (USEPA RFA #08166 and #09036) and the rationale discussed in Section 5. Where field observations and/or field screening results indicate the presence of additional source areas or potentially impacted media, additional exploration locations or samples may be added to determine the horizontal and/or vertical extent of contamination. If additional exploration/sample locations are deemed necessary, Credere will contact the USEPA Project Officer, USEPA QA Officer, and LRPC, and pending the outcome of the communication, an email update or SSQAPP Amendment will be provided to the USEPA and LRPC for review and approval describing the additional sample analysis, methods, and SOPs. The number and locations of these additional soil samples or exploration locations will be dependent on field data, site constraints, and professional judgment.

7.1 SOIL BORINGS, TEST PITTING, SOIL SAMPLING, AND FIELD SCREENING

Soil samples will be collected from soil borings and test pits in accordance with NHDES SOP HWRB-11 for soil sampling. Soil borings will be completed using hollow stem auger methodologies. During soil boring advancement, soil samples will be continuously collected in 2-foot split spoon samplers. During test pitting, soil samples will be collected from each approximate 2-foot depth interval. Each soil sample will be individually logged, and evidence of contamination will be noted. If changes in strata occur (e.g. a transition from sand to clay), the split spoon sample may be appropriately divided or additional test pit samples will be collected and individually logged.

Each collected soil sample will then be field screened for total VOCs using a photoionization detector (PID) in accordance with NHDES SOP HWRB-12. The PID will be calibrated with a 100 part per million by volume (ppm_v) isobutylene gas and a response factor of 1.0. Soil samples collected for laboratory analysis of VOCs will be collected and preserved in accordance with NHDES SOP VOCs/Soil-2000.

Each soil sample will also be field screened for RCRA-8 metals with an Innov-X[®] Alpha 4000 portable X-ray fluorescence meter (XRF) in accordance with Maine DEP SOP DR#025. Because this is a screening level event to determine which, if any, metals are present in Site soil, samples will be screened directly in the collected polybags. Prior to XRF screening, sample bags will be kneaded to homogenize soil.

Soil samples will be collected in accordance with NHDES SOP HWRB-11. Surficial soil samples from soil borings will be collected from the 0 to 2 foot below ground surface (bgs) interval. Surficial soil samples collected from hand dug locations will be collected from the 0 to 1 foot bgs interval. In each case, asphalt and base materials, landscaping materials, and other organic detritus will be removed prior to sampling.

Subsurface soil samples will be selected based on the sampling rationale discussed in **Section 6**. In general, subsurface soil samples will be selected based on the highest PID field screening result for VOCs, where visual or olfactory observations of contamination are observed, or from the depth of the water table interface if no other indicators of contamination are noted. Based on XRF field screening results, if elevated metals concentrations are detected at depths that differ from other indicators of contamination, additional soil samples may be selected for laboratory analysis to assess concentrations of individual metals.

7.2 MONITORING WELL INSTALLATION AND SURVEY

7.2.1 Monitoring Well Installation and Development

Selected soil borings will be completed as groundwater monitoring wells per EPA SOP EPASOP#2048. Unless Site conditions (e.g. shallow bedrock or confining layers) warrant modified well construction, each monitoring well will be installed using ten feet of 2-inch PVC well materials including a well point or cap, 10 feet of 0.010-inch slotted pipe, and solid pipe to grade. Washed No. 1 size silica sand will be placed around the slotted pipe to an elevation approximately 2-feet above the slotted pipe to establish a well annulus. At least 1-foot of bentonite chips will be placed on top of each well annulus to prevent stormwater infiltration into the wells. Each well will then be completed to grade with a flush-mounted road box protected by a minimum of a 1-foot by 1-foot concrete pad. Each monitoring well will be developed by overpumping and agitation, and then allowed to equilibrate for at least two weeks prior to sampling.

7.2.2 Rod and Level Survey

Following installation, each monitoring well will be surveyed with a rod and level to determine the top of well and ground elevation at each location in accordance with ASTM E 1364-95. If readily available, the monitoring well network will be tied to a landmark with a known elevation (e.g. a utility manhole or USGS benchmark) to establish the regional datum. Otherwise, a temporary benchmark and an arbitrary datum will be established for the Site.

7.3 GROUNDWATER SAMPLING

Prior to sampling, the depth to groundwater will be measured (and the presence of free floating product will be noted) in each groundwater monitoring well in accordance with NHDES SOP HWRB-1 to allow for the calculation of groundwater elevations and the determination of groundwater flow direction and gradients. Each monitoring well will then be sampled using low-flow sampling techniques and dedicated equipment in accordance with NHDES SOP HWRB-9. Each groundwater sample will be collected directly in laboratory glassware and will be submitted for off-site laboratory analysis.

7.4 SEDIMENT SAMPLING

If warranted based on the rationale presented in **Section 6**, sediment will be collected from the floor drain discharge location in Opechee Bay in accordance with NHDES SOP HWRB-13. Prior to collection, the lake bottom will be inspected, as possible, from the shoreline to determine potential water current direction, the most likely location for sediment accumulation, and feasibility of sampling. The sampling location will then be approached from down-current to avoid disturbance of up-current sediments. The sample will then be collected by slowly using a stainless steel scoop to raise sediment from the lake bottom until the desired sample volume has been collected. The sediment will be placed in a stainless steel bowl and foreign material including leaves, twigs, rocks, or other debris will then be removed from the sample. At this point grab sample(s) will be collected for off-site VOC analysis and the sediment will then be homogenized and placed into the appropriate laboratory glassware for off-site laboratory analysis of the non-volatile COCs.

7.5 ACM AND LEAD-BASED PAINT SURVEYS

An NHDES-certified asbestos inspector will be contracted to perform an asbestos survey of the Site. During the asbestos survey, samples will be collected from each suspect media (i.e. piping insulation, flooring, ceiling tiles) in accordance with NHDES Administrative Rule ENV-1800: Asbestos Management Control. Asbestos samples will be submitted to a State approved laboratory for asbestos analysis by polarized light microscopy (PLM) by USEPA Method 600/R-93/116.

Credere will perform a lead-based paint screening of the Site buildings to determine if lead is present in painted surfaces at concentrations that warrant construction worker notification under the Occupation Safety and Health Administration's Lead in Construction Standard 29 CFR 1926.62. An XRF will be used to screen each type of painted surface in accordance with Maine DEP SOP DR#025. If the Site buildings are to be used as residences or child-occupied facilities, a formal lead survey should be conducted by a NHDES-Certified Lead Inspector.

7.6 PCB-CONTAINING BULK PRODUCTS

Credere will inventory all suspect PCB-containing building materials at the Site. Examples include paint, caulking, sealants, adhesives, grout, mastic, glazing, and insulation. Consistent with this inventory and the results of previous investigations at similar sites, Credere will collect samples from distinct matrices which are most likely to contain PCBs for laboratory analysis as a screening to determine if further assessment is warranted. Each sample will be collected from the matrix itself and no adjacent building materials (i.e. sheetrock or wood) will be included in the aliquot. This method will ensure that potentially regulated PCB concentrations are not diluted by unrelated materials. All building material samples will be collected using dedicated sampling equipment accordance #2011 in with EPA **SOPs** and EIASOP POROUSSAMPLING1.

Based on this screening level approach, the materials which present the highest degree of potential risk will be assessed. If the inventory identifies greater than six (6) significantly suspect matrices, additional sample collection and analysis may be warranted. This may be accomplished either through SSQAPP revision or a separate investigation. The collected samples will be submitted for independent laboratory analysis. Following the receipt of laboratory results, a determination can be made whether there is risk of regulated PCB building materials at the Site and additional assessment, remediation, or no further action can be recommended.

8. **REGULATORY STANDARDS**

Sample results will be compared to the applicable state and/or federal standards/guidelines described below.

8.1 SOIL

Concentrations in soil samples will be compared to New Hampshire's Soil Remediation Standards detailed in NHDES Env-Or 600 Contaminated Site Management. Where guidelines are not available, soil concentrations will be compared to other appropriate regulatory standards and guidelines, e.g., USEPA Regional Screening Levels (RSL) for Chemical Contaminants at Superfund Sites, and/or RSL Table Updated April 2009 for soil. If standards or guidelines do not exist, action levels will be triggered if the sample analytical results exceed available published background levels.

8.2 **GROUNDWATER**

Groundwater sample results will be compared to the New Hampshire Ambient Groundwater Quality Standards (AGQS) detailed in NHDES Env-Or 600 Contaminated Site Management and USEPA Maximum Contaminant Levels (MCLs) for Drinking Water. In the event that no AGQS or MCLs exist for a particular contaminant, results will be compared to the USEPA Region 9 RSLs.

8.3 SEDIMENT

Sediment sample results will be evaluated according to the NHDES Evaluation of Sediment Quality Guidance Document. The guidance document references the National Oceanic and Atmospheric Administration (NOAA) Screening Quick Reference Tables (SQuiRTs) to be used for comparison (Attachment A). Hazard quotients (HQs) will be calculated using the sample results and the NOAA Threshold Effect Level (TEL) and Probable Effect Level (PEL) values and risk will be determined based on the Triad Approach described within the guidance.

8.4 ACM

Asbestos sampling will be completed in accordance with NHDES Administrative Rule ENV-1800: Asbestos Management Control. Levels of asbestos greater than or equal to 1% by volume as determined by weight, visual evaluation, and/or point count analysis within representative bulk samples obtained from the Site will result in the definition of such bulk materials as ACM.

8.5 LEAD-BASED PAINT

Concentrations of lead in paint as determined through the use of a XRF analyzer will be compared to a limit of 1.0 mg/cm^2 or 0.5% by weight. All construction work involving exposure

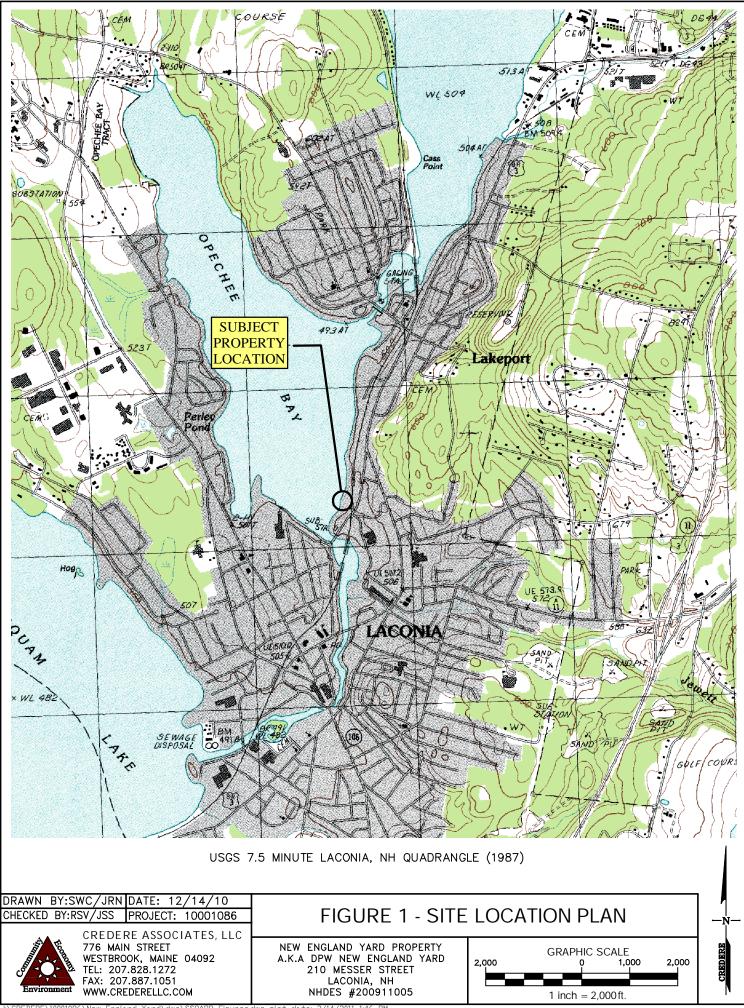
or potential exposure to lead is regulated by the Occupation Safety and Health Administration's Lead in Construction Standard 29 CFR 1926.62.

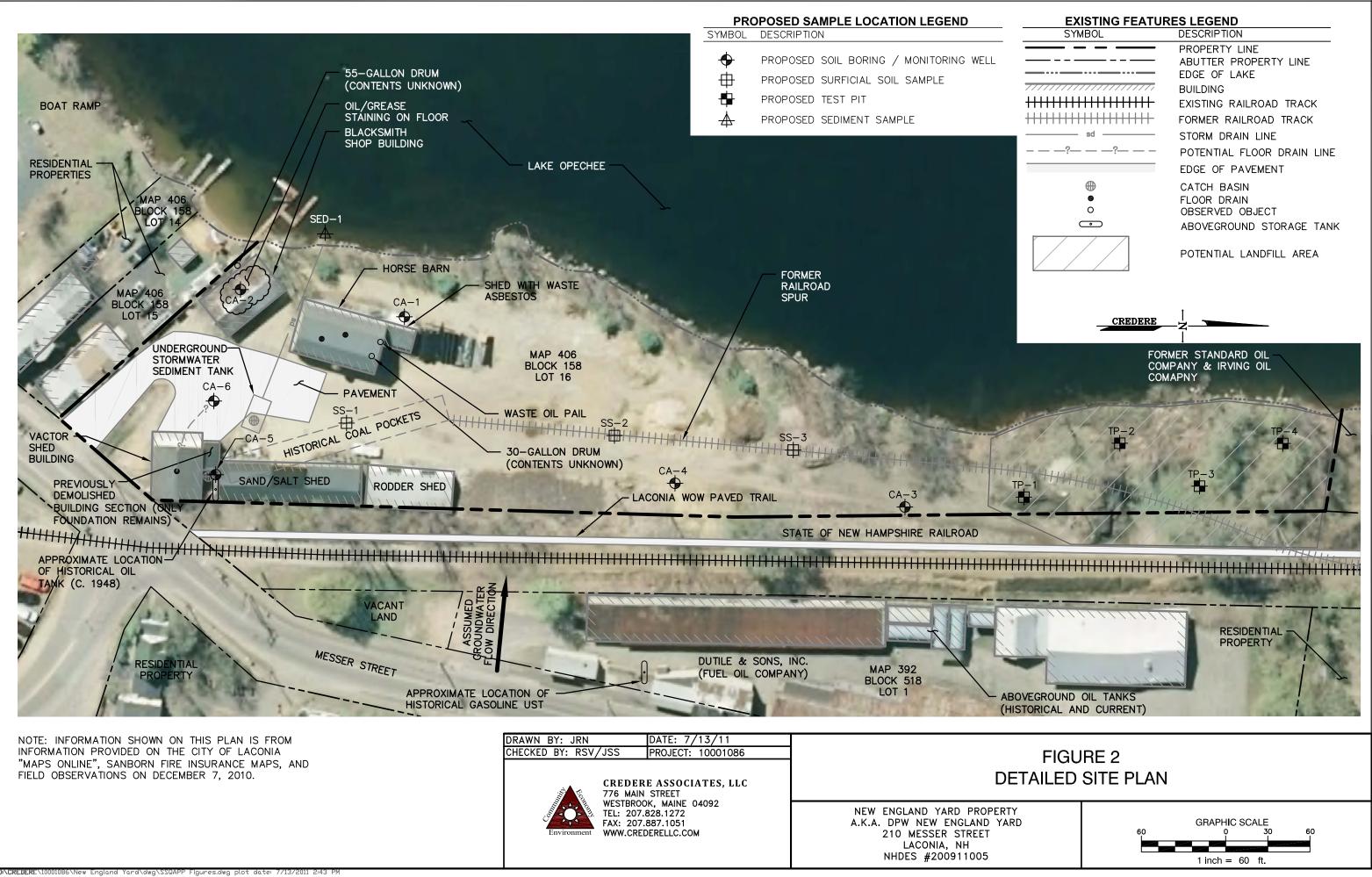
8.6 PCB BULK PRODUCTS

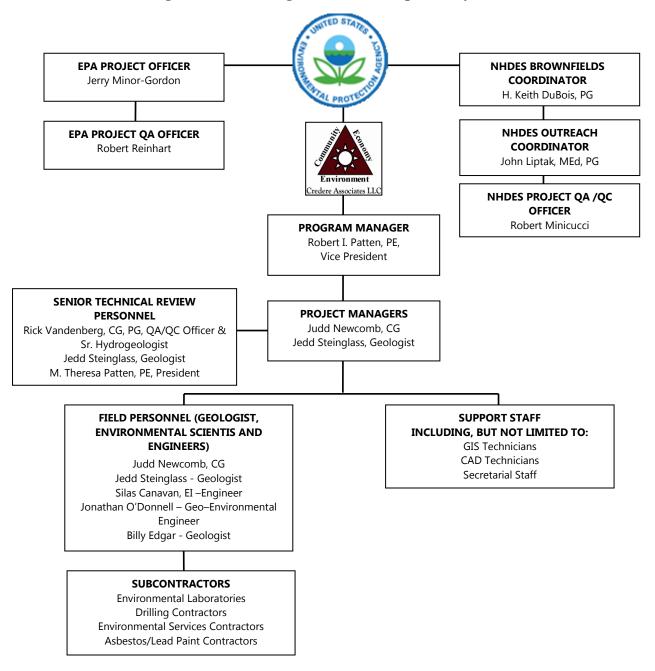
Building materials that have been analyzed to contain concentrations of total PCBs equal to or in excess of 50 parts per million (ppm) are defined as a PCB bulk product waste in accordance with 40 CFR 761.3. These materials are regulated for disposal under 40 CFR 761.62. Materials that have been analyzed to contain total PCBs at a concentration of equal to or greater than 1 ppm but less than 50 ppm are not regulated by the Toxic Substance Control Act (TSCA) for disposal as long as they remains in use. However, if this material is removed from use, such as through demolition, they must be disposed of at a facility that is licensed to accept this waste. Building materials which have been analyzed to contain total PCBs at a concentration of less than 1 ppm are unrestricted for future use and/or disposal.

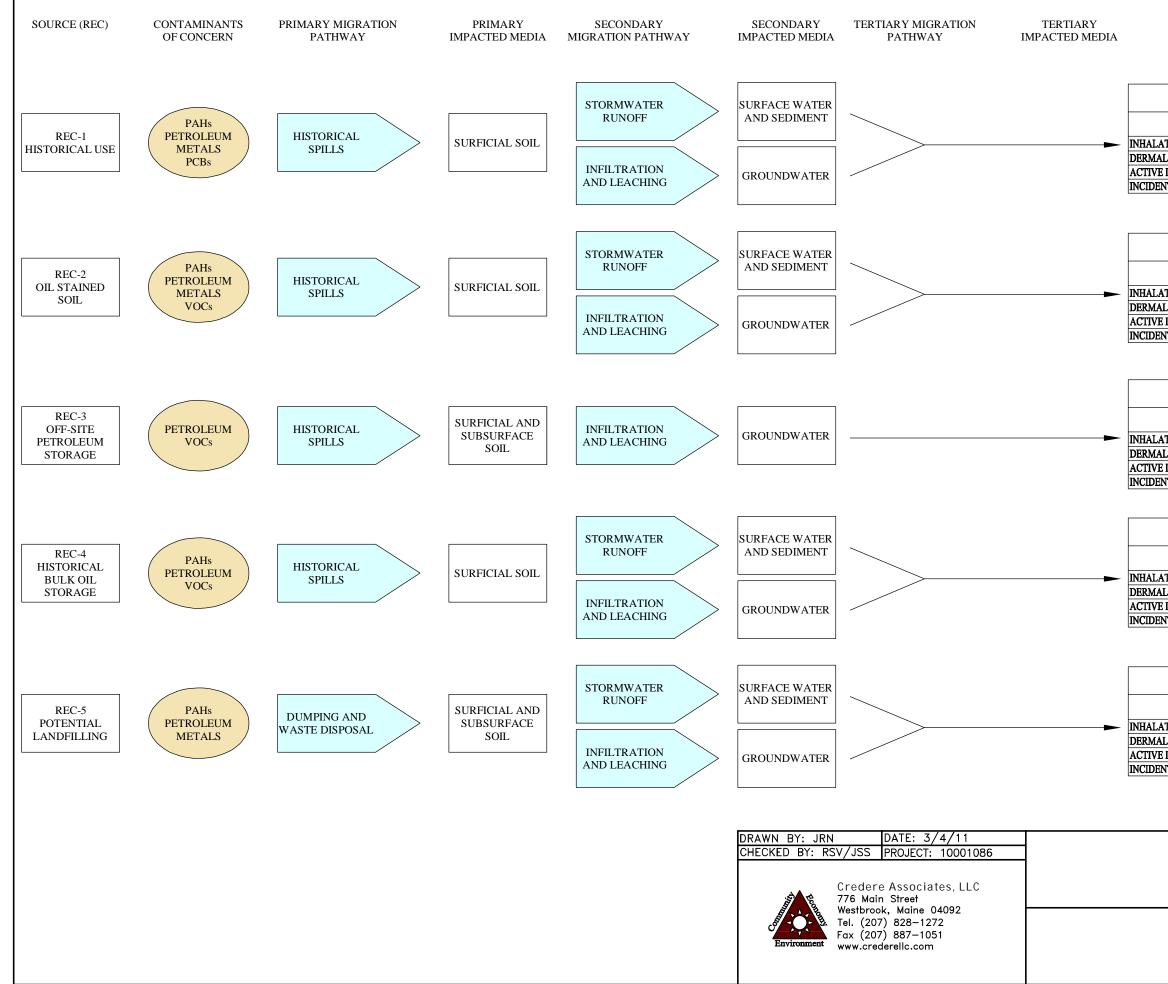
9. PROPOSED PROJECT SCHEDULE

The following schedule is proposed for the Phase II ESA activities at the Site:


DATE	ACTION
Week of July 18, 2011	Finalize SSQAPP
Week of August 1, 2011	Lead-based Paint Survey, ACM Survey, and PCB Building Materials Sampling
Week of August 15, 2011	Soil Boring, Soil/Sediment Sample Collection, Monitoring Well Installation, and Floor Drain Assessment
Week of August 29, 2011	Groundwater Sampling
Week of September 12, 2011	Receive Laboratory Analytical Data
Week of October 12, 2011	Submit Draft Phase II ESA Report
Week of November 10, 2011	Submit Final Phase II ESA Report


FIGURES


Figure 1	Site Location Plan
8	Detailed Site Plan
8	Credere Organization and Responsibility Chart
8	

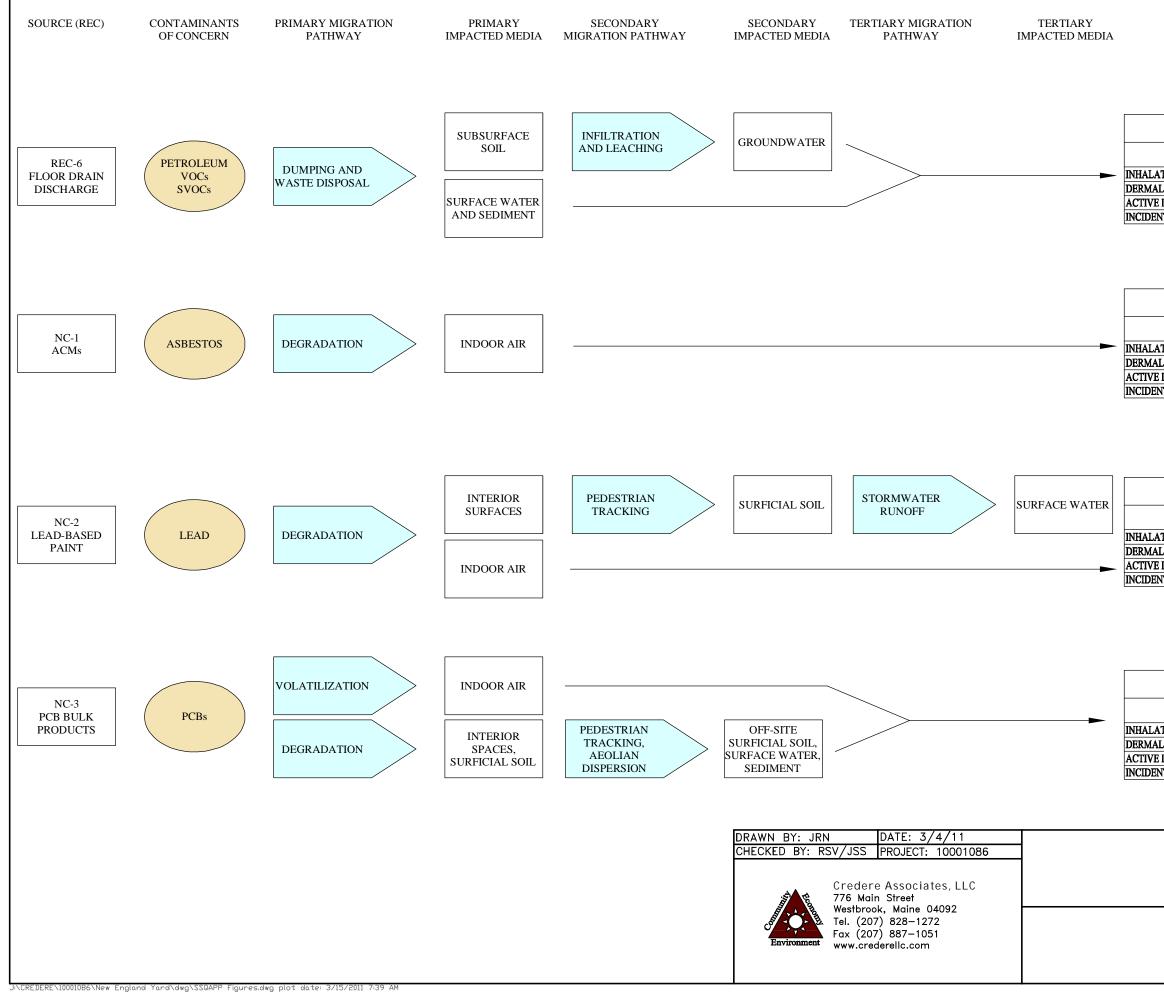


J:\CREDERE\10001086\New England Yard\dwg\SSQAPP Figures.dwg plot date: 3/14/2011 1:46 PM

Figure 3: Credere Organization and Responsibility Chart

POTENTIAL EXPOSURE PATHWAYS								
	RESIDENTIAL COMMERCIAL SITE VISITOR BIOTA BIOTA							
TION	Х		Х					
L ABSORPTION			Х	Х	Х	Х		
INGESTION					X	X		
NTAL INGESTION			Х	Х				

POTENTIAL EXPOSURE PATHWAYS								
	RESIDENTIAL COMMERCIAL SITE WORKER VISITOR BIOTA BIOTA							
TION	Х		Х					
L ABSORPTION			Х	Х	Х	Х		
INGESTION					X	X		
NTAL INGESTION			Х	X				


POTENTIAL EXPOSURE PATHWAYS							
	RESIDENTIAL COMMERCIAL SITE WORKER VISITOR BIOTA BIOTA						
TION			Х				
L ABSORPTION			Х				
INGESTION					Х		
NTAL INGESTION			Х				

POTENTIAL EXPOSURE PATHWAYS								
	RESIDENTIAL COMMERCIAL SITE WORKER VISITOR BIOTA BIOTA							
TION	Х		Х					
L ABSORPTION			Х	Х	Х	Х		
INGESTION					Х	Х		
NTAL INGESTION			Х	Х				

POTENTIAL EXPOSURE PATHWAYS								
	RESIDENTIAL COMMERCIAL SITE WORKER VISITOR BIOTA BIOTA							
ATION	Х		Х					
L ABSORPTION			Х	Х	Х	Х		
INGESTION					Х	Х		
NTAL INGESTION			Х	Х				

FIGURE 4 CONCEPTUAL SITE MODEL (SHEET 1 OF 2)

NEW ENGLAND YARD PROPERTY A.K.A. DPW NEW ENGLAND YARD 210 MESSER STREET LACONIA, NH NHDES #200911005

POTENTIAL EXPOSURE PATHWAYS							
	RESIDENTIAL COMMERCIAL SITE WISITOR TERRESTRIAL AQUAT BIOTA BIOTA						
TION	Х		Х				
L ABSORPTION			Х	Х		Х	
INGESTION					Х	Х	
NTAL INGESTION			Х	Х			

POTENTIAL EXPOSURE PATHWAYS								
	RESIDENTIAL COMMERCIAL SITE WORKER VISITOR BIOTA BIOTA							
ATION			Х					
L ABSORPTION								
INGESTION								
NTAL INGESTION			Х					

POTENTIAL EXPOSURE PATHWAYS							
	RESIDENTIAL COMMERCIAL SITE VISITOR BIOTA BIOTA						
ATION		Х	Х	Х	Х		
L ABSORPTION			Х			Х	
INGESTION						Х	
NTAL INGESTION			Х	Х			

POTENTIAL EXPOSURE PATHWAYS										
RESIDENTIAL COMMERCIAL SITE WORKER VISITOR BIOTA AQUATIC										
ATION		Х	Х	Х	Х					
L ABSORPTION			Х			Х				
E INGESTION						Х				
NTAL INGESTION			X	Х						

FIGURE 4 CONCEPTUAL SITE MODEL (SHEET 2 OF 2)

NEW ENGLAND YARD PROPERTY A.K.A. DPW NEW ENGLAND YARD 210 MESSER STREET LACONIA, NH NHDES #200911005

TABLES

Table 1	Soil and Sediment Sample Reference Table
Table 2	▲
Table 3	-

	Table 1: Soil and Sediment Sample Reference Table New England Yard a.k.a DPW New England Yard 210 Messer Street Laconia, New Hampshire NHDES #200911005											
Media to be Collected	Proposed Sample IDs	Associated RECs	Sample Design	Sample Depth (ft bgs)	Field SOPs to be Used	Field Analysis/ Observations	No. of Samples for Analysis	No. of Field Dups	Analytical Method	Sample Container information & Preservative (per location)	Lab SOPs	Laboratory To be Used
Surficial Soil	SS-1 through SS-3	REC-1	Soil samples will be collected to assess potential impacts from the historical coal pockets and railroad spur on Site soil.	0-1	Credere-004 HWRB-11 HWRB-12 HWRB-15 HWRB-17 DR#012 DR#024 DR#025 VOCs/Soil-2000	Visual & Olfactory PID Headspace XRF Screening	3	Soil samples will be duplicated at a rate of 5% per the generic QAPP for a total of one (1) based on the proposed total number of samples indicated in this table.	 - TPH by EPA Method 8015 - As, Ba, B, Cd, Cu, Pb, Hg, Ni, Se, V by EPA Method 6010 - PAHs by EPA Method 8270 - PCBs by EPA Method 8082 using extraction Method 3540 	TPH 4 oz. amber glass Metals - 4 oz. glass with Teflon-lined cap PAHs - 4 oz. amber glass with Teflon-lined cap PCBs - 4 oz. glass with Teflon-lined cap, no preservative	RL-4 RL-5 RL-7 RL-13	
ngs and	CA-I	REC-1	One boring will be performed downgradient of the Horse Barn building and former railroad spur to assess potential impacts to surficial and subsurface soil at the Site.				2		- TPH by EPA Method 8015 - As, Ba, B, Cd, Cu, Pb, Hg, Ni, Se, V by EPA Method 6010 - PAHs by EPA Method 8270	TPH - 4 oz. amber glass Metals - 4 oz. glass with Teflon-lined cap PAHs - 4 oz. amber glass with Teflon-lined cap	RL-5 RL-7 RL-13	
(Soil Borings	CA-2	REC-2	One boring will be performed through the floor of the Blacksmith Shop building and downgradient of the historical coal pockets and railroad spur to assess impacts from potential petroleum releases and coal usage on Site soil.				2		 TPH by EPA Method 8015 VOCs by EPA Method 8260 As, Ba, B, Cd, Cu, Pb, Hg, Ni, Se, V by EPA Method 6010 PAHs by EPA Method 8270 	TPH - 4 oz. amber glass VOCs - (1) 40 ml VOA w/5 ml methanol, (1) 40 ml VOA for % solids Metals - 4 oz. glass with Teflon-lined cap PAHs - 4 oz. amber glass with Teflon-lined cap	RL-5 RL-7 RL-9 RL-13	
Soil S)	CA-3 through CA-4	REC-3	Borings will be installed along the eastern Site boundary to assess potential off-site sources of petroleum contamination migrating onto the Site.	Soil field screened every 2-foot interval. Laboratory samples collected at highest field screening detection, visual/olfactory	Credere-003 Credere-004 HWRB-11 HWRB-12 HWRB-15 HWRB-17 VOCs/SOIL-2000	Visual & Olfactory PID Headspace XRF Screening	2	Soil samples will be duplicated at a rate of 5% per the generic QAPP for a total of one (1) based on the proposed total number of		TPH - 4 oz. amber glass VOCs - (1) 40 ml VOA w/5 ml methanol, (1) 40 ml VOA for % solids PAHs - 4 oz. amber glass with Teflon-lined cap	RL-7 RL-9 RL-13	Absolute Resource Associates (formerly Resource Laboratories)
and/or Subsurface Test Pit	CA-5	REC-4	A soil boring will be installed in the location of historical petroleum bulk storage to assess potential releases to the environment.	evidence of contamination, OR at water table interface.	DR#012 DR#024 DR#025		1	samples indicated in this table.	- TPH by EPA Method 8015 - VOCs by EPA Method 8260 - PAHs by EPA Method 8270	TPH - 4 oz. amber glass VOCs - (1) 40 ml VOA w/5 ml methanol, (1) 40 ml VOA for % solids PAHs - 4 oz. amber glass with Teflon-lined cap	RL-7 RL-9 RL-13	
Surficial ar	TP-1 through TP-4	REC-5	Test pits will be performed to determine the types of wastes, if any, buried in the northern portion of the Site and if these materials have affected the environment.				1 to 4		- TPH by EPA Method 8015 - As, B, Cd, Cu, Pb, Hg, Ni, Se, V by EPA Method 6010 - PAHs by EPA Method 8270	TPH - 4 oz. amber glass Metals - 4 oz. glass with Teflon-lined cap PAHs - 4 oz. amber glass with Teflon-lined cap	RL-5 RL-7 RL-13	
Sediment	SED-1 or CA-6 CB-1	REC-6	Sediment will be collected from the floor drain discharge location in Opechee Bay, or alternatively, soil will be collected from a soil boring installed near the floor drain discharge to assess impacts from dumping into the Vactor Shed building floor drain. In addition, if appreciable sediment is observed within the floor drain, a sample of the material will be collected.	Opechee Bay bottom or below the depth of the floor drain discharge	Credere-004 HWRB-13 DR#012	Visual & Olfactory	1	1	 TPH by EPA Method 8015 VOCs by EPA Method 8260 SVOCs by EPA Method 8270 RCRA 8 Metals by EPA Method 6010 	TPH - 4 oz. amber glass VOCs - (1) 40 ml VOA w/5 ml methanol, (1) 40 ml VOA for % solids SVOCs - 4 oz. amber glass Metals - 4 oz. glass with Teflon-lined cap	RL-5 RL-7 RL-9 RL-13	

	Table 2: Groundwater Sample Reference Table New England Yard a.k.a. DPW New England Yard 210 Messer Street Laconia, New Hampshire NHDES #200911005											
Media to be Collected	Proposed Sample IDs	Associated RECs	Sample Design	Field SOPs to be Used	Field Analysis/ Observations	No. of Samples for Analysis	No. of Field Dups	No. of Trip Blanks	Analytical Method	Sample Container information & Preservative (per location)	Lab SOPs	Laboratory To be Used
	CA-1 and CA-2	REC-1 REC-2				2			 - VOCs by EPA Method 8260 - PAHs by EPA Method 8270 Based on soil results: - Dissolved As, B, Cd, Cu, Pb, Hg, Ni, Se, V by EPA Method 6010 	VOCs - (2) 40 ml VOA with HCL PAHs - 1 Liter amber bottle, unpreserved Dissolved Metals - 250mL plastic, unpreserved	RL-5 RL-9 RL-13	
Groundwater	CA-3 through CA-5	REC-3 REC-4	Monitoring wells will be assessed for free floating product and groundwater samples will be collected to assess the presence of contaminants in groundwater at the Site from historical Site uses and off-site sources.	Credere-004 HWRB-1 HWRB-3 HWRB-9 HWRB-15 HWRB-17 DR#012	Visual & Olfactory Field Parameters: Temperature, PH, Dissolved Oxygen, Turbidity, Conductivity, Oxidation-Reduction Potentional	3	Groundwater samples will be duplicated at a rate of 5% per the generic QAPP for a total of one (1) based on the proposed total number of samples indicated in this table.	1	- VOCs by EPA Method 8260 - PAHs by EPA Method 8270	VOCs - (2) 40 ml VOA with HCL PAHs - 1 Liter amber bottle, unpreserved	RL-9 RL-13	Absolute Resource Associates (formerly Resource Laboratories)
	CA-6	REC-6				1			- VOCs by EPA Method 8260 - SVOCs by EPA Method 8270 - Dissolved RCRA 8 Metal s by EPA Method 6010	VOCs - (2) 40 ml VOA with HCL SVOCs - 1 Liter amber bottle, unpreserved Dissolved Metals - 250mL plastic, unpreserved	RL-5 RL-9 RL-13	

	Table 3: Building Materials Sample Reference Table New England Yard a.k.a. DPW New England Yard 210 Messer Street Laconia, New Hampshire NHDES #200911005										
Media to be Collected	Proposed Sample IDs	Associated RECs/NCs	Sample Design	Field SOPs to be Used	Field Analysis/ Observations	No. of Samples for Analysis	No. of Field Dups	Analytical Method	Sample Container information & Preservative (per location)	Lab SOPs	Laboratory To be Used
Asbestos Containing Materials	TBD Based on Visual Inspection	NC-1	An asbestos survey will be conducted to evaluate the "ASTM Non-scope" consideration related to potential ACMs at the Site.	According to NH DES Env-A- 1800	Visual Inspection and Bulk Sampling	According to NH DES Env-A-1800	According to NH DES Env-A-1800	Polarized Light Microscopy byEPA 600/R- 93/116	Plastic bags, labeled (no preservation)	Included in SSQAPP Addendum No. 4	Absolute Resource Associates (formerly Resource Laboratories)
Lead-Based Paint	TBD	NC-2	A lead-based paint screening will be conducted to evaluate the "ASTM Non- scope" consideration related to lead-based paint on Site buildings.	DR#024 DR#025 Credere-004	XRF Screening	TBD	NA	EPA Method 6200	NA	NA	NA
Potential PCB- Containing Building Materials	As Needed: BM-1 through BM-6	NC-3	One (1) representative bulk sample will be collected from up to six (6) representative suspect building material matrices.	EPA SOP No. 2011 for Chip, Wipe, and Sweep Sampling; EIASOP_POROUSSAMPLIN G1; Credere-004	Visual Inspection and Bulk Sampling	Up to 6 building material matrices	1	PCBs via EPA Method 8082 using extraction Method 3540	PBCs - 4 oz. glass with Teflon-lined cap, no preservative	RL-4	Absolute Resource Associates (formerly Resource Laboratories)

ATTACHMENT A

NOAA SQuiRTs

Screening Quick Reference Tables

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

This set of NOAA Screening Quick Reference Tables, or SQuiRTs, presents screening concentrations for inorganic and organic contaminants in various environmental media. Additional reference material, such as guidelines for sample preservation, are also included.

NOAA identifies potential impacts to coastal resources and habitats likely to be affected by hazardous wastes. To screen for substances which may threaten natural resources of concern to NOAA, environmental concentrations are compared to these screening levels. These tables are intended for preliminary screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. NOAA does not endorse their use for any other purposes. Screening levels are reported with the number of significant figures they were originally reported with.

In this new version, column headings link to OR&R's web site wherebrief descriptions of the benchmark may be found. However, detailed guidance on the recommended application of various screening guidelines is provided in the original sources (listed in each SQuiRT section, with web links for many). Users of the SQuiRT cards are strongly encouraged to review supporting documentation to determine appropriateness for their specific use.

The SQuiRT card set has been re-organized from earlier versions to accommodate expansion. Benchmarks from numerous new sources have been incorporated, and the list of analytes vastly increased. The SQuiRT cards present benchmarks representing different degrees of protectiveness. Multiple benchmarks are also provided in many cases: the user is advised to review the derivation of any particular benchmark before selecting a specific value. Information is still presented in sections, with *new sections* appearing in this expanded version:

Inorganics in Sediment (freshwater and marine)

Inorganics in Soil

Inorganics in Water

- Organics in Sediment
- (groundwater and surface water) Organics in Water and Soil
- PCB Composition
- Composition by Carbon Range
- Guidelines for Sample Collection & Storage
- Analytical Methods for Inorganics

Toxic Equivalency Factors

Analytical Methods for Organics

Footnotes within each SQuiRT section which appear at the bottom of the page are only to aid in deciphering the nature of specific entries. Due to space constraints, notations which relate to the source for individual values are explained at the end of the section. Organic chemicals are now listed alphabetically, without categorization. A few synonyms are provided, but CAS numbers are also presented to aid in identifying and finding specific analytes. Except as noted, all concentrations in the SQuiRT cards are in parts per billion.

For surface water samples, because releases from hazardous waste sites are often continuous and long-term, concentrations are most often compared directly with chronic benchmarks, when available. Groundwater concentrations are also screened against chronic benchmarks. However, suitable site-specific dilution factors should be applied to allow for dilution upon migration and discharge of groundwater to surface water. The SQuiRT cards present U.S. Environmental Protection Agency (EPA) Maximum Contaminant Levels (MCLs), applicable to drinking water sources and secondary MCLs applicable to groundwater, supplemented by values from Canada and the United Nations World Health Organization.

Preference for surface water and groundwater benchmarks is given to U.S. EPA Ambient Water Quality Criteria (AWQC). This is generally followed by Tier II Secondary Acute Values (SAVs) or available standards and guidelines from other regulatory agencies. Tier II SAVs are derived using a similar approach to AWQC, but do not have sufficient supporting data for full criteria calculation. Lowest Observable Effect Levels (LOELs) were originally published by EPA with AWQC. Around 2000, EPA stopped publishing these values, however, LOELs are reproduced here when no other benchmark is available, because in many instances, they formed the basis for state standards.

For many trace elements, AWQC are now expressed in terms of the "dissolved" fraction, which is essentially defined operationally as a filtered fraction. Likewise, the toxicity of many trace elements is related to the water hardness, and the values presented are for a default hardness of 100 mg/L CaCO₃. Equations are provided in the SQuiRT cards to calculate the exact criteria for a given hardness, or, to convert from unfiltered, total concentrations to "dissolved" fractions.

Screening Quick Reference Table for Inorganics in Sediment

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

Analyte	Ì			FRESHV	VATER	SEDI	MENT						MARIN	IE SE	DIMEN	т	
All concentrations in p billion dry weight ur specified otherwi	less	"Background" 1	ARCS H. azteca TEL ²	<u>TEC</u> 3	TEL 3	LEL ⁴	PEC 3	<u>PEL</u> ³	<u>SEL</u> ⁴	UET 1	<u>T₂₀ 5</u>	<u>TEL</u> 6	ERL ⁶	<u>T₅₀ 5</u>	<u>PEL</u> 6	ERM ⁶	<u>AET</u> 7
Predicted T	oxicit	ty Gradient:	>		Inci	reasii	ng —				—		— Ir	ncreas	sing		
Aluminum (%)	AI	0.26%	2.55%														1.8% N
Antimony	Sb	160								3,000 M	630			2,400			9,300 E
Arsenic	As	1,100	10,798	9,790	5,900	6,000	33,000	17,000	33,000	17,000 I	7,400	7,240	8,200	20,000	41,600	70,000	35,000 B
Barium	Ba	700			ĺ						ĺ	130,100#					48,000 A
Cadmium	Cd	100-300	583	990	596	600	4,980	3,530	10,000	3,000 I	380	680	1,200	1,400	4,210	9,600	3,000 N
Chromium	Cr	7,000-13,000	36,286	43,400	37,300	26,000	111,000	90,000	110,000	95,000 H	49,000	52,300	81,000	141,000	160,000	370,000	62,000 N
Cobalt	Co	10,000				50,000+											10,000 N
Copper	Cu	10,000-25,000	28,012	31,600	35,700	16,000	149,000	197,000	110,000	86,000 I	32,000	18,700	34,000	94,000	108,000	270,000	390,000 MO
Iron (%)	Fe	0.99-1.8 %	18.84%			2%			4%	4% I							22% N
Lead	Pb	4,000-17,000	37,000	35,800	35,000	31,000	128,000	91,300	250,000	127,000 H	30,000	30,240	46,700	94,000	112,000	218,000	400,000 B
Manganese	Mn	400,000	630,000			460,000			1,100,000	1,100,000 I							260,000 N
Mercury	Hg	4-51		180	174	200	1,060	486	2,000	560 M	140	130	150	480	700	710	410 M
Nickel	Ni	9,900	19,514	22,700	18,000	16,000	48,600	36,000	75,000	43,000 H	15,000	15,900	20,900	47,000	42,800	51,600	110,000 EL
Selenium	Se	290															1,000 A
Silver	Ag	<500				500 +				4,500 H	230	730	1,000	1,100	1,770	3,700	3,100 B
Strontium	Sr	49,000															
Tin	Sn	5,000										48 *					> 3,400 N
Vanadium	V	50,000															57,000 N
Zinc	Zn	7,000-38,000	98,000	121,000	123,000	120,000	459,000	315,000	820,000	520,000 M	94,000	124,000	150,000	245,000	271,000	410,000	410,000 I
Lead 210 bq/g d	w					0.5 ^			< 9.7 ^								
Polonium 210 bq	′ _g dw					0.6 ^			< 8.7 ^								
Radium 226 ^{bq} /g	dw					0.1 ^			< 13 ^								
Sulfides										130,000 M							4,500 MO

 # - Based on SLC approach using sensitive species HC5%; ES&T 2005 39(14):5148-5156. * - Based upon EQp approach using current AWQC CCC ^ - Based on SLC approach to derive LEL and SEL; Env'al Monitor & Ass'ment 2005 110:71-85 + - Carried over from Open Water disposal Guidelines; treated as if LEL for management decisions. Bioassay endpoints: M – Microtox; B – Bivalve; E – Echinoderm larvae; O – Oyster larvae; A – Amphipod; N – Neanthes; L –Larval bioassay; plus, I – Infaunal community impacts 	Sources 1 – Buchman, M. 1999. NOAA HAZMAT Report 99-1. 2 – EPA 905-R96-008 3 – Arch ET&C 2000, 39(1)20- TEL and PEL are also known as Canadian ISQGs and PELs 4 – Guidelines for the protection and management of aquatic sediment quality in Ontario Aug 1993 5 – ET&C 2002, 21(9)1993- 6 – Ecotox. 1996, 5(4):253- 7 – Chapter 173-204 WAC, 1991/95 as supplemented by WA Dept of Ecology staff with unpublished data.
For more information, email SQuiRT@NOAA.gov	Pg 2 OR&R Report 08-1

Screening Quick Reference Table for Inorganics in Soil

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE			BACKGI	ROUND ¹	DUTCH S1	<u>ANDARDS</u> ²		<u>Eco</u>	• <mark>S S L</mark> ³		
All concentrations in parts per to weight unless specified other	oillion dry erwise	CAS Number	Mean	Range	Target	Intervention	Avian	Inverts	Mammals	Plants	Microbes ⁴
Aluminum	Al	7429905	4.70%	0.5- >10%						50,000 a	600,000
Antimony	Sb	7440360	480	bd-8,800	3,000	15,000		78,000	142 v	5,000 a	
Arsenic	As	7440382	5,200	bd-97,000	900 L	55,000	43,000	60,000 a	5,700 v	18,000	100,000
Barium	Ва	7440393	440,000	10,000-0.5%	160,000	625,000		330,000	1,040 v	500,000 a	3,000,000
Beryllium	Be	7440417	630	bd-15,000	1,100	30,000 S		40,000	1,060 v	10,000 a	
Boron	В	7440428	26,000	bd-300,000	ĺ	ĺ				500 a	20,000
Bromine	Br	7726956	560	bd-11,000	20,000					10,000 a	
Cadmium	Cd	7440439			800	12,000	770	20,000 a	2.22 v	4,000 a	20,000
Chromium III	Cr	7440473	< 37,000	1,000-0.2%	< 380 L	< 220,000 L	26,000	<400 a	34,000	< 1,000 a	< 10,000
Chromium VI	Cr	18540299	< 37,000		< 380 L	< 220,000 L		400 a	81,000	< 1,000 a	< 10,000
Cobalt	Со	7440484	6,700	bd-70,000	2,400 L	180,000 L	120,000		140 v	13,000	1,000,000
Copper	Cu	7440508	17,000	bd-700,000	3,400 L	96,000 L	28,000	50,000 a	5,400 v	70,000	100,000
Cyanide (total complex)	CN	57125			5,000	50,000 (pH>5)			1,330 v		
Cyanide (total free)	CN	Í			1,000	20,000					
Fluorine	F	7782414	210,000	bd-0.37%	500,000					200,000 a	30,000
lodine	I	7553562	750	bd-9,600	ĺ	ĺ				4,000 a	
Iron	Fe	7439896	1.80%	0.01- >10%							200,000
Lanthanum	La	7439910	30,000	bd-200,000	ĺ	ĺ					50,000
Lead	Pb	7439921	16,000	bd-700,000	55,000 L	530,000	11,000	500,000 a	53.7 v	50,000 a	900,000
Lithium	Li	7439932	20,000	bd-140,000		1				2,000 a	10,000
Manganese	Mn	7439965	330,000	bd-0.7%			4,300,000	450,000	4,000,000	220,000	100,000
Mercury	Hg	7439976	58	bd-4,600	300	10,000		100 a v		300 a	30,000
Mercury(methyl)		22967926			37 L	4,000 L		< 100 a v	1.58 v	< 300 a	
Molybdenum	Мо	7439987	590	bd-15,000	3,000	190,000 L				2,000 a	200,000
Nickel	Ni	7440020	13,000	bd-700,000	260 L	100,000 L	210,000	200,000 a	13,600 v	30,000 a	90,000
Selenium	Se	7782492	260	bd-4,300	700 L	100,000 S	1,2000	4,100	630	520	100,000
Silver	Ag	7440224)	15,000 S	4,200		4,040 v	2,000 a	50,000
Strontium	Sr	7440246	120,000	bd-0.3%							
Sulfide		18496258							3.58 v		
Sulfur	S	7704349	0.12%	bd-4.8%							
Technetium	Tc	7440268								200 a	

1: bd – below detection

2: S – serious contamination level; L – Environmental Risk Limit

Screening Quick Reference Table for Inorganics in Soil

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE			BACKGI	ROUND ¹	DUTCH ST	ANDARDS ²					
All concentrations in parts per l weight unless specified other		CAS Number	Mean	Mean Range T		Intervention	Avian	Inverts	Mammals	Plants	Microbes ⁴
Tellurium	Te	13494809				600,000					
Thallium	TI	7440280	8,600	2,20-31,000	1,000	15,000 S			56.9 v	1,000 a	
Tin	Sn	7440315	890	bd-10,000	19,000 background	900,000 S			7,620 v	50,000 a	2,000,000
Titanium	Ti	7440326	0.224 %	0.007-2 %							1,000,000
Tin as Triphenyltin		668348				< 2,500					
Tungsten	W	7440337									400,000
Uranium	U	7440611	2,300	290-11,000						5,000 a	
Vanadium	V	7440622	58,000	bd-500,000	42,000	250,000 S	7,800		1,590 v	2,000 a	20,000
Zinc	Zn	7440666	48,000	bd-0.29%	16,000 L	350,000 L	46,000	6,620 v		50,000 a	100,000

Sources

1 – <u>USGS Prof. Paper 1270</u>, 1984. Mean is geometric mean of national data.

2 – Entry is lower of current VROM Environmental Quality standards or the updated RIVM Environmental Risk Limits. Risk limits are typically divided by 100 to derive the Target value; this computation has not been done here.

Dutch Target/Intervention: E.M.J. Verbruggen, R. Posthumus and A.P. van Wezel, 2001. Ecotoxicological Serious Risk Concentrations for soil, sediment, and (ground)water: Updated proposal for first series of compounds. Nat. Inst. Public Health and the Env., and subsequent updates as published elsewhere. Min. Housing, Spatial Plan. And the Env., 2000. Annexes Circular on target values and intervention values for soil remediations.

3 – Entry is lower of either:

EPA Eco-SSLs, www.epa.gov/ecotox/ecossl/

- a ORNL Screening benchmark for earthworms and soil microorganisms: ORNL 1997a, ES/ER/TM-126/R2
- v EPA R5 Eco Screening levels soil shrew or vole, www.epa.gov/reg5rcra/ca/

4 - ORNL 1997b, ES/ER/TM-85/R3.

Screening Quick Reference Table for Inorganics in Water

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

	_			S U R F A C	E WATERS ²	
ELEMEN All concentrations in part		GROUND WATER ¹	Fresh	water	Ma	arine
unless specified oth			Acute	Chronic	Acute	Chronic
Aluminum	AI	50-200 *	pH 750	pH 87		
Antimony	Sb	6	88 p	30 p	1,500 p	500 p
Arsenic III	As+3	<10		190 E		2.3 NZ
Arsenic V	As+5	< 10	66 T	3.1 T	2,319 *	
Arsenic, Total	As	10	340	150	69	36
Barium	Ba	2,000	110 T	3.9 E	1,000 вс	200 BC
Beryllium	Be	4	35 T	0.66 T	1,500 BC	100 BC
Boron	В	5,000 C	30 T	1.6 T		1,200
Cadmium	Cd	5	2.0 †	0.25 †	40	8.8
Chromium III	Cr+3	< 100	570 †	74 †	10,300 *	27.4 NZ
Chromium VI	Cr⁺ ⁶	< 100	16	11	1,100	50
Chromium, Total	Cr	100				
Cobalt	Co		1,500 T	3.0 E		1 NZ
Copper	Cu	1,300	13 †	9†	4.8	3.1
Fluoride	F	4,000	200 BC (hardness < 50)		1,500 вс	
Gallium	Ga			18 NZ		use 18 NZ
Iron	Fe	300 *		1,000	300 BC	50 BC
Lanthium	La			0.04 NZ		
Lead	Pb	15	65 †	2.5 †	210	8.1
Lithium	Li		260 T	14 T		
Manganese	Mn	50 *	2,300 T	80 E		100 BC
Mercury	Hg	2	1.4	0.77	1.8	0.94
Methyl Mercury			0.099 T	0.0028 T		
Molybdenum	Mo	70 W	16,000 T	34 NZ		23 NZ
Nickel	Ni	20 W	470 †	52 †	74	8.2
Phosphorus	P					0.1
Potassium	к		373,000 BC			
Selenium	Se	50	13-186 total	5 total	290	71
Silver	Ag	100 *	1.6 (1⁄2) †	0.36 T	0.95 (1/2)	
Strontium	Sr		15,000 T	1,500 T		
Thallium	TI	2	110 T	0.03 NZ	2,130 *	17 NZ
Tin as TBT	ÍÍ		0.46	0.072	0.42	0.0074

1: * – Secondary standard

2: pH – criteria is pH dependent ; p - proposed; † - hardness dependent; * - EPA LOEL ; (½) - CMC is halved to compare to 1985 Guideline derivation

Screening Quick Reference Table for Inorganics in Water

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

				S U R F A C	E WATERS ²	
ELEMENT All concentrations in parts p		GROUND WATER ¹	Fresh	water	M a	rine
unless specified other			Acute	Chronic	Acute	Chronic
Tin as Di-N-Butyl			0.08 BC			
Tin as Triethyl	1		0.4 BC			
Tin as Triphenyl			0.022 вс		34 BC	
Titanium	Ti		2,000 BC			
Uranium	U	30	46 T	0.5 NZ	500 BC	100 BC
Vanadium	v		280 T	19 E		50 BC
Zinc (Zn)	Zn	5,000 *	120 †	120 †	90	81
Zirconium	Zr		310 T	17 T		
Hydrogen Sulfide			2		2	
Cyanide, free	CN	200	22	5.2	1	1

Freshwater criterion for certain elements (†) are expressed as a function of hardness (mg/L) in the water column. The values shown assume 100 mg/L. Values for a different hardness may be calculated using the following equations to arrive at a <u>CMC</u> or <u>CCC</u> for *filtered* samples. Hardness may range up to 400 mg/L as calcium carbonate. For hardness above this range, use 400 mg/L as the maximum value allowed. For salinity between 1 and 10 ppt, use the more stringent of either fresh or marine values.

Sources

- 1 Primary entry is the US EPA MCL value, followed by the WHO drinking water guidelines.
 - Maximum Contaminant Levels (MCLs): http://www.epa.gov/safewater/index.html
 - W World Health Organization's (WHO) Drinking water guidelines: http://www.who.int/water sanitation health/dwq/en/
 - C Canadian water Quality Guidelines: http://www.ec.gc.ca/CEQG-RCQE/English/Ceqg/Water/default.cfm
- 2 Primary entry is the US Ambient Water Quality Criteria, followed by the lowest of Tier II SAVs or available standards and guidelines.
 - EPA Ambient water Quality Criteria (AWQC): http://www.epa.gov/waterscience/criteria/aglife.html
 - T Tier II Secondary Acute Value: http://www.esd.ornl.gov/programs/ecorisk/tools.html
 - BC British Columbia Water Quality Guidelines (either working or recommended): http://www.env.gov.bc.ca/wat/wq/
 - NZ Australian & New Zealand ECLs and Trigger values: ANZECC Oct 2000, Volume 1, The Guidelines. www.mfe.govt.nz/publications/
 - E EcoUpdate: <u>www.epa.gov/oswer/riskassessment/ecoup/</u>

Lowest Observable Effect Levels (LOELs) previously published by EPA are also included since these essentially were the basis for many state standards. EPA LOELs: EPA Water quality Criteria Summary, Office of Science & Technology, Health & Ecological Criteria Div., Ecological Risk Assessment Branch, 1991. Full listings appeared in various Fed. Register notices and in EPA's Quality Criteria for Water, 1992.

1: * – Secondary standard

2: pH – criteria is pH dependent ; p - proposed; † - hardness dependent; * - EPA LOEL ; (½) - CMC is halved to compare to 1985 Guideline derivation

Screening Quick Reference Table for Inorganics in Water

These tables were developed for internal use for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ELEMENT	HARDNESS CALCULATIONS – UNF	ILTERED FRESHWATER CRITERIA	UNFILTERED TO	FILTERED CALCULATIONS	
	СМС	CCC	Fresh water CMC	Freshwater CCC	Marine CMC / CCC
Arsenic (As)			1	1	1
Cadmium (Cd)	CMC = $e^{1.0166} [ln(hardness)] - 3.924$	CCC = e ^{0.7409} [<i>In</i> (hardness)] – 4.719	CF = 1.136672 - 0.041838 [<i>In</i> (hardness)]	CF = 1.101672 - 0.041838 [<i>In</i> (hardness)]	CF = 0.994
Chromium III (Cr+3)	_{CMC} = $e^{0.819}$ [<i>In</i> (hardness)] + 3.7256	_{CCC} = $e^{0.819}$ [<i>In</i> (hardness)] + 0.6848	CF = 0.316	CF = 0.860	-
Chromium VI (Cr +6)			CF = 0.982	CF = 0.962	CF = 0.993
Copper (Cu)	$CMC = e^{0.9422 [In(hardness)] - 1.7}$	_{CCC} = $e^{0.8545}$ [<i>In</i> (hardness)] - 1.702	CF = 0.960	CF = 0.960	CF = 0.83
Lead (Pb)	CMC = <i>e</i> ^{1.273} [<i>In</i> (hardness)] - 1.46	_{CCC} = $e^{1.273}$ [<i>In</i> (hardness)] - 4.705	CF = 1.46203 - 0.145712 [/n(hardness)]	SAME AS CMC	CF = 0.951
Mercury (Hg)			CF = 0.85	CF = 0.85	CF = 0.85
Nickel (Ni)	CMC = $e^{0.846} [In(hardness)] + 2.255$	$CCC = e^{0.846} [/n(hardness)] + 0.0584$	CF = 0.998	CF = 0.997	CF = 0.990
Selenium (Se)			_	-	CF = 0.998
Silver (Ag)	_{CMC} = $e^{1.72}$ [<i>In</i> (hardness)] - 6.52	CCC — No criteria	CF = 0.85	-	CF = 0.85 /
Zinc (Zn)	CMC = $e^{0.8473 [/n(hardness)] + 0.884}$	$CCC = e^{0.8473} [In(hardness) + 0.884$	CF = 0.978	CF = 0.986	CF = 0.946

Freshwater criterion for certain elements are expressed as a function of hardness (mg/L) in the water column. The values shown assume 100 mg/L. Values for a different hardness may be calculated using the above equations to arrive at a CMC or CCC for *filtered* samples. Hardness may range up to 400 mg/L as calcium carbonate. For hardness above this range, use 400 mg/L as the maximum value allowed.

Criteria for most metals are expressed as standards for samples filtered through 0.45 m filter (*i.e.*, "dissolved"). To convert unfiltered concentrations to filtered, multiply the unfiltered concentration value by the appropriate Conversion Factor (CF) above. For cadmium and lead, the conversion factor itself is hardness-dependent.

CMC: Criteria Maximum Concentration is the highest level for a 1-hour average exposure not to be exceeded more than once every three years, and is synonymous with "acute." CCC: for a 4-day average exposure not to be exceeded more than once every three years, and is synonymous with "chronic."

Sources

EPA Ambient water Quality Criteria (AWQC): http://www.epa.gov/waterscience/criteria/aqlife.html

Screening Quick Reference Tables for Organics - Sediment

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

A N A L Y T E All concentrations in parts per billion dry weight unless specified otherwise	CAS	FRESHWATER SEDIMENT									<mark>JTCH</mark> liment⁵	MARINE SEDIMENT							
	Number	ARCS Hyalella TEL ¹	TEL 2	TEC 2	LEL ³	<u>PEL</u> 2	<u>PEC</u> 2	SEL 3	UET 4 @1%TOC	Target	Intervention	<u>T₂₀ 6</u>	<u>TEL</u> 7	ERL 7	<u>T₅₀ 6</u>	PEL 7	ERM ⁷	<u>AET</u> 8	<u>EqP</u> 9 @1%TOC
2,3,7,8-TCDD dioxin TEQs	1746016		0.00085 c			0.0215 c			0.0088†H		1 S		0.00085 c			0.0215 c		0.0036 N	
Acenaphthene	83329		6.71 c			88.9 c		1	290 M			19	6.71	16	116	88.9	500	130 E	
Acenaphthylene	208968		5.87 c			128 c			160 M			14	5.87	44	140	128	640	71 E	
Acrylonitrile	107131							1		0.07	100 S								1
Aldrin	309002				2			80	40 I	0.06	1,700 LB							9.5 AE	
Aldrin + Dieldrin + Endrin	na								ĺ	5	140 L								
Anthracene	120127	10	46.9 c	57.2	220	245 c	845	3,700	260 M	39 LB	1,600 LB	34	46.9	85.3	290	245	1,100	280 E	
Atrazine	1912249								i í	0.2	710 LB								
BCH compounds (sum)	na									10	6,400 L								
Benz[a]anthracene	56553	15.72	31.7	108	320	385	1,050	14,800	500 I	25 L	2,500 L	61	74.8	261	466	693	1,600	960 E	i i
Benzene	71432									10	1,000								57
Benzo(ghi)perylene	191242				170			3,200	300 M	570 LB	33,000 LB	67			497			670 M	i i
Benzo[a]pyrene	50328	32.4	31.9	150	370	782	1,450	14,400	700 I	52 L	7,000 L	69	88.8	430	520	763	1,600	1,100 E	
Benzo[b]fluoranthene	205992								i i			130			1,107			1,800 E I	
Benzo[k]fluoranthene	207089	27.2			240			13,400	13,400B	380 LB	38,000 LB	70			537			1,800 E I	
Benzoic acid	65850											1						65 O	
Benzyl alcohol	100516																	52 B	
BHC, alpha (α-HCH)	319846				6			100	i i	3	< 2,000								
BHC, beta (β-HCH)	319857				5			210		9	< 2,000								
BHC, delta (δ-HCH)	319868									< 10	< 2,000								
BHC, gamma- (γ-HCH; Lindane)	58899		0.94	2.37	3	1.38	4.99	10	91	0.05	1,200 L		0.32			0.99		> 4.8 N	3.7
Biphenyl	92524											17			73				1,100
Bis(2-ethylhexyl)phthalate (DEHP)	117817								750 †M	< 100	10,000 LB		182			2647		1,300 I	,
Bromoform (Tribromomethane)	75252										75,000								650
Butanol	35296721										30,000 S								
Butyl acetate, 1- or 2-	na										200,000 S								
Butyl benzyl phthalate	85687									< 100	48,000 LB							63 M	1,100
Carbaryl	63252									0.03	450 LB								
Carbofuran	1563662									0.02	17 LB								
Carbon tetrachloride (Tetrachloromethane;Tetra)	56235									170 LB	1,000								1,200

4: Entry is lowest, reliable value among AET tests, on 1% TOC basis: I - Infaunal community impact; M - Microtox bioassay; H - Hyalella azteca bioassay; † - value on dry weight basis.

5: S – Serious Contamination; L – Environmental Risk Limit for soil; LB – Environmental Risk Limit for soil or bedded sediment

8: Entry is lowest value among AET tests: I - Infaunal community impact; A - Amphipod; B - Bivalve; M- Microtox bioassay; O - Oyster larvae; E - Echinoderm larvae; L - Larval_{max}; or, N - Neanthes bioassay.

Screening Quick Reference Tables for Organics - Sediment

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

A N A L Y T E All concentrations in parts per billion dry weight unless specified otherwise	CAS	FRESHWATER SEDIMENT									<mark>TCH</mark> iment⁵	MARINE SEDIMENT								
	Number	ARCS Hyalella TEL ¹	<u>TEL</u> 2	TEC 2	<u>LEL</u> 3	<u>PEL</u> 2	<u>PEC</u> ²	<u>SEL</u> 3	UET 4 @1%TOC	Target	Intervention	<u>T₂₀ 6</u>	<u>TEL</u> 7	ERL 7	<u>T₅₀ 6</u>	<u>PEL</u> 7	ERM 7	<u>AET</u> 8	<u>EqP</u> ⁹ @1%TOC	
Catechol (o-Dihydroxybenzene)	120809									3.2 LB	2,600 LB									
Chlordane	57749		4.5	3.24	7	8.9	17.6	60	30 I	0.03	4,000		2.26	0.5		4.79	6	2.8 A		
Chlordane (alpha)	5103719									< 0.03	< 4,000									
Chlordane (gamma)	5103742									< 0.03	< 4,000									
Chloro, 4- 2-methyl phenol	1570645										< 15,000 S									
Chloro, 4- 2-methylphenoxy acetic acid (MCPA)	94746									0.05	4,000									
Chloro, 4- 3-methyl phenol	59507										< 15,000 S									
Chloro, 4- methyl phenols	na					1					15,000 S									
Chloroaniline	27134265									5	50,000									
Chlorobenzenes (sum)	na									30	30,000								820	
Chloroform (trichloromethane)	67663									20	10,000									
Chloronaphthalene, 1-	90131									57 LB	< 10,000									
Chloronaphthalene, 2-	91587									250 LB	< 10,000									
Chlorophenol, 2-	95578									55 LB	7,800 LB							0.333		
Chlorophenol, 3-	108430									35 L	14,000 L									
Chlorophenol, 4-	106489									20 LB	1,400 LB									
Chlorophenols (sum)	na									10	10,000									
Chrysene	218019	26.83	57.1	166	340	862	1,290	4,600	800 I	8,100 LB	35,000 LB	82	108	384	650	846	2,800	950 E		
Cresol [m-] (3-Methyl phenol)	108394									1,600 L	16,000 L									
Cresol [o-] (2-Methyl phenol)	95487									500 L	50,000 L							8 B		
Cresol [p-] (4-Methyl phenol)	106445									5.1 LB	2,600 LB							100 B		
Cresols, sum	1319773									50	5,000									
Cyclohexanone	108941									100	45,000									
DDD, 4,4- (p,p-DDD, TDE)	72548		3.54	4.88	8	8.51	28	60	< 60 I	3.9 LB	34,000 LB		1.22	2		7.81	20	< 16 I		
DDE, 4,4- (p,p-DDE)	72559		1.42	3.16	5	6.75	31.3	190	<50 I	5.8 LB	1,300 LB		2.07	2.2		374	27	< 9 I		
DDT, 4,4- (p,p-DDT)	50293		1.19 c	4.16	8	4.77 c	62.9	710	50 I	9.8 LB	1,000 L		1.19	1		4.77	7	< 12 E		
DDT+DDE+DDD (sum)	na		7	5.28	7	4,450	572	120	50 I	10	4,000		3.89	1.58		51.7	46.1	11 B		
Diazinon	333415																		1.9	
Dibenz[ah]anthracene	53703	10	6.22 c	33	60	135 c		1,300	100 M		ļ	19	6.22	63.4	113	135	260	230 OM		
Dibenzofuran	132649								5,100 H									110 E	2,000	

4: Entry is lowest, reliable value among AET tests, on 1% TOC basis: I - Infaunal community impact; M - Microtox bioassay; H - Hyalella azteca bioassay; † - value on dry weight basis.

5: S – Serious Contamination; L – Environmental Risk Limit for soil; LB – Environmental Risk Limit for soil or bedded sediment

8: Entry is lowest value among AET tests: I - Infaunal community impact; A - Amphipod; B - Bivalve; M- Microtox bioassay; O - Oyster larvae; E - Echinoderm larvae; L - Larval_{max}; or, N - Neanthes bioassay.

Screening Quick Reference Tables for Organics - Sediment

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

A N A L Y T E All concentrations in parts per billion dry weight unless specified otherwise	CAS	FRESHWATER SEDIMENT									<mark>ITCH</mark> iment⁵	MARINE SEDIMENT								
	Number	ARCS Hyalella TEL ¹	<u>TEL</u> 2	TEC 2	LEL ³	PEL ²	<u>PEC</u> ²	<u>SEL</u> 3	UET 4 @1%TOC	Target	Intervention	<u>T₂₀ 6</u>	<u>TEL</u> 7	ERL ⁷	<u>T₅₀ 6</u>	<u>PEL</u> 7	ERM 7	<u>AET</u> 8	EqP 9 @1%TOC	
Dichloroaniline, 2,4-	554007									< 5	< 50,000 S									
Dichloroaniline, 3,4-	95761							•		< 5	< 50,000 S								1	
Dichloroaniline, 3,4-	95761									< 5	< 50,000 S									
Dichlorobenzene, 1,2-	95501									< 30	17,000 LB							13 N	340	
Dichlorobenzene, 1,3-	541731									< 30	24,000 LB								1700	
Dichlorobenzene, 1,4-	106467							1		< 30	18,000 LB				1			110 IM	350	
Dichlorobenzenes	25321226									< 30	19,000 LB									
Dichloroethane, 1,1-	75343							1		20	15,000				1				1	
Dichloroethane, 1,2-	107062									20	4,000									
Dichloroethene, 1,1- (vinylidene chloride)	75354							1		100	300				1					
Dichloroethene, 1,2- (cis or trans)	540590									200	1,000									
Dichlorophenol, 2,4-	120832							1		< 10	8,400 LB				1			0.2083	1	
Dichlorophenol, 2,6-	87650									< 10	57,000 LB									
Dichlorophenol, 3,4-	95772									< 10	57,000 LB								1	
Dichlorophenol, 3,5-	591355									< 10	5,400 LB									
Dichlorophenols (sum)	na							1		< 10	22,000 LB				1				1	
Dichloropropane, 1,2- (propylene dichloride)	78875									< 2	< 2,000									
Dieldrin ‡	60571		2.85	1.9	2	6.67	61.8	910	300 I	0.5	1,900 LB	0.83	0.72	0.02	2.9	4.3	8	1.9 E	1	
Diethyl phthalate	84662									530 L	53,000 L							6 BL	630	
Diethylene-glycol	111466										270,000 S									
Dihydroxybenzenes, sum	na									62 LB	8,000 LB									
Di-iso-butyl phthalate	84695									92 LB	17,000 LB									
Dimethyl phthalate	131113									1,000 LB	84,000 LB							6 B		
Dimethylnaphthalene, 2,6-	581420											25			133					
Dimethylphenol, 2,4-	105679																	18 N		
Di-n-butyl phthalate	84742								110 H	7,000 LB	36,000 LB							58 BL	11,000	
Di-n-octyl phthalate	117840									< 100	< 60,000							61 BL		
Dodecylbenzene	25155300										1,000,000 S									
Endosulfan (a or b)	115297									0.01	4,000								2.9 α 14 β	

4: Entry is lowest, reliable value among AET tests, on 1% TOC basis: I - Infaunal community impact; M - Microtox bioassay; H - Hyalella azteca bioassay; † - value on dry weight basis.

5: S – Serious Contamination; L – Environmental Risk Limit for soil; LB – Environmental Risk Limit for soil or bedded sediment

8: Entry is lowest value among AET tests: I - Infaunal community impact; A - Amphipod; B - Bivalve; M- Microtox bioassay; O - Oyster larvae; E - Echinoderm larvae; L - Larval_{max}; or, N - Neanthes bioassay.

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS		FRE	SHW	/ A T E	ER SE	DIMI	ENT			<mark>TCH</mark> iment⁵		M	ARIN	ESE	DIMEN	Т		Eco Tox
All concentrations in parts per billion dry weight unless specified otherwise	Number	ARCS Hyalella TEL ¹	<u>TEL</u> 2	TEC 2	LEL ³	<u>PEL</u> 2	<u>PEC</u> ²	<u>SEL</u> ³	UET 4 @1%TOC	Target	Intervention	<u>T₂₀ 6</u>	<u>TEL</u> 7	ERL 7	<u>T₅₀ 6</u>	<u>PEL</u> 7	ERM 7	<u>AET</u> ⁸	<u>ЕqР</u> ⁹ @1%TOC
Endosulfan II	33213659																		
Endrin	72208		2.67	2.22	3	62.4	207	1,300	500 I	0.04	95 L								
Ethyl acetate	141786										75,000 S								
Ethyl acetate	141786										75,000 S								
Ethyl benzene	100414									30	50,000							4 EL	3,600
Ethylene glycol	107211							1			100,000 S								
Fluoranthene	206440	31.46	111	423	750	2,355	2,230	10,200	1,500 M	1,000 LB	260,000	119	113	600	1,034	1,494	5,100	1,300 E	
Fluorene	86737	10	21.2 c	77.4	190	144 c	536	1,600	300 M			19	21.2	19	114	144	540	120 E	540
Formaldehyde	50000										100 S								
Guthion (Azinphos-methyl)	865000									0.005	2,000 S								
Heptachlor	76448								10 I	0.7	4,000							0.3 B	
Heptachlorepoxide	1024573		0.6	2.47	5	2.74	16	50	30 I	0.0002	4,000	0.6 c				2.74 c			
Hexachlorobenzene	118741				20			240	100 I	1.4 LB	2,000 LB							6 B	
Hexachlorobutadiene (HCBD)	87683										ĺ							1.3 E	
Hexachlorocyclohexane (BHC)	608731				3			120	100 I										
Hexachloroethane	67721										ĺ							73 BL	1,000
Hydroquinone (p-dihydroxybenzene)	123319									50	43,000 LB								
Indeno[1,2,3-cd]pyrene	193395	17.32			200			3,200	330 M	31 LB	1,900 LB	68			488			600 M	
Linar alkylbenzene sulfonates (LAS)	na												<12,800 €			>62,000€			
Malathion	121755										ĺ								0.67
Maneb	12427382									2	22,000 L								
Methanol	67561							e.			30,000 S								
Methoxychlor	72435																		19
Methyl ethyl ketone (MEK; 2-Butanone)	78933										35,000 S								
Methyl naphthalene, 2-	91576											21	20.2	70	128	201	670	64 E	
Methylene chloride (Dichloromethane, DCM)	75092									18 LB	3,900 L								
Methylnaphthalene, 1-	90120											21			94				
Methylphenanthrene, 1-	832699										ĺ	18			112				
Methyl-tert-butyl ether (MTBE)	1634044										100,000 S								
Mirex	2385855				7	[1,300	800 I										

4: Entry is lowest, reliable value among AET tests, on 1% TOC basis: I - Infaunal community impact; M - Microtox bioassay; H - Hyalella azteca bioassay; † - value on dry weight basis.

5: S – Serious Contamination; L – Environmental Risk Limit for soil; LB – Environmental Risk Limit for soil or bedded sediment

8: Entry is lowest value among AET tests: I - Infaunal community impact; A - Amphipod; B - Bivalve; M- Microtox bioassay; O - Oyster larvae; E - Echinoderm larvae; L - Larval_{max}; or, N - Neanthes bioassay.

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS		FRE	SHW	/ A T E	ER SE	DIMI	ENT			<mark>TCH</mark> iment⁵		M	ARIN	E SEI	DIMEN	Т		Есо Тох
All concentrations in parts per billion dry weight unless specified otherwise	Number	ARCS Hyalella TEL ¹	<u>TEL</u> 2	<u>TEC</u> ²	LEL ³	PEL ²	<u>PEC</u> ²	<u>SEL</u> ³	UET 4 @1%TOC	Target	Intervention	<u>T₂₀ 6</u>	<u>TEL</u> 7	ERL 7	<u>T₅₀ 6</u>	<u>PEL</u> 7	<u>ERM</u> 7	<u>AET</u> 8	<u>EqP</u> 9 @1%TOC
Monochloroaniline (3 isomers)	na									5	50,000								
Monochlorobenzenes	108907			İ.						< 30	15,000 LB								820
Monochloronaphthalenes	na									120 LB	10,000								
Monochlorophenols (sum)	na									< 10	5,400 L								1
Naphthalene	91203	14.65	34.6 c	176		391 c	561		600 I	120 LB	17,000 LB	30	34.6	160	217	391	2,100	230 E	480
Nitrobenzene	98953							1										21 N	
Nitrosodiphenylamine, N-	86306																	28 I	
Nonylphenol	25154523		1,400 c										1,000 c						
PAHs, Low MW	na	76.42							5,300 M	< 1,000	< 40,000		312	552		1,442	3,160	1,200 E	
PAHs, High MW	na	193							6,500 M	< 1,000	< 40,000		655	1,700		6,676	9,600	7,900 E	
PAHs, Total	na	264.1		1,610	4,000		22,800*	100,000*	12,000 M	1,000	40,000		1,684	4,022		16,770	44,792		
PCB 105	32598144									1.5 LB	< 1,000								
PCB 126	57465288									0.0025 LB	920 LB								
PCB 77	32598131								ľ	0.42 LB	< 1,00								
PCB-Aroclor 1254	na		60 c		60	340 c		340					63.3 c			709 c			
PCBs (sum)	1336363	31.62	34.1	59.8	70	277	676	5,300	26 M	0.3 LB	1,000	35	21.6	22.7	368	189	180	130 M	
Pentachloroaniline	527208										10,000 S								
Pentachlorobenzene	608935									15 LB	16,000 LB								690
Pentachlorophenol [PCP: at ph 7.8‡]	87865									< 10	8,000 LB							17 B	
Perylene	198550								l		í	74			453				
Phenanthrene	85018	18.73	41.9	204	560	515	1,170	9,500	800 I	3,300 LB	31,00 LB	68	86.7	240	455	544	1500	660 E	
Phenol	108952								48†H	50	14,000 LB							130 E	
Phthalates (sum)	na									100	60,000								
Propanol, 2- (Isopropanol)	67630										220,000 S								
Pyrene	129000	44.27	53	195	490	875	1,520	8,500	1,000 i			125	153	665	932	1,398	2,600	2,400 E	
Pyridine	110861									100	500								
Resorcinol (m-dihydroxybenzene)	108463									34 LB	4,600 LB								
Styrene (Vinyl benzene)	100425									200 LB	86,000 LB								
Tetrachloroaniline, 2,3,5,6-	3481207										< 30,000 S								
Tetrachlorobenzene, 1,2,3,4-	634662									160 L	16,000 L								1
Tetrachlorobenzene, 1,2,3,5-	634902									6.5 L	650 L								

4: Entry is lowest, reliable value among AET tests, on 1% TOC basis: I - Infaunal community impact; M - Microtox bioassay; H - Hyalella azteca bioassay; † - value on dry weight basis.

5: S – Serious Contamination; L – Environmental Risk Limit for soil; LB – Environmental Risk Limit for soil or bedded sediment

8: Entry is lowest value among AET tests: I - Infaunal community impact; A - Amphipod; B - Bivalve; M- Microtox bioassay; O - Oyster larvae; E - Echinoderm larvae; L - Larval_{max}; or, N - Neanthes bioassay.

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS		FRE	SHW	/ A T E	ER SE	DIM	ENT			<mark>ITCH</mark> iment⁵		M	ARIN	E SEI	DIMEN	Т		Eco Tox
All concentrations in parts per billion dry weight unless specified otherwise	Number	ARCS Hyalella TEL ¹	TEL ²	TEC 2	LEL ³	<u>PEL</u> 2	PEC ²	<u>SEL</u> 3	UET 4 @1%TOC	Target	Intervention	<u>T₂₀ 6</u>	<u>TEL</u> 7	ERL ⁷	<u>T₅₀ 6</u>	<u>PEL</u> 7	ERM 7	<u>AET</u> 8	<u>EqP</u> 9 @1%TOC
Tetrachlorobenzene, 1,2,4,5-	95943									10 L	1,000 L								
Tetrachlorobenzenes	na									22 L	2,200 L								
Tetrachloroethylene (Tetrachloroethene; PCE; PER)	127184									2	4,000							57 I	530
Tetrachlorophenol, 2,3,4,5-	4901513					1				< 10	< 10,000			Í					
Tetrachlorophenol, 2,3,4,6-	58902									< 10	< 10,000								
Tetrachlorophenols (sum)	25167833									< 10	< 10,000								
Tetrahydrofuran	109999									100	2,000								
Tetrahydrothiophene	110010									100	8,800 LB								1
Toluene	108883									10	47,000 L								670
Toxaphene	8001352		0.1 c										0.1 c						28
Tributyltinoxide	56359									< 10	< 2,500								
Trichloroaniline (multiple isomers)	na										10,000 S								1
Trichloroaniline, 2,4,5-	636306										< 10,000 S								
Trichlorobenzene, 1,2,3-	87616									< 11 L	5,000 L								
Trichlorobenzene, 1,2,4-	120821									11 LB	5,100 LB							> 4.8 E	9,200
Trichlorobenzenes	12002481									38 L	11,000 L								
Trichloroethane, 1,1,1-	71556									70	15,000								170
Trichloroethane, 1,1,2-	79005									400	10,000								
Trichloroethene (TCE)	na									7.8 L	2,500 L							41 N	1,600
Trichlorophenol, 2,3,5-	na									< 10	4,500 L								
Trichlorophenol, 2,4,5-	95954									< 10	22,000 LB							3 I	
Trichlorophenol, 2,4,6-	88062									< 10	110,000 LB							6 I	
Triclorophenols, (sum)	na									< 10	22,000 L								
Vinyl chloride	75014									10	100								
Xylene	1330207									130 LB	17,000 LB							4 BL	
Xylene, m-	108383									110 LB	18,000 LB								25
Xylene, o-	95476									89 LB	9,300LB								

4: Entry is lowest, reliable value among AET tests, on 1% TOC basis: I - Infaunal community impact; M - Microtox bioassay; H - Hyalella azteca bioassay; † - value on dry weight basis.

5: S – Serious Contamination; L – Environmental Risk Limit for soil; LB – Environmental Risk Limit for soil or bedded sediment

8: Entry is lowest value among AET tests: I - Infaunal community impact; A - Amphipod; B - Bivalve; M- Microtox bioassay; O - Oyster larvae; E - Echinoderm larvae; L - Larval_{max}; or, N - Neanthes bioassay.

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

Sources

- 1 Assessment & Remediation of Contaminated Sediments (ARCS) Program, Sept 1996. EPA 905-R96-008.
- 2-MacDonald et al, 2000. Arch ET&C 39(1):20-C - Canadian Sediment Quality Guidelines for the Protection of Aquatic Life, Summary Tables Update 2002, www.ccme.ca/publications/cegg_rcge.html
- 3 Persuad 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Thompson et al., 2005. Enval Monitor & Assessment 110:71-
- 4 Buchman 1999. NOAA HAZMAT Report 99-1.
- 5 Entry is lower of current VROM Environmental Quality standards or the updated RIVM Environmental Risk Limits. Risk limits are typically divided by 100 to derive the Target value; this computation has not been done here. Dutch Target/Intervention: E.M.J. Verbruggen, R. Posthumus and A.P. van Wezel, 2001. Ecotoxicological Serious Risk Concentrations for soil, sediment, and (ground)water: updated proposal for first series of compounds. Nat. Inst. Public Health and the Env., and subsequent updates as published elsewhere.

Min. Housing. Spatial Plan. And the Env., 2000. Annexes Circular on target values and intervention values for soil remediations.

- 6 Field et al., 2002. ET&C 21:1993-
- 7 MacDonald et al., 1996. Ecotox. 5(4):253-

C - Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. Summary Tables Update 2002, www.ccme.ca/publications/cegg_rcge.html € - DelValls et al., 1999. Ecotox. & Env Rest 2(1):34-

- 8 Wash Dept Ecol Publ 95-308, 1995 and 97-323a, 1997 Gries & Waldrow Puget Sound Dredged Disposal Analysis Rept 1996. http://www.ecy.wa.gov/biblio/wac173204.html plus unpublished information.
- 9 EcoUpdate EcoTox Thresholds, http://www.epa.gov/oswer/riskassessment/

4: Entry is lowest, reliable value among AET tests, on 1% TOC basis: I - Infaunal community impact ; M - Microtox bioassay ; H - Hyalella azteca bioassay ; + value on dry weight basis.

5: S - Serious Contamination; L - Environmental Risk Limit for soil; LB - Environmental Risk Limit for soil or bedded sediment

8: Entry is lowest value among AET tests: I - Infaunal community impact; A - Amphipod; B - Bivalve; M- Microtox bioassay; O - Oyster larvae; E - Echinoderm larvae; L - Larvalmax; or, N - Neanthes bioassay.

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS		JND WAT	ER		SURFACE				S 0	I L	
All concentrations in parts per billion	Number		<u>tch</u> 1	MCL ²		esh	Mar		Invertebrates ⁴	Mammals ⁵	Plants 6	Other 7
unless specified otherwise		Target	Intervention		Acute ³	Chronic ³	Acute ³	Chronic ³				
2,3,7,8-TCDD (dioxin TEQs)	1746016		0.001 ^{ng} /L S	0.00003	<0.01 *	<0.00001 *				0.000199		
2,4,5-Trichlorphenoxyacetic acid (2,4,5-T)	93765			9 W		36 NZ				596		
2,4-Dichlorophenoxyacetic acid (2,4-D)	94757			70		4.0 CA				27.2		
Acenaphthene	83329				1,700 *	5.8 CA	970 *	40 Eco		682,000	20,000	
Acenaphthylene	208968					4,840 V	300 *C			682,000		
Acetone	67641				28,000 T	1,500 T				2,500		
Acetonitrile	75058					160 NZ				1,370		
Acetophenone	98862									300,000		
Acetylaminofluorene, 2-	53963									596		
Acridine	260946					4.4 CA						
Acrolein	107028				68 *	0.01 NZ	55 *	0.1 NZ		5,270		
Acrylonitrile	107131	0.08	5 S		7,550 *	2,600 *				23.9		1,000,000 M 0.007 D
Alcohol ethoxylated surfactants (AE)	na					140 NZ						
Alcohol ethoxyolated sulfate (AES)	na					650 NZ						
Aldicarb	116063			9 C		1 CA		0.15 CA				
Aldrin	309002	0.009 ^{ng} /L	< 0.1		1.5 (1⁄2)	0.017 V	0.65 (1/2)				3.32 V	0.06 D
Aldrin+Dieldrin+Endrin	na		0.1	<0.03 W								5 D
Allyl chloride	107051									13.4		
Aminobiphenyl, 4-	92671									3.05		
Aminomethylphosphonic acid (AMPA)	1066519	0.797 L										
Amitrole	61825					22 NZ						
Aniline	62533					2.2 CA				56.8		
Anthracene	120127	0.0007	5		13 T	0.73 T 0.012 CA	300 *C			1.48E6		
Aramite	140578									16,600		
Atrazine	1912249	29 ^{ng} /L	76 L	3		1.8 CA		10 BC				0.2 D
Benz[a]anthracene	56553	0.0001	0.5		0.49 T	0.027 T	300 *C			5,210		
Benzene	71432	0.2	30	5	2,300 T	46 Eco	5,100 *	110 CA		255		10 D
Benzidine	92875				70 T	3.9 T						
Benzo(ghi)perylene	191242	0.0003	0.05			7.64 V	300 *C			119,000		
Benzo[a]pyrene	50328	0.0005	0.05	0.2	0.24 T	0.014 T Eco	300 *C			1,520		

1: L – Environmental Risk Limit; S – Serious Contamination Level

3: p - proposed; * - LOEL; C - value for chemical class; S - value for summation of isomers; (½) - CMC is halved to compare to 1985 Guideline derivation; x 0.1 – chronic value derived by division of acute value by 10

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS	GROU	JND WAT	ER	S	URFACE	WATER	S		S 0	IL	
All concentrations in parts per billion	Number	<u>Du</u>	<u>tch</u> 1	MCL ²	Fr	esh	Mar	ine	Invertebrates ⁴	Mammals ⁵	Plants 6	Other 7
unless specified otherwise		Target	Intervention	<u>WICL</u> ²	Acute ³	Chronic ³	Acute ³	Chronic ³	Invertebrates*	Mailliais		Other '
Benzo[b]fluoranthene	205992					9.07 V	300 *C			59,800		
Benzo[k]fluoranthene	207089	0.0004	0.05				300 *C			148,000		
Benzoic acid	65850				740 T	42 T						
Benzyl alcohol	100516				150 T	8.6 T				65,800		
BHC, alpha (α-HCH)	319846	33 ^{ng} /L	<1		39 T	2.2 T				99.4		3 D
BHC, beta (β-HCH)	319857	8 ^{ng} /L	<1		39 T	2.2 T 0.495 V					3.98 v	9 D
BHC, delta δ-HCH)	319868	< 0.05	<1		39 T	2.2 T				9,940		< 10 D
BHC, gamma- (γ-HCH; Lindane)	58899	9 ^{ng} /L	<1	0.2	0.95	0.08	0.08 (1/2)				5 V	0.05 D
BHC (sum)	na	0.05	1		< 0.95	< 0.08	< 0.08					10 D
Biphenyl	92524					14 T Eco					60,000	
Bis(2-chloroethoxy) methane	111911				11,000 *C		12,000 *C	6,400 *C		302		
Bis(2-chloroethyl) ether	111444					1,900 V				23,700		
Bis(2-ethylhexyl)phthalate (DEHP)	117817	1.9 ^{ng} /L L	< 5	6	400 p	32 Eco 16 CA 0.3 V	400 p	360 p		925		< 100 D
Bis-2-chloro-1-methylethylether	108601									19,900		
Bromocil	314409					5 CA						
Bromodichloromethane (Dichlorobromomethane)	75274			60 W	11,000 *C		12,000 *C	6,400 *C		540		
Bromoform (Tribromomethane)	75252		630		2,300 T	320 T Eco				15,900		
Bromoxynil	1689845			5 C		5 CA						
Butanol	35296721		5,600 S									
Butyl acetate, 1- or 2-	na		6,300 S									
Butyl benzyl phthalate	85687	2.9 ^{ng} /L L	< 5		940 *C	19 T Eco	2,944 *C	3.4 *C		239		< 100 D
Captan	133062					1.3 CA						
Carbaryl	63252	2 ^{ng} /L	41 L	90 C		0.2 CA		0.32 CA				
Carbofuran	1563662	9 ^{ng} /L	6.5 L	40		1.8 CA		0.06 NZ				
Carbon disulfide	75150				17 T	0.92 T				94.1		
Carbon tetrachloride (Tetrachloromethane;Tetra)	56235	0.01	10	5	180 T	9.8 T	50,000 *	5,000 x 0.1		2,980		1,000,000 M 400 D
Catechol (o-Dihydroxybenzene)	120809	0.2	630 L									50 D

1: L – Environmental Risk Limit; S – Serious Contamination Level

3: p - proposed; * - LOEL; C - value for chemical class; S - value for summation of isomers; (½) - CMC is halved to compare to 1985 Guideline derivation; x 0.1 – chronic value derived by division of acute value by 10

7: M – microbes; A – avian

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS	GROU	JND WAT	ER		SURFACE	WATER	S		S 0	IL	
All concentrations in parts per billion	Number	Du	<u>tch</u> 1	MCL 2	Fr	esh	Mar	ine	Invertebrates ⁴	Mammals ⁵	Plants 6	Other 7
unless specified otherwise		Target	Intervention	<u>WCL</u> -	Acute ³	Chronic ³	Acute ³	Chronic ³	Invertebrates	wannars °	FIGHTS	Other
Chlordane	57749	0.02 ^{ng} /L	0.2	2	1.2 (1/2)	0.00215 (1/2)	0.045 (1/2)	0.002 (1/2)			224 V	0.03 D
Chlordane (alpha)	5103719	< 0.02 ^{ng} /L	< 0.2								< 224 V	< 0.03 D
Chlordane (gamma)	5103742	< 0.02 ^{ng} /L	< 0.2								< 224 V	< 0.03 D
Chlorfenvinphos	470906					0.1 EU		0.1 EU				
Chloroacetamide	79072								2,000			5 D
Chloroaniline	27134265		30									< 5 D
Chloroaniline, 3-	108429		< 30						30,000		20,000	< 5 D
Chloroaniline, 4-	106478		< 30		250 *C	50 *C	160 *C	129 *C		1,100		< 30 D
Chlorobenzenes (sum)	na	< 7	< 180	100		130 Eco <47 V			< 40,000	< 13,100		30 D
Chlorobenzilate	510156									5,050		20 D
Chloroform (trichloromethane)	67663	6	400	200 W	490 T	1.8 CA				1,190		
Chloro, 4- 2-methyl phenol	1570645		< 350 S									
Chloro, 4- 3-methyl phenol	59507		< 350 S							7,950		
Chloro, 4- methyl phenols	na		350 S							< 7,950		
Chloro, 4- 2-methylphenoxy acetic acid (MCPA)	94746	0.02	50	2 W		2.6 CA		4.2 CA				0.05 D
Chloronaphthalene, 1-	90131	3.7 ^{ng} /L L	< 6									
Chloronaphthalene, 2-	91587	0.016 L	< 6		1,600 * C	0.396 V	7.5 * C			12.2		
Chlorophenol, 2-	95578	< 0.3	< 100		4,380 *	490 NZ 24 V				243		< 10 D
Chlorophenol, 3-	108430	< 0.3	< 100						10,000		7,000	< 10 D
Chlorophenol, 4-	106489	< 0.3	< 100			220 NZ						< 10 D
Chlorophenols (sum)	na	0.3	100			< 24 V			< 10,000	< 243	< 7,000	< 10 D
Chloroprene	126998									2.9		
Chlorothalonil	1897456			200 BC		0.18 CA		0.36 CA				
Chlorpyrifos	2921882			30 W	0.083	0.041	0.011	0.0056				
Chrysene	218019	0.003	0.2				300 *C			4,730		
Cresol [m-] (3-Methyl phenol)	108394	< 0.2	< 200							3,490		< 50 D
Cresol [o-] (2-Methyl phenol)	95487	< 0.2	<200		230 T	13 T				40,400		< 50 D
Cresol [p-] (4-Methyl phenol)	106445	< 0.2	< 200							163,000		< 50 D
Cresols, sum	1319773	0.2	200		< 230 T	< 13 T				< 3,490		50 D
Cyclohexanone	108941	0.5	15,000									100 D

1: L – Environmental Risk Limit; S – Serious Contamination Level

3: p - proposed; * - LOEL; C - value for chemical class; S - value for summation of isomers; (½) - CMC is halved to compare to 1985 Guideline derivation; x 0.1 – chronic value derived by division of acute value by 10

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS	GROU	JND WAT	ER		SURFACE	WATER	S		S 0	IL	
All concentrations in parts per billion	Number	<u>Du</u>	<u>tch</u> 1	MCL ²	Fr	esh	Mar	ine	Invertebrates ⁴	Mammals ⁵	Plants 6	Other 7
unless specified otherwise		Target	Intervention		Acute ³	Chronic ³	Acute ³	Chronic ³	Invertebrates*	Mailliais	Pidiits °	Other '
DDD, 4,4- (p,p-DDD, TDE)	72548	<0.004 ^{ng} /L	< 0.01	< 1 W	0.19 T	0.011 T	3.6 *	0.36 x 0.1		758		< 10 D
DDE, 4,4- (p,p-DDE)	72559	<0.004 ^{ng} /L	< 0.01	< 1 W	1,050 *	105 x 0.1	14 *	1.4 x 0.1		596		< 10 D
DDT, 4,4- (p,p-DDT)	50293	<0.004 ^{ng} /L	< 0.01	< 1 W	0.55 (1⁄2)	0.0005 (1/2)	0.065 (1/2)	0.0005 (1/2)		3.5		< 10 D
DDT+DDE+DDD (sum)	na	0.004 ^{ng} /L	0.01	1 W	<0.55 (1/2)	<0.0005 (1/2)	<0.065 (1/2)	<0.0005 (1/2)		21 EPA		93 A 10 D
Decane	124185				880 T	49 T						
Deltamethrin	52918635					0.0004 CA						
Demeton	8065483					0.1		0.1				
Diallate	2303164									452		
Diazinon	333415			20 C	0.17	0.17	0.82	0.82				
Dibenz[ah]anthracene	53703						300 *C			18,400		
Dibenzofuran	132649				66 T	3.7 T						
Dibromo, 1,2- 3-chloropropane (DBCP)	96128			0.2						35.2		
Dibromochloromethane (Chlorodibromomethane)	124481			100 W	11,000 *C		12,000 *C	6,400 *C		2,050		
Dibromoethane, 1,2-	106934			0.4 W						1,230		
Dicambia	1918009			120 C		10 CA						
Dichloro, 1,4- 2-butene (cis)	1476115											1,000,000 M
Dichloro, 1,4- 2-butene (trans)	110576											1,000,000 M
Dichloroaniline, 2,4-	554007		< 100 S			7 NZ			100,000			< 5 D
Dichloroaniline, 3,4-	95761		< 100 S			3 NZ		150 NZ	20,000			< 5 D
Dichlorobenzene, 1,2-	95501	< 3	< 50	600	260 T	0.7 CA	< 1,970 *S	42 CA		2,960		< 30 D
Dichlorobenzene, 1,3-	541731	< 3	< 50		630 T	71 T Eco 38 V	< 1,970 *S			37,700		< 30 D
Dichlorobenzene, 1,4-	106467	< 3	< 50	75	180 T	15 T Eco 60 NZ 9.4 V	< 1,970 *S	129 *C	20,000	546		< 30 D
Dichlorobenzenes	25321226	3	50	< 75	< 180 T	< 0.7 CA	1,970 *S		< 20,000	< 548		< 30 D
Dichlorobenzidine, 3,3-	91941					4.5 V				646		
Dichlorodifluoromethane	75718									39,500		
Dichloroethane, 1,1-	75343	7	900		830 T	47 T Eco				20,100		20 D
Dichloroethane, 1,2-	107062	7	400	5	8,800 T	100 CA	113,000 *	11,300 x 0.1		21,200		20 D

1: L - Environmental Risk Limit; S - Serious Contamination Level

3: p - proposed; * - LOEL; C - value for chemical class; S - value for summation of isomers; (½) - CMC is halved to compare to 1985 Guideline derivation; x 0.1 – chronic value derived by division of acute value by 10

7: M – microbes; A – avian

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS	GROU	JND WAT	ER	S	URFACE	WATER	S		S 0	IL	
All concentrations in parts per billion	Number	<u>Du</u>	<u>tch</u> 1	MCL ²	Fr	esh	Mar	ine	Invertebrates ⁴	Mammals ⁵	Plants 6	Other 7
unless specified otherwise		Target	Intervention		Acute ³	Chronic ³	Acute ³	Chronic ³	invertebrates	Wallinais -		other
Dichloroethene, 1,1- (vinylidene chloride)	75354	0.01	10	7	450 T	25 T	224,000 *S			8,280		100 D
Dichloroethene, 1,2- (cis or trans)	540590	0.01	20	70 cis	1,100 T	590 T	224,000 *S					200 D
Dichloroethene, 1,2- (trans)	156605			100	11,600 *S	1,160 x 0.1	224,000 *S			784		
Dichlorophenol, 2,4-	120832	< 0.2	< 30	900 C	2,020 *	160 NZ 11 V				87,500		< 10 D
Dichlorophenol, 2,6-	87650	< 0.2	< 30			< 0.2 CA				1,170		< 10 D
Dichlorophenol, 3,4-	95772	< 0.2	< 30			< 0.2 CA			20,000		20,000	< 10 D
Dichlorophenol, 3,5-	591355	< 0.2	< 30			< 0.2 CA						< 10 D
Dichlorophenols (sum)	na	0.2	30	< 900 C	<2,020 *	0.2 CA			< 20,000	< 1,170	< 20,000	< 10 D
Dichloropropane, 1,2- (propylene dichloride)	78875	< 0.08	< 80	5	23,000 *S	5,700 *S	10,300 *S	3,040 *S	700,000	32,700		< 2 D
Dichloropropene, 1,3-	542756			20 W	0.99 T	0.055 T	790 *S					
Dichloropropene, 1,3- (cis)	10061015			< 20 W	< 0.99 T	< 0.055 T				398		
Dichloropropene, 1,3- (trans)	10061026			< 20 W	< 0.99 T	< 0.055 T]		398		
Diclofop-methyl	51338273			9 C		6.1 CA						
Dicofol	115322					0.5 NZ		0.1 NZ				
Didecyl dimethyl ammonium chloride (DDAC)	7173515					1.5 CA						
Dieldrin ‡	60571	0.1 ^{ng} /L	< 0.1		0.24	0.056	0.355 (1/2)	0.00095 (1/2)		2.38		22 A
Diethyl phthalate	84662	< 0.5	< 5		1,800 T	210 T 110 V	2,944 *C	3.4 *C		24,800	100,000	< 100 D
Diethylene-glycol	111466		13,000 S									
Dihydroxybenzenes, sum	na	0.24 L										
Di-iso-butyl phthalate	84695	< 0.5	< 5									< 100 D
Dimethoate	60515			6 W		6.2 CA 0.15 NZ				218		
Dimethyl aminoazobenzene [p-]	60117									40		
Dimethyl benz(a)anthracene, 7,12-	57976									16,300		
Dimethyl benzidine, 3,3-	119937									104		
Dimethyl naphthalene, 2,6-	581420											
Dimethyl phenethylamine [alpha,alpha]	122098									300		
Dimethyl phenol, 2,4-	105679				2,120 *	100 V					10 v	
Dimethyl phthalate	131113	< 0.5	< 5		940 *C	3 *C	2,944 *C	3.4 *C	200,000	734,000		< 100 D

1: L – Environmental Risk Limit; S – Serious Contamination Level

3: p - proposed; * - LOEL; C - value for chemical class; S - value for summation of isomers; (½) - CMC is halved to compare to 1985 Guideline derivation; x 0.1 – chronic value derived by division of acute value by 10

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS	GRO	UND WAT	ER	Ś	SURFACE	WATER	S		S 0	IL	
All concentrations in parts per billion	Number	<u>Du</u>	<u>tch</u> 1	MCL ²	Fr	esh	Mar	ine	Invertebrates ⁴	Mammals ⁵	Plants 6	Other 7
unless specified otherwise		Target	Intervention	MOL	Acute ³	Chronic ³	Acute ³	Chronic ³	Invertebrates	Mannar5		other
Di-n-butyl phthalate	84742	< 0.5	< 5		190 T	19 CA 9.7 V	2,944 *C	3.4 *C		150	200,000	< 100 D
Dinitrobenzene, 1,3-	99650									655		
Dinitrophenol, 2,4-	51285				230 *C	45 NZ 19 V	4,850 *C			60.9		
Dinitrotoluene, 2,4-	121142				330 *	65 NZ 44 V	590 * S	370 *S		1,280		
Dinitrotoluene, 2,6-	606202									32.8		
Di-n-octyl phthalate	117840	< 0.5	< 5		940 *C	3 *C	2,944 *C	3.4 *C		709,000		< 100 D
Dinoseb	88857			7		0.05 CA				21.8		
Dioxane, 1,4-	123911									2,050		
Dioxins (sum of PCDDs)	na		0.001 ^{ng} /L S							0.000199		
Diphenlyhydrazine 1,2-	122667				270 *	27 x 0.1]				
Diphenylamine	122394									1,010		
Diquat	85007			20		1.4 NZ						
Disulfoton	298044									19.9		
Diuron	330541			150 C		0.1EU		0.1EU				
Dodecylbenzene	25155300		0.02 S									
Endosulfan (α or β: Ι or II)	115297	0.2 ^{ng} /L	5		0.11 (1/2)	0.028 (1⁄2)	0.017 (1⁄2)	0.00435 (1/2)		119		0.01 D
Endosulfan sulfate	1031078					2.22 V				35.8		
Endrin	72208	0.04 ^{ng} /L	< 0.1	2	0.086	0.036	0.0185 (½)	0.00115 (1/2)		10.1		0.04 D
Endrin aldehyde	7421934					0.15 V				10.5		
Esfenvalerate	66230044					0.001 NZ		1				
Ethanol	64175					1,400 NZ						
Ethyl acetate	141786		15,000 S									
Ethyl benzene	100414	4	150	700	130 T	7.3 T 14 V	430 *	25 CA		5,160		30 D
Ethyl methacrylate	97632									30,000		
Ethylene glycol	107211		5,500 S			192,000 CA						
Famphur	52857									49.7		
Fenitrothion	122145					0.2 NZ						
Fluoranthene	206440	0.003	1		3,980 *	0.04 CA	40 *	11 Eco		122,000		
Fluorene	86737				70 T	3.9 T Eco	300 *C		30,000	122,000		

1: L – Environmental Risk Limit; S – Serious Contamination Level

3: p - proposed; * - LOEL; C - value for chemical class; S - value for summation of isomers; (½) - CMC is halved to compare to 1985 Guideline derivation; x 0.1 – chronic value derived by division of acute value by 10

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS	GROU	JND WAT	ER		SURFACE	WATER	S		S 0	I L	
All concentrations in parts per billion	Number	<u>Du</u>	<u>tch</u> 1	MCL 2	Fr	esh	Mar	ine	Invertebrates ⁴	Mammals ⁵	Plants 6	Other 7
unless specified otherwise		Target	Intervention	mor	Acute ³	Chronic ³	Acute ³	Chronic ³	involtosiutos	mannars		othol
Formaldehyde	50000		50 S	900 W								
Furan	110009										600,000	
Glyphosate	1071836			280 C		65 CA						
Guthion (azinphos-methyl)	865000	0.1 ^{ng} /L	2 S	20 C		0.01 0.02 NZ		0.01				0.005 D
Heptachlor	76448	$0.005 ^{\text{ng}}\text{/L}$	0.3	0.4	0.26 (1/2)	0.0019 (½)	0.0265 (1/2)	0.0018 (1⁄2)		5.98		0.7 D
Heptachlor epoxide	1024573	0.005 ^{ng} /L	3	0.2	0.26 (1/2)	0.0019 (1/2)	0.0265 (1/2)	0.0018 (1⁄2)		152		0.0002 D
Hexachlorobenzene	118741	2.1E-7 L	0.5	1	6 p	3.68 p 0.0003 V	160 *C	129 *C		199		1,000,000 M
Hexachlorobutadiene (HCBD)	87683			0.6 W	90 *	1.3 CA 0.053 V	32 *	3.2 x 0.1		39.8		
Hexachlorocyclohexane (BHC)	608731				100 *	10 x 0.1	0.34 *	0.034 x 0.1				
Hexachlorocyclopentadiene	77474			50	7 *	5.2 *	7 *	0.7 x 0.1		755	10,000	
Hexachloroethane	67721				210 T	12 T Eco 8 V	940 *	94 x 0.1		596		
Hexachlorophene	70304									199		
Hexane	110543				10 T	0.58 T						
Hexanone, 2- (methyl butyl ketone)	591786				1,800 T	99 T				12,600		
Hydroquinone (p-dihydroxybenzene)	123319	0.2	800									50 D
Indeno[1,2,3-cd]pyrene	193395	0.0004	0.05			4.31 V	300 *C			109,000		
lodo, 3- 2-propynl butyl carbamate (IPBC)	55406536					1.9 CA						
Isodrin	465736										3.32 V	
Isophorone	78591				117,000 *	1,170 x 0.1 920 V	12,900 *	1,290 x 0.1		139,000		
Isoproturon	34123596			9 W		0.1 EU		0.1 EU				
Isosafrole	120581									9,940		
Kepone	143500									32.7		
Linar alkylbenzene sulfonates (LAS)	na					280 NZ						
Linuron	335502					7.0 CA						
Malathion	121755			190 C		0.1		0.1				
Maneb	12427382	0.05 ^{ng} /L	0.1									2 D
Methacrylonitrile	126987									57		
Methanol	67561		24,000 S									

1: L – Environmental Risk Limit; S – Serious Contamination Level

3: p - proposed; * - LOEL; C - value for chemical class; S - value for summation of isomers; (½) - CMC is halved to compare to 1985 Guideline derivation; x 0.1 – chronic value derived by division of acute value by 10

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS	GRO	UND WAT	ER		SURFACE	WATER	S		S 0	IL	
All concentrations in parts per billion	Number	<u>Du</u>	tch 1	MCL ²	Fr	esh	Mar	ine	Invertebrates ⁴	Mammals ⁵	Plants 6	Other 7
unless specified otherwise		Target	Intervention	MCL -	Acute ³	Chronic ³	Acute ³	Chronic ³	Invertebrates.	wannars -		other
Methanol	67561		24,000 S									
Methapyrilene	91805									2,780		
Methomyl	16752775					3.5 NZ						
Methoxychlor	72435			40		0.03		0.03		19.9		
Methyl bromide	74839					16 V				235		
Methyl chloride	74873									10,400		
Methyl cholanthrene, 3-	56495									77.9		
Methyl, 2-4,6-dinitrophenol	534521									144		
Methyl ethyl ketone (MEK; 2-Butanone)	78933		6,000 S		240,000 T	14,000 T				89,600		
Methyl iodide	74884									1,230		
Methyl methacrylate	80626									984,000		
Methyl methanesulfanate	66273									315		
Methyl naphthalene, 1-	90120				37 T	2.1 T						
Methyl naphthalene, 2-	91576					330 V	300 *C			3,240	ĺ	
Methyl parathion	298000									0.292		
Methyl, 4- 2-pentanone	108101				2,200 T	170 T				443,000		
Methyl-tert-butyl ether (MTBE)	1634044		9,200 S			10,000 CA		5,000 CA				
Methylene bromide (Dibromomethane)	74953				11,000 *C		12,000 *C	6,400 *C		65,000	ĺ	
Methylene chloride (Dichloromethane, DCM)	75092	0.01	1,000	5	26,000 T	2,200 T 98.1 CA	12,000 *C	6,400 *C		4,050		400 D
Metolachlor	51218452			10 W		7.8 CA						
Metribuzin	21087649			80 C		1 CA						
Mineral oil (Operationally defined)	8012951	50	600									50,000 D
Mirex	2385855					0.001		0.001				
Molinate	2212671			6 W		3.4 NZ						
Monochloroaniline (3 isomers)	na		30									5 D
Monochlorobenzenes	108907	7	180	100	1,100 T	1.3 CA	160 *C	25 CA	40,000	13,100		< 30 D
Monochloronaphthalenes		7.7 ^{ng} /L L	6									120 L
Monochlorophenols (sum)	na	0.3	100			7 CA						< 10 D
Naphthalene	91203	0.01	70		190 T	1.1 CA	2,350 *	1.4 CA		99.4		
Naphthoquinone, 1,4-	130154									1,670		
Naphthoquinone, 1,4-	130154									1,670		

1: L - Environmental Risk Limit; S - Serious Contamination Level

3: p - proposed; * - LOEL; C - value for chemical class; S - value for summation of isomers; (½) - CMC is halved to compare to 1985 Guideline derivation; x 0.1 – chronic value derived by division of acute value by 10

7: M – microbes; A – avian

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS	GRO	UND WAT	ER		SURFACE	WATER	S		S 0	IL	
All concentrations in parts per billion	Number	<u>Du</u>	<u>tch</u> 1	MCL ²	Fr	esh	Mar	ine	Invertebrates ⁴	Mammals ⁵	Plants 6	Other 7
unless specified otherwise		Target	Intervention		Acute ³	Chronic ³	Acute ³	Chronic ³	Invertebrates	wannars -		other
Naphthylamine, 1-	134327									9,340		
Naphthylamine, 2-	91598			1						3,030		
Nitroaniline [m-]	99092									3,160		
Nitroaniline [p-]	100016									21,900		
Nitroaniline, 2-	88744									74,100		
Nitrobenzene	98953			·	27,000 *	550 NZ 220 V	6,680 *	668 x 0.1	40,000	1,310		1,000,000 M
Nitro-o-toluidine, 5-	99558									8,730		
Nitrophenol, 2-	88755						1			1,600		
Nitrophenol, 4-	100027				1,200 T	300 T 60 V	4,850 *C		7,000	5,120		
Nitroquinoline, 4- 1-oxide	56575									122		
Nitrosodiethylamine, N-	55185					768 V				69.3		
Nitrosodimethylamine, N-	62759						Í			0.0321		
Nitroso-di-n-butylamine, N-	924163									267		
Nitroso-di-n-propylamine, N-	621647						1			544		
Nitrosodiphenylamine, N-	86306				3,800 T	210 T	3,300,000*C		20,000	545		
Nitrosomethylethylamine, N-	10595956									1.66		
Nitrosomorpholine, N-	59892									70.6		
Nitrosopiperidine, N-	100754									6.65		
Nitrosopyrrolidine, N-	930552									12.6		
Nonylphenol	25154523				28	6.6	7	1.7				
0,0-diethyl 0-2- pyrazinylphosphorothioate	297972									799,000		
Octanone, 2-	111137				150 T	8.3 T						
PAHs, High MW	na						300 *C		29,000 EPA	100,000 EPA		< 1,000 D
PAHs, Low MW	na						300 *C		18,000 EPA	1,100 EPA		< 1,000 D
PAHs, Total	na						300 *C					1,000 D
Paraquat	4685147					0.5 NZ						
Parathion	56382			50 C	0.065	0.013			0.34 V			
PCBs (sum)	1336363	0.01	0.01	0.5	0.6 T 0.03 NZ	0.014	0.033 T	0.03		0.332	40,000	< 20 D
Pentachloroaniline	527208		1 S						100,000			

1: L - Environmental Risk Limit; S - Serious Contamination Level

3: p - proposed; * - LOEL; C - value for chemical class; S - value for summation of isomers; (½) - CMC is halved to compare to 1985 Guideline derivation; x 0.1 – chronic value derived by division of acute value by 10

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS	G R O	UND WAT	ER		SURFACE	WATER	S		S 0	IL	
All concentrations in parts per billion	Number	<u>Du</u>	tch 1	MCL ²	Fr	esh	Mar	ine	Invertebrates ⁴	Mammals ⁵	Plants 6	Other 7
unless specified otherwise		Target	Intervention	MUL *	Acute ³	Chronic ³	Acute ³	Chronic ³	invertebrates*	wannid15 °		Other '
Pentachlorobenzene	608935	0.003	1		8.4 T	0.47 T 0.019 V	160 *C	129 *C	20,000	497		< 30 D
Pentachloroethane	76017				7,240 *	1,100 *	390 *	281 *		10,700		
Pentachloronitrobenzene	82688									7,090		
Pentachlorophenol [PCP: at pн 7.8]	87865	0.04	3	1.0	19 ph	15 Ph	13	7.9	6,000	119	3,000	2,100 A
Pentanol, 1-	71410				2,000 T	110 T						
Permethrin	52645531					0.004 CA		0.001 CA				
Phenacetin	62442									11,700		
Phenanthrene	85018	0.003	5		30 p	6.3 p Eco 3.6 V	7.7 p	4.6 p		45,700		
Phenol	108952	0.2	2,000		10,200 *	320 NZ 180 V	5,800 *	400 NZ	30,000	120,000	70,000	1,000,000 M 500 D
Phenylenediamine [p-]	106503									6,160		
Phorate	298022			2 C						0.496		
Phthalates (sum)	na	0.5	5									100 D
Picloram	1918021			500		29 CA						
Picoline, 2-	109068									9,900		
Polychlorinated dibenzofurans	51207319									0.0386		
Pronamide	23950585										13.6 v	
Propanol, 2- (Isopropanol)	67630		31,000 S		130 T	7.5 T						
Propionitrile	107120									49.8		
Propylene glycol	57556					500,000 CA						
Pyrene	129000					0.025 CA	300 *C			78,500		
Pyridine	110861	0.5	30							1,030		100 D
Quinoline	91225					3.4 CA						
Resorcinol (m-dihydroxybenzene)	108463	0.2	600									50 D
Safrole	94597									404		
Silvex (2,4,5-TP)	93721			50							109 v	
Simazine	122349			4		10 CA 3.2 NZ		1 EU				
Styrene (Vinyl benzene)	100425	6	300	100		72 CA 32 V				4,690	300,000	300 D

1: L - Environmental Risk Limit; S - Serious Contamination Level

3: p - proposed; * - LOEL; C - value for chemical class; S - value for summation of isomers; (½) - CMC is halved to compare to 1985 Guideline derivation; x 0.1 – chronic value derived by division of acute value by 10

7: M – microbes; A – avian

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS	GROU	JND WAT	ER	9	SURFACE	WATER	S		S 0	IL	
All concentrations in parts per billion	Number	Du	tch 1	MCL ²	Fr	esh	Mar	ine		Mammala 5	Plants 6	Other 7
unless specified otherwise	lumber	Target	Intervention		Acute ³	Chronic ³	Acute ³	Chronic ³	Invertebrates ⁴	Mammals ⁵	Plants •	Other '
Tebuthiuron	34014181			490 BC		1.6 CA 2.2 NZ						
Temephos	3383968					0.05 NZ		0.05 NZ				
Tetrachloroaniline, 2,3,5,6-	3481207		< 10 S						20,000		20,000	
Tetrachlorobenzene, 1,2,3,4-	634662	< 0.01	< 2.5		250 *C	1.8 CA	160 *C	129 *C	10,000			< 30 D
Tetrachlorobenzene, 1,2,3,5-	634902	< 0.01	< 2.5		250 *C		160 *C	129 *C				< 30 D
Tetrachlorobenzene, 1,2,4,5-	95943	< 0.01	< 2.5		250 *C	50 *C 3 V	160 *C	129 *C		2,020		< 30 D
Tetrachlorobenzenes	na	0.01	2.5		250 *C	< 3 V	160 *C	129 *C	< 10,000	< 2,020		< 30 D
Tetrachloroethane, 1,1,1,2-	630206									225,000		
Tetrachloroethane, 1,1,2,2-	79345				2,100 T	111 CA	9,020 *	902 x 0.1		127		
Tetrachloroethylene (Tetrachloroethene; PCE; PER)	127184	0.01	40	5	830 T	98 T 45 V	10,200 *	450 *		9,920		2 D
Tetrachlorophenol, 2,3,4,5-	4901513	< 0.01	< 10			< 1 CA			20,000			< 10 D
Tetrachlorophenol, 2,3,4,6-	58902	< 0.01	< 10	100 C		20 NZ	440 *	44 x 0.1		199		< 10 D
Tetrachlorophenols (sum)	25167833	0.01	10			1 CA			< 20,000	< 199		< 10 D
Tetraethyldithiopyrophosphate	3689245									596		
Tetrahydrofuran	109999	0.5	300									100 D
Tetrahydrothiophene	110010	0.5	5,000									100 D
Thiobencarb	28249776					2.8 NZ						
Thiram	137268					0.2 NZ		0.01 NZ				
Toluene	108883	7	1,000	1,000	120 T	9.8 T 2 CA	6,300 *	215 CA		5,450	200,000	10 D
Toluidine [o-]	95534							l.		2,970		
Toxaphene	8001352			3	0.73	0.0002	0.21	0.0002		119		
Triallate	2303175					0.24 CA						
Tributyltinoxide	56359	<0.05E-16 ^{ng} /L	< 0.7		0.46	0.072	0.42	0.0074				< 1 D
Trichloroaniline (multiple isomers)	na		10 S									
Trichloroaniline, 2,4,5-	636306		< 10 S						20,000		20,000	
Trichlorobenzene, 1,2,3-	87616	< 0.10	< 10			8.0 CA			20,000			< 30 D
Trichlorobenzene, 1,2,4-	120821	< 0.10	< 10	70	700 T	24 CA	160 *C	5.4 CA	20,000	11,100		< 30 D
Trichlorobenzenes	12002481	0.01	10	< 70	< 700 T	< 8 CA	160 *C	<5.4 CA	< 20,000	< 11,100		< 30 D

1: L – Environmental Risk Limit; S – Serious Contamination Level

3: p - proposed; * - LOEL; C - value for chemical class; S - value for summation of isomers; (½) - CMC is halved to compare to 1985 Guideline derivation; x 0.1 – chronic value derived by division of acute value by 10

7: M – microbes; A – avian

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS	GRO	UND WAT	ER	9	SURFACE	WATER	S		S 0	IL	
All concentrations in parts per billion	Number	Dutch 1		MCL ²	Fr	esh	Marine		Invertebrates ⁴	Mammals ⁵	Plants 6	Other 7
unless specified otherwise		Target	Intervention	MOL	Acute ³	Chronic ³	Acute ³	Chronic ³	Invertebrates	Mannar5		other
Trichloroethane, 1,1,1-	71556	0.01	300	200	200 T	11 T	31,200 *	3,120 x 0.1		29,800		70 D
Trichloroethane, 1,1,2-	79005	0.01	130	5	5,200 T	1,200 T 500 V		1,900 NZ		28,600		400 D
Trichloroethene (TCE)		24	500	5		21 CA	2,000 *	200 x 0.1		12,400		100 D
Trichloroethene, 1,1,1-	71556	< 24	< 500	< 5	< 440 T	< 21 CA						< 100 D
Trichloroethene, 1,1,2-	79016	< 24	< 500	< 5	< 440 T	< 21 CA						< 100 D
Trichlorofluoromethane	75694				11,000 *C		12,000 *C	6,400 *C		16,400		
Trichlorophenol, 2,3,5-		< 0.03	< 10			< 18 CA						< 10 D
Trichlorophenol, 2,4,5-	95954	< 0.03	< 10		100 p	63 p	240 p	11 p	9,000	14,100	4,000	< 10 D
Trichlorophenol, 2,4,6-	88062	< 0.03	< 10	5 C		20 NZ 4.9 V			10,000	9,940		< 10 D
Triclorophenols, (sum)	na	0.03	10			18 CA			< 9,000	<9,940	< 4,000	< 10 D
Trichloropropane, 1,2,3-	96184									3,360		
Triethylphosphorothioate [0,0,0-]	126681									818		
Trifluralin	1582098			20 W		0.2 CA		0.1EU				
Trinitrobenzene, 1,3,5-	99354									376		
Trinitrotoluene, 2,4,6-	118967					140 NZ						
Vinyl acetate	108054				280 T	16 T				12,700		
Vinyl chloride	75014	0.01	5	2		930 V				646		10 D
Xylene, m-	108383	< 0.2	< 70		32 T	1.8 T Eco						< 100
Xylene, o-	95476	< 0.2	< 70			350 NZ						< 100
Xylene, p-		< 0.2	< 70									< 100
Xylenes	1330207	0.2	70	10,000	230 T	13 T					10,000 V	100 D

1: L – Environmental Risk Limit; S – Serious Contamination Level

3: p - proposed; * - LOEL; C - value for chemical class; S - value for summation of isomers; (1/2) - CMC is halved to compare to 1985 Guideline derivation; x 0.1 – chronic value derived by division of acute value by 10

These tables were developed for internal use for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

Sources

- 1 Entry is lower of current VROM Environmental Quality standards or the updated RIVM Environmental Risk Limits. Risk limits are typically divided by 100 to derive the Target value; this computation has been done here. Dutch Target/Intervention: E.M.J. Verbruggen, R. Posthumus and A.P. van Wezel, 2001. Ecotoxicological Serious Risk Concentrations for soil, sediment, and (ground)water: updated proposal for first series of compounds. Nat. Inst. Public Health and the Env., and subsequent updates as published elsewhere.
 Min. Housing Seriel Den And the Env., and subsequent updates are torget upluse for end intervention updates are torget upluse for end intervention.
 - Min. Housing, Spatial Plan. And the Env., 2000. Annexes Circular on target values and intervention values for soil remediations.
- 2 Primary entry is the US EPA MCL value, followed by the lower of appropriate WHO, Canadian, or British Columbia guidelines. <u>Maximum Contaminant Levels (MCLs): http://www.epa.gov/safewater/index.html</u>
 - W World Health Organization's (WHO) Drinking water guidelines: http://www.who.int/water sanitation health/dwq/en/
 - C Canadian Environmental Quality Guidelines for Community Water, Summary Table Update 2002: http://www.ccme.ca
 - BC British Columbia Water Quality Guidelines (either working or recommended): http://www.env.gov.bc.ca/wat/wg/
- 3 Primary entry is the US Ambient Water Quality Criteria, followed by the lowest of <u>Tier II SAVs</u> or available standards or guidelines. <u>Lowest Observable Effect Levels (LOELs)</u> previously published by EPA are also included since these essentially were the basis for many state standards. EPA <u>Ambient water Quality Criteria (AWQC)</u>: <u>http://www.epa.gov/waterscience/criteria/aqlife.html</u>
 - T Tier II Secondary Acute Value: http://www.esd.ornl.gov/programs/ecorisk/tools.html
 - Eco EPA EcoUpdate, Ecotox Thresholds, EPA 540/F-95/038
 - CA Canadian water Quality Guidelines: http://www.ec.gc.ca/CEQG-RCQE/English/Cegg/Water/default.cfm
 - BC British Columbia Water Quality Guidelines (either working or recommended): http://www.env.gov.bc.ca/wat/wq/
 - EU European Union (EU) Environmental Quality Standards: COM(2006) 397 and 398 final.
 - V US EPA Region V Ecological Screening Levels: http://www.epa.gov/reg5rcra/ca/edgl.htm
- 4 Toxicological Benchmarks for Effects on Earthworms: <u>http://www.esd.ornl.gov/programs/ecorisk/tools.html</u> EPA – <u>Eco-SSL</u> for Invertebrates: <u>http://www.epa.gov/ecotox/ecossl/</u> Region V Ecological Screening Level for Invertebrates: <u>http://www.epa.gov/reg5rcra/ca/</u>
- 5 Entry is lower of either: Region V Ecological Screening Level for shrew or vole: <u>http://www.epa.gov/reg5rcra/ca/</u> EPA – Eco-SSL for Mammals: <u>http://www.epa.gov/ecotox/ecossl/</u>
- 6 Toxicological Benchmarks for Effects on Terrestrial Plants: <u>http://www.esd.ornl.gov/programs/ecorisk/tools.html</u> V – EPA Region V Ecological Screening Level for Plants: <u>http://www.epa.gov/reg5rcra/ca/</u>
- 7 Entry is lower of either:
 - M Toxicological Benchmarks for Effects on Microbes: http://www.esd.ornl.gov/programs/ecorisk/tools.html
 - A Eco-SSL for Avian Receptors: http://www.epa.gov/ecotox/ecossl/
 - D Entry is lower of current VROM Environmental Quality standards or the updated RIVM Environmental Risk Limits. See #1 above for sources.

Screening Quick Reference Table for PCB Composition

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

Degree of Chlorination	A1221 Wt %	A1232 Wt %	A1016 Wt %	A1242 Wt %	A1248 Wt %	A1254 Wt %	A1260 Wt %	A1262 Wt %
Biphenyl	11.7 a	6.2 ^a						
∑1 CI	65.5	31.3	Tr (#1, 3)	Tr (#1, 3)				
∑2 CI	30.0	26.1	15.2	11.5	Tr (#7, 8)			
∑3 CI	3.5	21.7	58.2	51.0	21.8	2.1		
∑4 CI	Tr	15.0	26.5	29.0	60.2	14.3	Tr (#52, 70, 74)	Tr (#52, 70, 74)
∑5 CI	Tr (#95)	5.8	Tr (#91, 95, 102)	8.5	17.1	53.2	8.2	3.5
∑6 CI				Tr (#136, 138)	0.8	26.6	47.2	31.6
∑7 CI					Tr	3.8	37.6	45.8
∑8 CI						Tr (#202)	6.3	17.7
∑9 CI							0.7	1.3
Total	99.1%	99.94%	99.95%	100%	99.93%	99.95%	100.01%	99.98%
Prominent congeners ^b	1 3 8 4 15 6	1 8 3 4 15 28	18 28 8 31 33 16	18 28 31 8 33 16	66 70 64 28 52 60	118 110 101 95 138 153	180 138 149 187 174 170	180 153187 149 174 203
Unique congener	#11 Tr					#137	#189 Tr	
Peak Range ^c	1-48	1-74	2-50	2-82	8-106	8-107	31.1-117	31.1-117
Ratio #118:203 d	Neither	No #203	Neither	No #203	73	370 - 1230	0.3 – 0.5	0.1
Ratio #31:118 e	No #118	4.3	No #118	8.5 - 9.2	2.1	0.01 – 0.04	0.1	No #31
Wt % of #153 ^f				0.1 - 0.14	Tr - 0.52	4.7-6.1	11.0 – 12.2	
Additional Information		~ 1:1 mix of 1221-1242	Distillation of 1242					

Notes

Commercial PCBs were manufactured by chlorination of biphenyl to produce complex mixtures (Aroclors in the USA and Great Britain, Clophens in Germany, or Kanechlors in Japan), each containing 60 to 90 different molecular species *(congeners)* and a specified weight percent of chlorine (for example, 54% in Aroclor 1254). There are 209 distinct congener structures possible, of which about 140 to 150 have been detected at significant levels in commercial PCBs.

Congener distributions in environmental samples roughly resemble those of the parent commercial mixtures, but are often modified due to evaporation, water extraction, microbial oxidation or dechlorination, photochemical dechlorination or differential biological uptake and metabolism. Compositional modification from original Aroclor patterns increases in biotic samples with trophic level. Still, it is often useful or necessary to attempt distinguishing the parent mixture released. The following information is presented to provide assistance with initial, preliminary evaluation of Aroclor. *Aroclor assignment should be conducted only by qualified chemists.*

Total PCBs can be characterized by two primary methods – the sum of congeners, or, the sum of estimates of individual Aroclor concentrations. In lower trophic level samples, these two methods provide approximately equal estimates of total PCBs. At higher trophic levels, analyses of samples tend to overestimate total PCBs by as much as 2-fold using the sum of Aroclor method, due to an overestimation of Aroclor 1254.

 Tr - Individual congeners are at trace levels - 0.05 to 0.5% each - and are not included in totals. # - Refers to IUPAC congener number. IUPAC #s 107, 108, 109, 199, 200, 201 correspond to BZ#s 108, 109, 107, 201, 199, and 200, respectively. a - Biphenyl figures are not reflected in congener weight percentages. b - The six most prominent peaks listed by IUPAC congener number. c - In the 118 peak numbering system, peak 1 is biphenyl. d - This ratio is often used as an indicator for Aroclor 1260. 	 e – This ratio is often used as an indicator for Aroclor 1248. f – Congener 153 is persistent in biota and abundantly present in higher chlorinated Aroclors and so provides a degree of modification estimate for biotic samples (increasing modification with decreasing PD values): PD₁₅₃ = [#153_{theory} -#153_{tample}]*100
For more information, email SQuiRT@NOAA.gov	Pg 28 OR&R Report 08-1

Screening Quick Reference Table for Toxic Equivalency Factors

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

Compound	2005 Mammals / human TEF	1998 Fish TEF	1998 Avian TEF	
CHLORINATED DIBENZO-P-DIOXINS				
2,3,7,8-TCDD	1	1	1	
1,2,3,7,8-PeCDD	1	1	1	
1,2,3,4,7,8-HxCDD	0.1	0.5	0.05	
1,2,3,6,7,8-HxCDD	0.1	0.01	0.01	
1,2,3,7,8,9-HxCDD	0.1	0.01	0.1	
1,2,3,4,6,7,8-HpCDD	0.01	0.001	<0.001	
OCDD	0.0003	<0.0001	< 0.0001	
CHLORINATED DIBENZOFURANS				
2,3,7,8-TCDF	0.1	0.05	1	
1,2,3,7,8-PeCDF	0.03	0.05	0.1	
2,3,4,7,8-PeCDF	0.3	0.5	1	
1,2,3,4,7,8-HxCDF	0.1	0.1	0.1	
1,2,3,6,7,8-HxCDF	0.1	0.1	0.1	
1,2,3,7,8,9-HxCDF	0.1	0.1	0.1	
2,3,4,6,7,8-HxCDF	0.1	0.1	0.1	
1,2,3,4,6,7,8-HpCDF	0.01	0.01	0.01	
1,2,3,4,7,8,9-HpCDF	0.01	0.01	0.01	
OCDF	0.0003	<0.0001	0.0001	
NON-ORTHO-SUBSTITUTED PCBS				
3,3#,4,4#-tetraCB (PCB 77)	0.0001	0.0001	0.05	
3,4,4#,5-tetraCB (PCB 81)	0.0003	0.0005	0.1	
3,3#,4,4#,5-pentaCB (PCB 126)	0.1	0.005	0.1	
3,3#,4,4#,5,5#-hexaCB (PCB 169)	0.03	0.00005	0.001	
MONO-ORTHO-SUBSTITUTED PCBs				
2,3,3#, 4,4#-pentaCB (PCB 105)	0.00003	<0.00005	0.0001	
2,3,4,4#,5-pentaCB (PCB 114)	0.00003	<0.00005	0.0001	
2,3#,4,4#,5-pentaCB (PCB 118)	0.00003	<0.00005	0.00001	
2# ,3,4,4# ,5-pentaCB (PCB 123)	0.00003	<0.00005	0.00001	
2,3,3#, 4,4#,5-hexaCB (PCB 156)	0.00003	<0.00005	0.0001	
2,3,3#,4,4#,5#-hexaCB (PCB 157)	0.00003	<0.000005	0.0001	
2,3#,4,4#,5,5#-hexaCB (PCB 167)	0.00003	<0.00005	0.00001	
2,3,3#, 4,4#, 5,5#-heptaCB (PCB 189)	0.00003	<0.00005	0.00001	

It has been well established that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and other chlorinated dioxins, furans, and even PCBs with a similar planar chemical structures are capable of inducing similar toxicity, such as carcinogenicity. Since these compounds generally are observed in mixtures, it is desirable to be able to express the cumulative, overall toxicity of the mixture. However, since each of these congeners does not exhibit the same degree, or potency, of toxicity, some manipulations of raw concentrations are required to express total toxicity.

A number of systems have been developed to express the total, overall toxicity from mixtures of these chemicals. Most commonly, the potency of each congener is weighted relative to a standard, generally the most potent congener. For dioxins and furans, 2,3,7,8-TCDD is the common standard which is given a reference value of one. The weighting, or potency factor, is called a Toxic Equivalency Factor (TEF). When cumulative results are reported, the absolute concentration of each congener is multiplied by its corresponding TEF to derive a TCDD-equivalency. These values are then summed together to give a total Toxic Equivalency Quotient, or TEQ.

The TEQ scheme refers **only** to adverse effects (e.g., cancer) following interactions with certain cellular enzyme systems (the Ah receptors). Other toxic effects of dioxins and dioxin-like compounds are not quantified by this method. Because they involve potency to specific enzyme systems, TEF values vary for different animal species.

There are two main schemes:

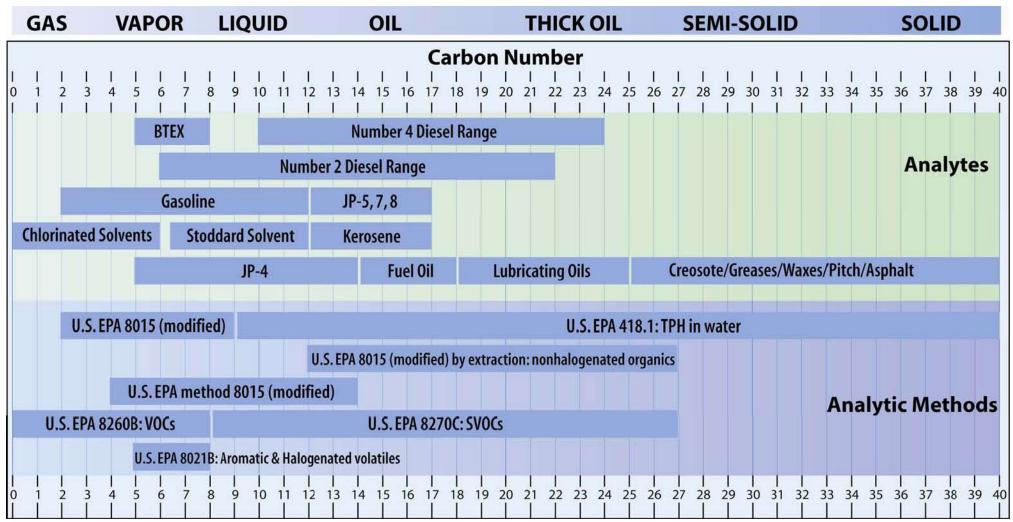
The two most common systems for determining TEQs are:

- 1) **I-TEF and I-TEQ:** The older International Toxic Equivalent (I-TEQ) scheme by the North Atlantic Treaty Organization (NATO) initially set up in 1989 and later extended and updated.
- WHO-TEF and WHO-TEQ (also referred to as TEF or TEQ): More recently, the World Health Organization (<u>WHO</u>) suggested modified Toxic Equivalency Factor (TEF) values for human risk assessment.

ITEQs are most common in North America, while Asia and Europe tend to use WHO-TEQs. On average, the result of TEQ-calculations is about 10% higher when I-TEFs are used compared to when WHO-TEFs are used.

Potency in fish reflects mainly rainbow trout: potency for birds is mainly derived from chickens.

Sources


Van den Berg, M., and others. 1998. "Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, and PCDFs for Humans and Wildlife." *Environmental Health Perspectives*. Volume 106. Pages 775 - 792.

Van den Berg, M., and others. 2006. "The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds." *Toxicological Sciences* 93(2):223-241.

Screening Quick Reference Tables for Composition by Carbon Range

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

Carbon ranges are approximate: actual carbon ranges for a specific product are dependent upon the distillation process of the exact source. Analytic Methods generally refer to EPA SW-846 methods (<u>www.epa.gov/SW-846/index.htm</u>)

Screening Quick Reference Tables for Sample Collection and Storage

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

MATERIAL	CONTAINER	PRESERVATION	MAXIMUM HOLDING TIME	SAMPLE SIZE
INORGANICS				
Chromium ⁺⁶ (Cr ⁺⁶)	P,G	Cool, 4°C	24 hours	400 mL/200 g
Mercury (Hg)	P,G	HNO ₃ , to pH <2	28 days	400 mL/200 g
Metals, except Cr ⁺⁶ and Hg	P,G	HNO ₃ , to pH <2	6 months	600 mL/200 g
Cyanide by method no. 9010	P,G	Cool 4°C, pH >12 See method 9010	14 days	1,000 mL
Alpha, Beta, and Radium Radiation	P,G	HNO ₃ to pH <2	6 months	1,000 mL
ORGANICS				
Benzidines	G, TLC	Cool, 4°C	7 days until extraction, 40 days after extraction	1,000 mL
Chlorinated Hydrocarbons	G, TLC	Cool, 4°C ³	7 days until extraction, 40 days after extraction	1,000 mL
Dioxins and Furans	G, TLC	Cool, 4°C ³	30 days until extraction, 45 days after extraction	1,000 mL
Haloethers	G, TLC	Cool, 4°C ³	7 days until extraction, 40 days after extraction	1,000 mL
Nitrites	G, TLC	Cool, 4⁰C ³	14 days	
Nitrosamines	G, TLC	Cool, 4⁰C ³	7 days until extraction, 40 days after extraction	1,000 mL
Nitroaromatics and Cyclic Ketones	G, TLC	Cool, 4⁰C ³	7 days until extraction, 40 days after extraction	1,000 mL
OIL And GREASE	G	Cool, 4⁰C ²	28 days	1,000 mL
TOTAL Organic Carbon, By Method No. 9060	P,G	Cool, 4°C ² store in the dark	28 days	100 mL
TOTAL Organic Halides By Method No. 9020/9021	G, TLC	Cool, 4°C ²	28 days	500 mL
PCBs	G, TLC	Cool, 4°C	7 days until extraction, 40 days after extraction	1,000 mL/250 mL
Pesticides	G, TLC	Cool 4°C,	7 days until extraction, 40 days after extraction	1,000 mL/250 mL
Phenols	G, TLC	Cool, 4°C ³	7 days until extraction, 40 days after extraction	1,000 mL
Phthalate Esters	G, TLC	Cool, 4°C	7 days until extraction, 40 days after extraction	1,000 mL
Polynuclear Aromatic Hydrocarbons	G, TLC	Cool, 4°C ³ store in the dark	7 days until extraction, 40 days after extraction	1,000 mL/250 mL
Purgeable Aromatic Hydrocarbons	VOA	Cool, 4°C ^{2,3}	14 days	40 mL
Purgeable Halocarbons	VOA	Cool, 4⁰C ³	14 days	40 mL

Sources

EPA SW846

P - Polyethylene; G - Amber glass containers; TLC - Teflon-lined cap; VOA - Volatile organic analyte vial of amber glass with teflon-lined septum.

Adjust to pH <2 with H2SO4, HCI, or solid NaHSO4

3 Free chlorine must be removed before addition of HCl by exact addition of Na₂S₂O₃

Screening Quick Reference Table Options for Selection of Analytical Methods: Inorganics

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

TRACE ELEMENT	0 T H E R ¹	FLAME AA	FURNANCE AA	ICP	EXTRACTI	ON METHODS
	UTILE K		TORNANCE AA	TCT	WATER	SOIL/SEDIMENT
Aluminum (Al)	6800	7020		6010B 6020A	3005A 3010A 3015A	3050B 3051A
Antimony (Sb)	6200(55) 6800	7040	7041 7062 ³	6010B 6020A	3005A 3015A	3050B 3051A
Arsenic (As)	6200(60) 7063 7061A ³		7060 7062 ³	6010B 6020A	3005A 3010A 3015A 7063	3050B 3051A
Barium (Ba)	6200(60) 6800	7080A	7081 ³	6010B 6020A	3005A 3010A 3015A	3050B 3051A
Beryllium (Be)		7090	7091	6010B 6020A	3005A 3010A 3015A 3020A	3050B 3051A
Cadmium (Cd)	6200 6800	7130	7131A	6010B 6020A	3005A 3010A 3015A 3020A	3050B 3051A
Calcium (Ca)	6200 6800	7140		6010B 6020A	3005A 3010A 3015A	3050B 3051A
Chromium (CR), total	6200(200) 6800	7190	7191	6010B 6020A	3005A 3010A 3015A 3020A	3050B 3051A
Chromium+6 (Cr+6)	7195 — 7199 ³				7195 - 7199	3060A
Cobalt (Co)	6200(330)	7200	7201	6010B 6020A	3005A 3010A 3015A 3020A	3050B 3051A
Copper (Cu)	6200(85) 6800	7210	7211 ³	6010B 6020A	3005A 3010A 3015A	3050B 3051A
Iron (Fe)	6200 6 800	7380	7381 ³	6010B 6020A	3005A 3010A 3015A	3050B 3051A
Lead (Pb)	6200(45) 6800	7420	7421	6010B 6020A	3005A 3010A 3015A 3020A	3051A
Magnesium (Mg)	6800	7450		6010B 6020A	3005A 3010A 3015A	3050B 3051A
Manganese (Mn)	6200(240)	7460	7461	6010B 6020A	3005A 3010A 3015A	3050B 3051A
Mercury (Hg)	4500(0.5) 6200 6800 7470A 7471B 7472 7473 7474 ³			6020A	7470A 7472 3015A	3051A 7471B 7473 7474
Molybdenum (Mo)	6200(25) 6800	7480	7481	6010B	3005A 3010A 3015A 3020A	3050B 3051A
Nickel (Ni)	6200(100) 6800	7520	7521	6010B 6020A	3005A 3010A 3015A	3050B 3051A
Potassium (K)	6200 6800	7610		6010B 6020A	3005A 3010A 3015A	3050B 3051A
Selenium (Se)	6200 6800 7741A 7742 ³		7740	6010B 6020A	3005A 3010A 3015A	3050B 3051A
Silver (Ag)	6200 6800	7760A	7761 ³	6010B 6020A	3005A 3015A	3051A 7760 7761
Sodium (Na)		7770		6010B 6020A	3005A 3010A 3015A	3050B 3051A
Strontium (Sr)	6200(30) 6800	7780		6010B	3015A	3050B 3051A
Thallium (TI)	6200 6800	7840	7841	6010B 6020A	3005A 3010A 3015A 3020A	3050B 3051A
Tin (Sn)	6200(85)	7870				
Vanadium (V)	6200 6800	7910	7911	6010B 6020A 3005A 3010A 3015A 3020A		3050B 3051A
Zinc (Zn)	6200(80) 6800	7950	7951 ³	6010B 6020A	3005A 3010A 3015A	3050B 3051A
Cyanide (HCN)	9010B — 9014 ³					

Sources

All method numbers refer to EPA SW-846, Volume III with changes as proposed for Volume IV.

ICP's advantage is that it allows simultaneous or rapid sequential determination of many elements, but suffers from interferences. AA determinations are normally completed as single element analyses. ICP and Flame AA have comparable detection limits (within a factor of 4), but ICP-MS (6020A) can drastically improve the detection limits (e.g., an order of magnitude lower). Furnace AA generally exhibits lower detection limits than ICP or Flame-AA, and offers more control over unwanted matrix components. X-RAY and immunoassays allow field determinations.

Method 6200 is Portable X-Ray; 6800 is Elemental/Isotope Mass Spec.; 4500 is Immunoassay; 7063 is ASV; where available, soil detection limits in ppm are in parentheses.

2 Except as noted, most individual procedures are proposed to be integrated into Method 7000B or 7010.

3 Includes various methods. Follow the extraction procedure detailed in the individual determinative method.

Screening Quick Reference Table Options for Selection of Analytical Methods: Organics

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

	FIELD	OC/MS	SPECIFIC	HPLC	EXTRACTIO	N METHODS	CLEANUP
С О М Р О U N D S	METHODS	METHOD	DETECTION METHOD	METHOD	WATER	SOIL/SEDIMENT	METHOD
Aromatic and Halogenated Volatiles		8260B	8021B	0	5021 5030B 5032	5021 5032 5035	
Carbamates				8318 8321B	8318 8321B	8318 8321B	8318
Chlorinated Dioxins and Furans			8280B 8290A		8280B 8290A	8280B 8290A 3545A	8280B 8290A
Chlorinated Hydrocarbons		8270D	8121		3510C 3520C 3535A	3540C 3550B	3620B 3640A
Chlorinated Phenoxyacids	4015 (0.1 ppm)	8270D 2	8151A	8321B	8151A 8321B 3535A	8321B 8151A 3545A 3580A	8151A 3620B
Haloethers		8270D	8111		3510C 3520C	3540C 3545 3550B	3620B 3640A
Nitriles and Amides		8260B	8031 8032A 8033	8315 8316	5030B — 5032 8031 8032A 8316	5031 5032 5035	8032A
Nitroaromatics and Ketones		8270D	8091	8330A	3510C 3520C 3535A	3540C 3545 3550B	3620B 3640A
Nitroaromatics (Explosives)	4050 (0.5 ppm) 4051 8515 (1 ppm)			8330A - 8332	8330A — 8332	8330A — 8332	8330A — 8332 3620B
Nitrosamines		8270D	8070A		3510C 3520C 8070A	3540C 3545 3550B 8070A	3610B 3620B 3640A 8070A
Non-Halogenated Volatiles		8260B	8015B		5030B — 5032	5021 5031 5032 5035	
Organochlorines	4040 — 4042 (0.2 to 20 ppm)	8270D 2	8081B 8275A		3510C 3520C 3535A	3540C 3545A 3550B 3562	3620B 3630C 3640A 3660
Organophosphates		8270D 2	8141B	8321B	3510C 3520C 3535A	3540C 3545A 3550B	3620B
PAHs	4035 (1 ppm)	8270D	8100 8275A	8310	3510C 3520C	3540C 3545 3550B 3561	3610B 3630 3640A 3650B
PCBs	4020 (5 ppm) 9078 (2 ppm)	8270D 2	8082A 8275A		3510C 3520C 3535A	3540C 3545A 3550B 3665A 3562	3620B 3630C 3640A 3660 3665A
Phenolics	4010A (0.5 ppm)	8270D	8041		3510C 3520C	3540C 3545 3550B	3630 3640A 3650B 8041
Phthalates		8270D	8061A		3510C 3520C 3535A	3540C 3545 3550B	3610B 3620B 3640A
Semi-Volatile Organics		8270D			3510C 3520C 3535A	3540C 3545A 3550B	3640A 3650B 3660
Total Organic Halides (TOX)			9020B 9022		9020B 9022		
Total Petroleum Hydrocarbons	4030 (5 ppm) 9074		8015B				
Volatile Organics		8260B	8015B 8021B		5030B — 5032	5021 5031 5032 5035	

Sources

All method numbers refer to EPA SW-846, Update III, with changes as proposed in Update IV.

Options shown are generally for chemical classes; more detailed information may be available for specific compounds

GC/MS methods allow for scanning a broad range of volatile and semi-volatile compounds, but suffer from interference and higher detection limits.

Specific determination methods and HPLC methods allow for more precise determinations of specific compounds of interest.

Series 4000 are immunoassays and are for specific compounds within these classes (i.e., 2,4-D, TNT, RDX, and PCP). Soil detection limits are in parentheses.

2 This is not a method of choice, but rather a confirmatory method.

Screening Quick Reference Tables

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

Because trace elements are naturally occurring compounds, concentrations reflective of non-anthropogenically impacted, or "background," are provided in addition to toxicological benchmarks. For screening, trace element levels may be compared to the geometric mean (and range) observed in natural soils in the U.S. Further comparisons to regional values is encouraged.

Promulgated criteria or standards for sediments or soils are generally not available in the U.S. For screening purposes, contaminant levels in solids (sediment or soil) may be compared to benchmarks representative of different characterizations of ecological risk. They should *not* be applied without a reasonable understanding of their development, their performance, and their limitations.

The NOAA SQuiRTs include multiple sediment screening values to help portray a spectrum of concentrations which have been associated with various probabilities of adverse biological effects. This spectrum ranges from presumably nearly non-toxic to toxic levels. For instance, if all analytes screen below lower-threshold values (for example, TELs), this suggests, with a high degree of confidence, that a sample with these levels of contaminants has a low probability of being toxic, as tested through standard bioassays. Conversely, exceeding lower thresholds does *not* necessarily predict toxicity. Comparison to higher toxicity thresholds (for example, PELs) identifies compounds which are more probably present at elevated, toxic levels.

Sources of benchmarks for sediment were chosen primarily on the basis of representing a fairly unique approach for their derivation. A major exception is the "Consensus TEC/PEC" values: these values are simply averages of other existing benchmarks (mostly those appearing in the SQuiRT cards). The consensus TEC/PECs are provided here merely as a service.

For soil- and sediment-associated contaminants, dry weight concentrations are screened directly against published benchmarks. Some benchmarks are available only on a Total Organic Carbon (TOC) normalized basis, and are footnoted as such. Separate values are provided for either freshwater and estuarine or marine sediments.

For freshwater sediments, the Upper Effects Threshold (UET) was derived by NOAA as the lowest AET from a compilation of endpoint analogous to the

marine AET endpoints. The UETs for organic contaminants are generally listed for a sediment containing 1% TOC.

This version of the SQuiRT cards adds a section on the composition of PCBs. A characterization of Aroclors by their degree of chlorination and congener patterns may aid in *preliminary* exploration of source type. Definitive Aroclor assignment should only be conducted by a qualified chemist.

To express cumulative toxicity from mixtures of dioxins and furans, Toxic Equivalency Factors are included in this version of the SQuiRT cards. Absolute concentrations can be multiplied by the TEF potency factors and the products then summed to derive total toxicity.

Every effort has been made to ensure accuracy in these SQuiRT cards. However, NOAA is not liable for errors in original sources or revision of values. These screening values are subject to change as new data become available. The SQuiRT cards may be freely reproduced and distributed, if they are distributed in their entirety, without modification, and properly credited to NOAA.

The SQuiRT cards should be cited as:

"Buchman, M. F., 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle WA, Office of Response and Restoriation Division, National Oceanic and Atmospheric Administration, 34 pages." **APPENDIX B**

SITE PHOTOGRAPHS

Picture 1 - View of the Horse Barn building looking northwest

Picture 2 – View of the Blacksmith Shop building looking west

Picture 3 - View of Sand/Salt Shed building looking southeast

Picture 4 – View of the Vactor Shed building looking north

Picture 5 - View of the oil stained soil within the Blacksmith Shop

Picture 6 - View of the oil stained soil within the Blacksmith Shop, specifically, oil staining emanating from beneath a bulldozer

Picture 7 - View of the Rodder Shed and Sand/Salt Shed buildings looking southeast

Picture 8 - View of the northern portion of the Site where landfilling occurred looking south

Picture 9 – View of the Vactor Shed floor drain structure

Picture 10 – View of the open pail of waste oil in the Horse Barn

Picture 11 – View of the 30-gallon drum of unknown contents in the Horse Barn

Picture 12 – View of the 55-gallon drum of unknown contents outside the Blacksmith Shop looking southeast

Picture 13– View of the baled asbestos piping in the Horse Barn Shed

APPENDIX C

SOIL BORING LOGS

						Geologic Log						
	À					SITE INFORMATION Project Number/Client/Site:	Well Depth (feet		SPECIFICATIONS W: 9.47			
	in -	Ecomo	Crede	re Associates, L	LC	10001086						
Ś				ain Street prook, Maine 040	092	New England Yard 210 Messer Street, Laconia, NH	Screen Length (f	feet):	8			
1	Enviro	nment				DES #: Date: DES#200911005 9/22/11	TOW Elevation:	TOW Elevation: 93.52				
			_		_	Credere, LLC Representative:	Well Material					
						Judd R. Newcomb, CG			slotted screen; No. 2 sand			
						CONTRACTOR Drilling Contractor:	Equipment:	DRILLING	G EQUIPMENT			
			CA			T&K Drilling Foreman:	4 1/4" ID Hollow Casing Diameter		r			
						Sean McGarry	NA					
						Drilling Method:	Casing Material	:				
		a				Auger and SPT	NA					
		S	ample I	nformation					Equipment Installed			
Depth	Sample No.	Pen/Rec (In.)	Depth (Ft.)	Blows (/0.5')	PID (ppm) (RF=1.0)	Soil Description and Classification (Modified Burmister)	Strata	USCS Code	2-inch expansion plug			
1	S-1	24/12	0-2	6-5-3-1	ND	Tan, moist fine to coarse SAND and fine to medium GRAVEL		GW	Concrete Bentonite			
2	S-2	24/0	2-4	20-1-1-10	NS	Wet, brick jammed in spoon	als		2-inch PVC riser			
4	NA	0/0	4-6	50/0"	NS	Spoon Refusal	Fill Materials	FILL	2-inch PVC			
6 7	NA	0/0	6-8	50/0"	NS	Spoon Refusal	E E		screen 7			
8 9	NA	0/0	8-10	50/0"	NS	Spoon Refusal			No. 2 Silica Sand 9			
10						End of exploration at 10' bgs			10			
11									1			
			<u> </u>		<u> </u>	_						
12									12			
13									1.			
14						-			14			
15									1:			
16						1			10			
17									1'			
				<u> </u>	 	-						
18									18			
19									19			
20			L	<u> </u>	<u> </u>				20			
Rei	narks:	p of We	_11			NS No comple for interval		NA N-	tannliachla			
		e Detect			_	NS - No sample for interval Graphically shows depth of the inferred	water table.		t applicable andard Penetration Test			
ŀ	ave be	en made	at times		tions state	s between soil types, transitions may be gradu ed. Fluctuations of groundwater may occur du			Page 1 of 1 Boring No: CA-1			

						Geologic Log					
	A					SITE INFORMATION Project Number/Client/Site:	Well Depth (feet		SPECIFICATIONS W: 6.27		
	in	Ecom	Crede	ere Associates, L	LC	10001086	• • •				
Con the second	AC		776 M	lain Street brook, Maine 040		New England Yard 210 Messer Street, Laconia, NH	Screen Length (f	eet):	5		
F	nviror	n men t		noong manie a	52	DES #: Date:	TOW Elevation:		92.30		
						DES#200911005 9/22/11 Credere, LLC Representative:	Well Material	Well Material			
						Judd R. Newcomb, CG	1" PVC riser and		slotted screen; No. 2 sand		
						CONTRACTOR Drilling Contractor:	Equipment:	DRILLING	G EQUIPMENT		
			CA	\- 2		T&K Drilling	Geoprobe				
						Foreman: Sean McGarry	Casing Diameter NA	:			
						Drilling Method:	Casing Material	:		_	
						Direct-push	NA				
		Sa	ample I	Information					Equipment Installed		
	Sample No.	kec	Pen/Rec (In.) Depth (Ft.) Depth (Ft.) PID (ppm) (RF=1.0)		ppm) 1.0)	Soil Description and Classification (Modified Burmister)	Strata	Strata USCS Code	1-inch expansion Road Box	Depth	
Depth	Sam	Pen/Rec (In.)	Dept	,	PID ((RF=				plug	Ď	
				1		3" Concrete floor	s		Concrete		
1	~ -					Wet, dark gray and reddish-black	Fill Materials			1	
	S-1	24/12	0-3	NA	ND	medium to coarse SAND and fine to medium GRAVEL. Ceramic pieces	Fill ateri	FILL	Bentonite		
2						observed.	Z			2	
3			ĺ				ied		1-inch PVC	3	
4	S-2	36/18	3-6	NA	ND	Wet, tan medium to coarse SAND, little	atif		riser	4	
5	5-	50,12				fine Gravel, trace fine SAND	e Stra Drift	SW		5	
			<u> </u>				Native Stratified Drift		1-inch PVC		
6	S-3	12/5	6-7	NA	ND	Same as above.	Na		screen	6	
7			ĺ			End of exploration at 7' bgs			No. 2 Silica	7	
8									Sand	8	
9									-	9	
10		┨───┤	├──	!		-				10	
11	ļ								-	11	
12			╞───	<u> </u>	<u> </u>	-			-	12	
13	ſ								-	13	
14			┝──	ļ	<u> </u>	-			-	14	
15	I								-	15	
16			┝──		 	-			-	16	
17	I								-	17	
			 		 	-			-		
18	ľ		1							18	
19	ľ		1							19	
20 D		<u> </u>	1	<u></u>			<u>.</u>		U. L	20	
	narks: W - Toj	<u>:</u> op of We	211		_	SPT - Standard Penetration Test		NA - Not	t applicable		
ND	- None	e Detecto	ed		—	Graphically shows depth of the inferred v	vater table.				
						s between soil types, transitions may be graduated. Fluctuations of groundwater may occur due			Page 1 of 1		
				measurements w					Boring No: CA-2		

						Geologic Log							
	~	0 m				SITE INFORMATION Project Number/Client/Site:	Well Depth (feet)		SPECIFICATIONS W: 13.17				
	iiii	Econ	Crodo	re Associates, L	10	10001086	• • •		W: 15.17				
		X	776 M	ain Street		New England Yard	Screen Length (fe	eet):	10				
2	~		Westb	prook, Maine 040	92	210 Messer Street, Laconia, NH DES #: Date:	TOW Elevation:		98.19				
E	nviroi	nment				DES#200911005 9/22/11	10 W Elevation.		70.17				
						Credere, LLC Representative:	Well Material						
						Judd R. Newcomb, CG CONTRACTOR			inch slotted screen; No. 2 sand LING EQUIPMENT				
						Drilling Contractor:	Equipment:						
			CA	-3		T&K Drilling	4 1/4" ID Hollow		r				
						Foreman: Sean McGarry	Casing Diameter NA	:					
						Drilling Method:	Casing Material:						
_						Auger and SPT	NA	1					
	Sample Information								Equipment Installed				
		é			Soil Description and Classification					_			
	Sample No.	2	(Ft.)	Depth (Ft.) Bloms (\(\mathcal{P}(2,0)\) smolg PID (ppm) (RF=1.0)		(Modified Burmister)	Strata	USCS Code	2-inch Flush Mounted	th			
Depth	mple	Pen/Rec (In.)	pth	Blows (/0.5')	D (p				expansion plug	Depth			
Dej	Saı	Pen/l (In.)	Dej		PI								
						4" Organics			Concrete	5			
1	S-1	24/12	0-2	8-13-13-11	ND	Black, dry fine to coarse SAND, trace				1			
						Ash			Bentonite				
2										2			
	S-2	24/13	2-4	5-5-4-5	ND	Black to rusty gray, moist fine to coarse SAND, little fine Gravel and Ash							
3						SAND, Inthe fine Graver and Ash			2-inch PVC	3			
4									riser	4			
	S-3	24/16	4-6	4-3-3-1	ND	Grayish-black, moist fine to coarse	als						
5						SAND, little fine Gravel and Ash	eri	CN1/		5			
6							Fill Materials	SW/ FILL	2-inch PVC	6			
	S-4	24/8	6-8	1-1-1-1	ND	Same as above, moist to wet		TILL	screen				
7	5-4	24/0	0-0	1-1-1-1	nD	Same as above, moist to wet	Fi			7			
							-						
8	~ -									8			
9	S-5	24/10	8-10	1-1-2-1	ND	Same as above, wet				9			
_							-						
10									No. 2 Silica	10			
11	S-6	24/3	10-12	1-3-2-1	ND	Same as above, running into augers			Sand	11			
12										12			
13]	NS		Augerred to 14' through running material	NS	NS		13			
15										1.0			
14		ſ				End of exploration at 14' bgs				14			
15										15			
15										15			
16						1				16			
										1-			
17										17			
18						1				18			
19										19			
20		I	<u> </u>	<u> </u>	<u> </u>	1		I		20			
Ren	arks:									20			
тоγ	V - To	p of We			_	SPT - Standard Penetration Test		NS - No	sample for interval				
ND	- None	e Detect	ed			Graphically shows depth of the inferred w	vater table.						
						between soil types, transitions may be gradua			Page 1 of 1				
				and under conditi measurements we		d. Fluctuations of groundwater may occur due	to other factors that	in	Page 1 of 1 Boring No: CA-3				

						Geologic Log	_		
	tini,	Eco	Crede	re Associates, L		SITE INFORMATION Project Number/Client/Site: 10001086	Well Depth (fee		SPECIFICATIONS W: 9.30
omo		X IIII	776 M	ain Street		New England Yard 210 Messer Street, Laconia, NH	Screen Length ((feet):	7
E	nviron	ment	westb	rook, Maine 040	92	DES #: Date:	TOW Elevation	:	95.15
						DES#200911005 9/22/11 Credere, LLC Representative:	Well Material		
						Judd R. Newcomb, CG			slotted screen; No. 2 sand
			~ .	-		CONTRACTOR Drilling Contractor:	Equipment:	DRILLING	G EQUIPMENT
			CA	_4		T&K Drilling	4 1/4" ID Hollow		r
						Foreman: Sean McGarry	Casing Diamete NA	er:	
						Drilling Method: Auger and SPT	Casing Materia NA	1:	
		Sa	mple I	nformation					Equipment Installed
Depth	Sample No.	Pen/Rec (In.)	Depth (Ft.)	Blows (/0.5')	PID (ppm) (RF=1.0)	Soil Description and Classification (Modified Burmister)	Strata	USCS Code	2-inch expansion plug
1	S-1	24/20	0-2	14-13-12-12	ND	Orangish-tan, dry to moist fine to coarse SAND and fine to medium GRAVEL			Concrete Bentonite
2	S-2	24/19	2-4	19-24-25-27	ND	Same as above, slight oxidation and change to wet at 3.9' bgs	Fill Materials	SP	2-inch PVC riser
4 5	S-3	24/14	4-6	21-26-25-25	ND	Light gray, wet fine to coarse SAND and fine to medium GRAVEL	Fill M		2-inch
6 7	S-4	24/12	6-8	16-14-9-7	1.8	Black, wet fine to medium SAND and ASH, trace Brick		SW/ FILL	PVC screen 6 7
8 9]	NS		Augered to 10' bgs through running material	NS	NS	No. 2 Silica Sand 9
10						End of exploration at 10' bgs			10
11									11
									10
12									12
13									13
14						4			14
15									15
16									16
17									17
18						-			18
19									19
ΓOV		p of Wel			•	SPT - Standard Penetration Test Graphically shows depth of the inferred v	vater table.		20 t applicable sample for interval
ha	ave bee	n made	at times		ons state	between soil types, transitions may be gradua d. Fluctuations of groundwater may occur due			Page 1 of 1 Boring No: CA-4

						Geologic Log	_				
		6				SITE INFORMATION Project Number/Client/Site:	Well Depth (feet		W: 9.40		
	Sim	Ecol	Crada	re Associates, L		10001086	Well Depth (leet) from 10	W: 9.40		
Ś		X	776 M	ain Street		New England Yard	Screen Length (f	eet):	8		
9	- V	-	Westb	prook, Maine 040	92	210 Messer Street, Laconia, NH DES #: Date:	TOW Elevation:		92.71		
F	nviroi	ment				DES#200911005 9/22/11	1011 Elevation.		92.71		
						Credere, LLC Representative:	Well Material				
						Judd R. Newcomb, CG CONTRACTOR			slotted screen; No. 2 sa GEQUIPMENT	nd	
						Drilling Contractor:	Equipment:	DKILLIN	3 EQUI MENT		
			CA	-5		T&K Drilling	4 1/4" ID Hollow		r		
						Foreman: Sean McGarry	Casing Diameter NA	:			
						Drilling Method:	Casing Material	:			
						Auger and SPT	NA	-			
		S	ample I	nformation					Equipment Ins	talled	
	-					Soil Description and Classification		USCS		_	
	No.	2	Et.)		(III (I)	(Modified Burmister)	Strata	Code	2-inch Flux Mour		th
Depth	Sample No.	Pen/Rec (In.)	Depth (Ft.)	Blows (/0.5')	PID (ppm) (RF=1.0)				expansion plug		Depth
Dej	Saı	Pen/ (In.)	De		PII (R)						
						2" Asphalt			Concrete	8 192	
1	S-1	24/9	0-2	1-3-2-3	ND	Tan, wet medium to coarse SAND and				-	1
						fine to coarse GRAVEL	als		Bentonite	X	
2					1	Brown, wet fine to coarse SAND and	Fill Materials				2
3	S-2	24/12	2-4	15-6-7-9	ND	fine GRAVEL 2" Black band with potential petroleum	lat	GW			3
3					1	odor at 2.5' bgs	II N		2-inch PVC		3
4							Ei		riser		4
_	S-3	24/14	4-6	1-2-4-5	ND	Orangish-brown, wet medium to coarse				S Lav	
5					1	SAND and fine GRAVEL			2-inch		5
6					l				PVC		6
									screen		
7									9	8 5.2	7
			1	NS		Augered to 10' bgs through running material	NS	NS			
8						inaterial			No. 2		8
9									Silica Sand		9
										10	
10					1	End of exploration at 10' bgs					10
11					1						11
						_					
12					1						12
13					1						13
14											14
15											15
1.5											10
16]					16
17											17
17											17
18				<u>∤</u>		1					18
10											
19											19
20		l			<u> </u>	1	1	1	u		20
Ren	arks:										
		p of We			-	SPT - Standard Penetration Test	uator table		t applicable		
мD	- inone	e Detect	eu		_	Graphically shows depth of the inferred w	vater table.	IN S - INO	sample for interval		
						between soil types, transitions may be gradua d. Fluctuations of groundwater may occur due			Page	1 of 1	
				measurements we				•••	Boring No:	CA-5	

						Geologic Log	-				
						SITE INFORMATION Project Number/Client/Site:	Well Depth (fee		SPECIFICATIONS W: 6.27		
	iiiii	Econ	Crede	ere Associates, L	I C	10001086	• ·				
é		X E	776 M	ain Street brook, Maine 040		New England Yard 210 Messer Street, Laconia, NH	Screen Length (feet):	5		
F	nviro	nment	westb	nook, maine 040	192	DES #: Date:	TOW Elevation	:	93.45		
						DES#200911005 9/22/11 Credere, LLC Representative:	Well Material				
						Judd R. Newcomb, CG		0.010-inch	slotted screen; No. 2 sand		
						CONTRACTOR	T	DRILLING	G EQUIPMENT		
			$\Box \Delta$	\-6		Drilling Contractor: T&K Drilling	Equipment: Geoprobe				
						Foreman: Sean McGarry	Casing Diamete NA	r:			
						Drilling Method:	Casing Materia	l:			
_						Direct-push	NA		Г Г		
		S	ample I	Information					Equipment Installed		
-	<u>o</u> .		£		Ê	Soil Description and Classification	Strata	USCS	Flush		
_ _	le N	kec	h (F	Blows (/0.5')	ppn 1.0)	(Modified Burmister)	Strata	Code 1-inch expansion	Code L-inch expansion Road Box	1-inch expansion Boad Box	Depth
Depth	Sample No.	Pen/Rec (In.)	Depth (Ft.)		PID (ppm) (RF=1.0)				plug	ň	
I	0	н	н		нU	7" Concrete floor			Concrete		
1						4" Brown, dry fine SAND	Fill Materials			1	
1	S-1	36/18	0-3	NA	ND	Gray, moist medium to coarse SAND	Fill ateri	FILL	Bentonite	1	
2						and fine GRAVEL. 2" black layer observed at water table	M:			2	
3							_	-		3	
5							fied		1-inch PVC riser	5	
4	S-2	36/28	3-6	NA	ND	Grayish-brown, wet medium to coarse SAND and fine GRAVEL	rati Ît			4	
5						SAND and The OKAVEL	e Stra Drift	SW		5	
							Native Stratified Drift		1-inch PVC		
6	S-3	12/12	6-7	NA	ND	Same as above.	Na		screen	6	
7						End of exploration at 7' bgs				7	
						-			Silica Sand		
8										8	
9										9	
10						-			_	10	
10										10	
11										11	
12				-		-				12	
10										12	
13										13	
14										14	
15										15	
16										16	
17										17	
10				<u> </u>		4				10	
18										18	
19										19	
20				1						20	
Ren	narks:										
		p of We e Detect			•	SPT - Standard Penetration Test Graphically shows depth of the inferred v	vater table	NA - No	t applicable		
				nt approvimate -				dinge			
h	ave bee	en made	at times	and under conditi	ions state	between soil types, transitions may be gradua d. Fluctuations of groundwater may occur due			Page 1 of 1		
th	iose pre	esent at t	the time i	measurements we	ere made				Boring No: CA-6		

APPENDIX D

TEST PIT LOGS

TEST PIT DATA: PROJECT NAME:	New England Yard	DATE:	9/22/2011
PROJECT NUMBER:	10001086		
SAMPLE LOCATION ID:	<u>TP-1</u>		
CREDERE REPRESENTATIVE:	Jonathan O'Donnell		
CONTRACTOR/FOREMAN:	City of Laconia DPW		

NOTES:

FIELD ANA	LYSIS DAT	A:			
DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm _v)	SOIL DESCRIPTION (MODIFIED BURMISTER) / NOTES
0 1	0-2	S-1	Slightly moist	ND	0.5' Organic material 1.5' Dark brown, medium to coarse SAND, some fine Gravel
2 3	2-4	S-2	Slightly moist	ND	Dark brown, medium to coarse SAND, some fine Gravel
4 5	4-6	S-3	Slightly moist	ND	Light brown medium SAND
6 7	6-8	S-4	Slightly moist	ND	FILL materials including ash, glass bottles, metal and some fine to medium Sand
8 9	8-10	S-5	Wet	ND	Same as above
10					End of Exploration at 10' bgs.
		noto-Ionizatio parts per mill		ne	

TEST PIT DATA: PROJECT NAME:	New England Yard	DATE:	9/22/2011
PROJECT NUMBER:	10001086		
SAMPLE LOCATION ID:	<u>TP-2</u>		
CREDERE REPRESENTATIVE:	Jonathan O'Donnell		
CONTRACTOR/FOREMAN:	City of Laconia DPW		

NOTES:

FIELD ANA	LYSIS DAT	A:			
DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm _v)	SOIL DESCRIPTION (MODIFIED BURMISTER) / NOTES
0 1	0-2	S-1	Slightly moist	ND	0.5' Organic material 1.5' Brown medium SAND, ASH, and ASPHALT
2 3	2-4	S-2	Slightly moist	ND	1' Brown medium SAND, ASH, and ASPHALT 1' FILL materials including ash, glass bottles, metal, and some fine to medium SAND
4 5	4-6	S-3	Slightly moist	ND	Same as above
6 7	6-8	S-4	Slightly moist	ND	Same as above
8		noto-lonizati	on Detector ion by volun	Ъ	End of Exploration at 8' bgs.

TEST PIT DATA: PROJECT NAME:	New England Yard	DATE:	9/22/2011
PROJECT NUMBER:	10001086		
SAMPLE LOCATION ID:	_TP-3		
CREDERE REPRESENTATIVE:	Jonathan O'Donnell		
CONTRACTOR/FOREMAN:	City of Laconia DPW		

NOTES:

FIELD ANA	LYSIS DAT	A:			
DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm _v)	SOIL DESCRIPTION (MODIFIED BURMISTER) / NOTES
0 1	0-2	S-1	Slightly moist	ND	0.5' Organic material 1.5' Dark brown, medium to coarse SAND, ASPHALT, and coarse GRAVEL
2 3	2-4	S-2	Slightly moist	ND	Same as above
4 5	4-6	S-3	Slightly moist	ND	Dark brown, medium to coarse SAND, coarse GRAVEL, and FILL including ash, asphalt and glass bottles
6 7	6-8	S-4	Slightly moist	ND	Same as above
8					End of Exploration at 8' bgs.
		noto-lonizatio barts per mill		ne	

<i>TEST PIT DATA:</i> PROJECT NAME:	New England Yard	DATE:	9/22/2011
PROJECT NUMBER:	10001086		
SAMPLE LOCATION ID:	<u>TP-4</u>		
CREDERE REPRESENTATIVE:	Jonathan O'Donnell		
CONTRACTOR/FOREMAN:	City of Laconia DPW		

NOTES:

FIELD ANA	LYSIS DAT				
DEPTH (FT)	SAMPLE DEPTH (FT)	SAMPLE NUMBER	MOISTURE	PID (ppm _v)	SOIL DESCRIPTION (MODIFIED BURMISTER) / NOTES
0 1	0-2	S-1	Slightly moist	ND	Dark brown, medium SAND, some medium to coarse Gravel
2 3	2-4	S-2	Slightly moist	ND	Dark brown, medium SAND, some medium to coarse Gravel interbedded with FILL including ash, glass and brick
4 5	4-6	S-3	Slightly moist	ND	Same as above
6 7	6-8	S-4	Slightly moist	ND	Dark brown, medium to coarse SAND, some coarse Gravel, little Asphalt
8 9	8-10	S-5	Wet	ND	Same as above. Stony organic layer of leaves at base of test pit that may be old lake bottom.
10					End of Exploration at 10' bgs.
		noto-Ionizatio parts per mill	on Detector lion by volun	ne	

APPENDIX E

GROUNDWATER SAMPLING LOGS

PROJECT NAME:	NEW	- Clap	ND YAR.	Condere Associates LLC DATE: 10 16 1
PROJECT NUMBER	CA	1086		LOCATION ACTIVITY START: 13CO END:
WELL DATA:				
WELL DEPTH (ft):	9.47	[] MEASURED [] HISTORICAL [] MEASURED	. []TO []FR	P OF WELL WATER LEVEL EQUIPMENT P OF CASING [] ELECT. COND. PROBE OM GRADE [] FLOAT ACTIVATED PRO
WATER DEPTH (ft):	2,63	[] HISTORICAL		[] PRESSURE TRANSDUC []
WELL MATERIAL: [LOCKED: SI []YES [ROTECTIVE CASIN ECURE:] YES] NO	G CONCRETE INTACT: [] YES [7] NO	E COLLAR AMBIENT AIR VOC:F WELL MOUTH VOC:F
EQUIPMENT DATA:				DECONTAMINATION
	PERISTALTIC PUMP SUBMERSIBLE BLADDER PUMP HAND PUMP DEDICATED HDPE NEW HDPE DEDICATED LDPE NEW LDPE FILTER	[≻] pH [≻] Specific C [√] Dissolved [√] ORP [∕] Turbidity	Oxygen	Image: point of the state
FIELD ANALYSIS D				
PUMP ON: 1324	PUMP OFF:	STABLE FLO	V RATE (ml/min):	200 [] MEASURED [&] ESTIMATI
TIME TEMP (°C)	pH COND. (mS)	ORP D. (mV) (mg	of the second seco	COMMENTS
1337 15,68	6.71 3.725	-56.4 0.9		
1345 15.52		1-8800.2		
1406 15.60			8 48.1	
1412 15.58	7.38 3.334	-114.3 0.1	5-	
1418 15,50	7.37 3.312	-116.5 0,1	2	
1423 15.59	7.40 3.281	- 118,4 0.1	2 21.5	
SAMPLE DATA: SAMPLE BOTTI TIMELOG	CATION METH	HOD #	MPLE CONTAINE	R LABORATORY ANALYSIS
1428 C	A-1 HC	z	LDPE	NHOES FULLLIST VOC
∇			16 Anber	
				- (Pa)
NOTES:	in far M	ATAK 1	snlv.	CHED

						AMPLING SSOCIAT		Environment		
ROJECT	NAME:	LRF	c - N	EY				redere Associates I. [DATE: 10	16 111
ROJECTI	NUMBER:	1000	11086					074		
AMPLE L(OCATION IE	: <u>CA</u>	-2					STA END		50
ELL DAT	A:							10/0		
VELL DEP	TH (ft): _	6.2	7	[X] MEAS [] HISTC [X] MEAS	RICAL	[] TOF	P OF WELI P OF CASI DM GRADE	NG [1]	ELECT. CO FLOAT ACT	EQUIPMENT US ND. PROBE TVATED PROB TRANSDUCE
ATER DE	EPTH (ft):	1.25				ι				
VELL MAT JPVC JSS J	ERIAL:	WELL LOCKE []YE _ []NO	D: SEC	DTECTIVE SURE: YES NO		CONCRETE INTACT: []YES []NO		AMBIENT A	IR VOC:	PPN PPN
		PERISTAL SUBMERS BLADDER HAND PUN	IBLE PUMP	[)] Dis [(] OR	ecific Conduc solved Oxyge				DEIONIZED POTABLE W TSP SOLUT ALCONOX S	VATER ION
		NEW HDP DEDICATE NEW LDPI FILTER ()	E ED LDPE E .US un				75.		NONE	
	[] [] [] [] [] []] ALYSIS DAT] コン マー	NEW HDP DEDICATE NEW LDPI FILTER ()	E D LDPE 	ORP	D.O.	TE (ml/min) <u>:</u> TURBID. (ntu)	350	[] : [] : [X] ME] ESTIMATED
	[] [] [] [] [] [] []] []]]]	NEW HDP DEDICATE NEW LDPI FILTER () FILTER () FILTE	E D LDPE = 	ORP (mV)	D.O. (mg/l)	TURBID. (ntu)	350	[] : [] : [X] ME	ASURED [] ESTIMATED
PUMP ON:	[] [] [] []]]]]]]]]]]] []	NEW HDP DEDICATE NEW LDP FILTER () FA: PUMP OFF pH 6.61	E D LDPE 	ORP	D.O.	TURBID.	350	[] : [] : [X] ME	ASURED [] ESTIMATED
TIME 3 <i>15</i> 3 & 2	[] [] [] []]]]]]]]]]]]]	NEW HDP DEDICATE NEW LDPI FILTER () TA: PUMP OFF pH 6.61 6.54	E D LDPE = 	ORP (mV) 43 41 42	D.O. (mg/l) 0,3 4 0,47 0.33	TURBID. (ntu) 50.3 — д4	350	[] : [] : [X] ME	ASURED [] ESTIMATED
TIME	[] [] [] [] [] [] [] [] [] []	NEW HDP DEDICATE NEW LDPI FILTER () TA: PUMP OFF pH 6.61 6.54	E D LDPE 	ORP (mV) 43 41	D.O. (mg/l) 0, 3 0, 4 7	TURBID. (ntu) 50.3 — д4	350	[] : [] : [X] ME	ASURED [] ESTIMATED
TIME 3/5 322	[] [] [] [] [] [] [] [] [] []	NEW HDP DEDICATE NEW LDP FILTER () FA: PUMP OFF pH 6.61 6.54 6.52	E D LDPE 	ORP (mV) 43 41 42	D.O. (mg/l) 0,3 4 0,47 0.33	TURBID. (ntu) 50.3 — д4	350	[] : [] : [X] ME	ASURED [] ESTIMATED
TIME 3/5 322 322 322 326 336 336 336 336	[] [] [] [] [] [] [] [] [] []	NEW HDP DEDICATE NEW LDP FILTER () A: PUMP OFF 6.61 6.54 6.53 (6.53 (6.53	E D LDPE 	ORP (mV) 43 41 42 42	D.O. (mg/l) 0.31 0.47 0.33 0.33 0.36	TURBID. (ntu) 50.3 — д4	R		ASURED [

			• 1								
Ρ	ROJECT	NAME:	NE	EW EA	16(AA)	b YA	RD		Environment Credere Associates LLC DA	ατε: <u>10, φ</u>	,11
Р	ROJECT	NUMBER:		1000	1086		1		STAR	LOCATION ACTIN F: 」どのひ	ΊΤΥ
		OCATION I	D:	C4	-3				END:		
и	ELL DA	TA:	12	17		JRED		OP OF WEL	L WATE	R LEVEL EQUIPME	
W	ELL DEF	PTH (ft):	12.1	1 <u>+</u>		RICAL	[]TC	OP OF CAS	SING [>]E DE []F	LECT. COND. PRO LOAT ACTIVATED RESSURE TRANSI	BE PROBE
N	ATER DI	EPTH (ft):		5	[] HISTO		L J				
W [[/ELL MAT] PVC] SS]	TERIAL:	WELL LOCKE []Y []N	ED: SEO ES [OTECTIVE C CURE:] YES] NO	ASING	CONCRET INTACT: []YES []NO	E COLLAR		VOC:	PPM
Ē	QUIPMEI	VT DATA:							DECC	NTAMINATION	
Ρ	URGING [] [] [] [] [] [] []	SAMPLING [-> [] [] [] [] [] [] [] [] [] []	FERISTAL SUBMERS BLADDER HAND PUI DEDICATE NEW HDP DEDICATE NEW LDPI FILTER	IBLE PUMP MP ED HDPE E ED LDPE	[X] pH [X] Spec [X] Diss [X] ORF [X] Turb		ctivity	NOTE 202	FL []DI []DE []PC []TS 20 []AL	UIDS USED: STILLED WATER IONIZED WATER DTABLE WATER SP SOLUTION CONOX SOLUTION DNE	1 - -
F		ALYSIS DA	TA:	na sana ang kabupatén kang sa Panjangan kabupatén kang sa							
				<u>.</u>	STABLE	FLOW RA	TE (ml/min):	185	_ [] MEAS	URED [&] ESTIM	ATED
	TIME	TEMP (°C)	pН	COND. (mS)	ORP (mV)	D.O. (mg/l)	TURBID. (ntu)		СОМ	MENTS	
	510	13,60	7.09	0,406	-136,4	0.48	-				
1	515	13,44	7.08	0,405	- 142,5	25.0	30.6				
	520	13.45	7.08	0.40)	145.7	0.15 A 11	000				
	525 532	13.44	7.08 7.07	0.405	-146.7- -147.3	613	25,2		- 1. · · · · · · · · · · · · · · · · · ·		
ŕ	000	10,10	1.04	019010	111.5	0112			2000 - 1 200 <u>-</u>		
1	10								of all three to		
2453	łr –										
	調用	Sector Con								-5	
	AMPLE D SAMP TIME TIME (53)	LE BOTTLE LOCA	TION	PRESERV METH		SAMPLE # <u>2</u>	ECONTAINE TYPE VOA IL Anbu	A	A	ORATORY VALYSIS (S 5	
N	OTES:							SAMP	JBC]	
								Of the l			

		1 1	PC - 1	CR		AMPLING LO	S SEnvin	Provintent LLC	
PROJECT	NAME:		PC - 1					DATE: 10 1 G	11
	NUMBER:	1 .	- 4	6				LOCATION ACTIV START: <u>/350</u> END:	ITY
WELL DA			•			-			
WELL DEF	PTH (ft):	9.30)	[] MEAS [] HISTO	RICAL	[]TOP (DF WELL DF CASING 1 GRADE	WATER LEVEL EQUIPME [b4]-ELECT. COND. PROF [] FLOAT ACTIVATED F	BE PROBE
WATER D	EPTH (ft):	4.05	er	[] HISTC		[]		[] PRESSURE TRANSE []	UCER
		WELL LOCKI []Y _ [~]N	ED: SE(ES 🚓	OTECTIVE CURE:] YES] NO	CASING	CONCRETE C INTACT: [2]YES []NO	AMBIE		PPM PPM
EQUIPME	NT DATA:							DECONTAMINATION	
[[] [] [] []	SAMPLING [/] [] [] [] [] [] [] []		PUMP MP ED HDPE PE ED LDPE		ecific Condu solved Oxyg P bidity	ctivity/ en	ER ID [[[] [[[FLUIDS USED:] DISTILLED WATER] DEIONIZED WATER 2] POTABLE WATER] TSP SOLUTION] ALCONOX SOLUTION] NONE]	
[]]									
[] FIELD AN	L J			•	<u></u>				
			F <u>:</u>	STABL	E FLOW R/	ATE (ml/min):	[×] MEASURED [] ESTIM	ATED
			F: COND. (mS)	STABLI ORP (mV)	E FLOW R/ D.O. (mg/l)	ATE (ml/min): TURBID. (ntu)	[×] MEASURED [] ESTIM	ATED
	: <u>/3<i>5</i>(</u> temp	PUMP OF	COND.	ORP	D.O.	TURBID.	[X		ATED
TIME	: <u>/35(</u> TEMP (°C)	PUMP OF	COND. (mS)	ORP (mV)	D.O. (mg/l)	TURBID. (ntu)	[X		ATED
TIME	: <u>/35(</u> TEMP (°C) 18,17	РИМР ОF pH 7, 31	COND. (mS) 01749	ORP (mV) - 79 - 89 - 93	D.O. (mg/i)],74	TURBID. (ntu)	[×		ATED
TIME 1428 1434 1446	- <u>/35(</u> TEMP (°C) <u>18.17</u> <u>18.17</u> <u>18.21</u> <u>18.23</u>	PUMP OF pH 7,31 7,28 7,21 7,18	COND. (mS) 01749 0.739	ORP (mV) - 79 - 89 - 93 - 92	D.O. (mg/l) 1.74 1.58 1.38 1.53	TURBID. (ntu) 20 19.6			ATED
TIME 1428 1434 1446	TEMP (°C) 18.17 18.17 18.21 18.23 18.23	PUMP OF pH 7,31 7,28 7,21 7,19	COND. (mS) 01749 01739 01739	ORP (mV) - 79 - 89 - 93 - 92 - 96	D.O. (mg/l) 1.74 1.58 1.38' 1.53 1.29	TURBID. (ntu) 20 19.6 18.8	[X		ATED
PUMP ON: TIME 1428 1434 1443 1443 1443 1455 1500	- <u>/35(</u> TEMP (°C) <u>18.17</u> <u>18.17</u> <u>18.21</u> <u>18.23</u> <u>18.28</u>	PUMP OF pH 7,31 7,28 7,28 7,31 7,18 7,19 7,17	COND. (mS) 0.749 0.739 0.749 0.749 0.749 0.762	ORP (mV) - 79 - 89 - 93 - 92 - 96 - 94	D.O. (mg/l) 1.74 1.58 1.38 1.38 1.39 1.29 1.38	TURBID. (ntu) 20 19.6 18.8 17	[x		ATED
PUMP ON TIME 1428 1429 1440 1440 1455	TEMP (°C) 18.17 18.17 18.21 18.23 18.23	PUMP OF pH 7,31 7,28 7,21 7,19	COND. (mS) 0.749 0.739 0.749 0.749 0.749	ORP (mV) - 79 - 89 - 93 - 92 - 96	D.O. (mg/l) 1.74 1.58 1.38' 1.53 1.29	TURBID. (ntu) 20 19.6 18.8	[x		ATED
PUMP ON TIME 1428 1428 1420 1420 1449 1449 1449 1449 1455 1505 1505		PUMP OF pH 7,31 7,28 7,28 7,21 7,18 7,19 7,18 7,18 10	COND. (mS) 0.749 0.739 0.749 0.749 0.749 0.762 0.762	ORP (mV) - 79 - 89 - 93 - 92 - 96 - 94 - 96	D.O. (mg/l) 1.74 1.58 1.38 1.38 1.39 1.39 1.31 1.31	TURBID. (ntu) 20 19.6 19.6 18.8 17 17.2 17.2	[×	LABORATORY	ATED
PUMP ON TIME 1428 1428 1420 1420 1449 1449 1449 1455 1505 1505		PUMP OF pH 7,31 7,31 7,37 7,18 7,19 7,19 7,19 7,18 10 TION 4	COND. (mS) 0.749 0.739 0.749 0.749 0.749 0.762 0.762	ORP (mV) - 79 - 89 - 92 - 92 - 96 - 94 - 96	D.O. (mg/l) 1.74 1.58 1.38 1.38 1.38 1.39 1.39 1.39 1.31	TURBID. (ntu) 20 19.6 18.8 17 17.2	[2 	COMMENTS	ATED

	Ľ.		A 1	CR	FLOW S	SSOCIAT			rouncent	
PROJE	ECT NAME:		Vew	tugi	and y	ard		Credere A	DATE: 10 16	, 11
PROJE	ECT NUMBER:	100	20102	36					LOCATION ACT	ĮVITY
-	LE LOCATION	D:	CA	-5				1200 2003	END:	
	DATA: DEPTH (ft):	9.4C)	[X] MEAS [] HISTO		[] TC	OP OF WE OP OF CAS	SING	WATER LEVEL EQUIPM [X] ELECT. COND. PR] FLOAT ACTIVATED	OBE
WATE	R DEPTH (ft):	1,61	φ	[) MEAS [] HISTO	URED DRICAL	[]_			[] PRESSURE TRANS	
[X]P []S []_	S		ED: SEC	OTECTIVE CURE:] YES] NO	CASING	CONCRET INTACT: [X]YES []NO	E COLLAR	AMBI	ENT AIR VOC:	PPM PPM
	MENT DATA: ING SAMPLING] [X]] []] []] []] []] []] []] []] []] []] []] []] []] []	PERISTAL SUBMERS BLADDER HAND PUM DEDICATE NEW HDP DEDICATE NEW LDPF FILTER	IBLE PUMP MP ED HDPE E ED LDPE	[★] Dist [★] OR	ecific Conduc solved Oxyg P bidity	stivity	ETER ID		DECONTAMINATION FLUIDS USED: DISTILLED WATER DEIONIZED WATER POTABLE WATER TSP SOLUTION ALCONOX SOLUTIO NONE	
	<u>analysis da</u> on: 1212			STABL	E FLOW RA	TE (ml/min):	200	_ [] MEASURED [X] ESTIN	MATED
ТІМ	E TEMP (°C)	pН	COND. (mS)	ORP (mV)	D.O. (mg/l)	TURBID. (ntu)			COMMENTS	
1241		6.47	1.079	136.9	2.67	the				
124:	7 15.60	6.53	1.073	135.8	2.36	15.0	a			
120		1010 1	1.054	137.7	2.37	11,6				
1300		6.54	1.075	140.3	2.37	<i>µµ ∉</i> ~				
SA	10 CA	ID ATION -5 V			SAMPLE # 	CONTAINE TYPE VOA L AMBER	N	HDES	LABORATORY ANALYSIS FULL LIST VOC PAHS	<u></u>
NOTES	: :rhead/Environmental Inf	provetige) Lead PAI-					(SAMP	J.F.	30	

٩.

۰,

					FLOW SA		
PROJECT	NAME:	LR	PC -	NEY	-		Credere Associates LLC DATE: 1016111
PROJECT	NUMBER:	100	001080	0			LOCATION ACTIVITY START: ノスロク
	OCATION I	D: <u>CA</u>	1-6				END: 1045
WELL DAT	TA:			[≯]MEAS		נאדמ	OP OF WELL WATER LEVEL EQUIPMENT USED:
WELL DEF		6.27	7		DRICAL	[] TC [] FF	OP OF CASING [X] ELECT. COND. PROBE ROM GRADE [] FLOAT ACTIVATED PROBE [] PRESSURE TRANSDUCER
WATER D	EPTH (ft):	2.40)	[] HISTO		·	i j
WELL MAT [>>]-PVC []SS []	rerial:	WELL LOCKE []YE _ [\L]N(ED: SEC ES [×	DTECTIVE CURE:] YES] NO	CASING	CONCRET INTACT: [∠] YES [] NO	TE COLLAR AMBIENT AIR VOC: PPM WELL MOUTH VOC: PPM
[0] [] [] [] [] [] [] []	SAMPLING [×] [] [] [] [] [] [] [] [] [] [PERISTAL SUBMERS BLADDER HAND PUN DEDICATE NEW HDP DEDICATE NEW LDPI FILTER 2 TA:	IBLE PUMP IP ED HDPE E ED LDPE E	[] Dis [] OR [] Tu	ecific Condu solved Oxyg P rbidity	ctivity	DECONTAMINATION FLUIDS USED:
TIME	TEMP (°C)	pH	COND. (mS)	ORP (mV)	D.O. (mg/l)	TURBID. (ntu)	COMMENTS
1210	15.94	6.48	0.859	//3	552	Management.	
1216	16.05		0.847	126	5.37	18	
1222	16.10	6.32	0.833	134	5.37	16	
1227	16.10	6.30	.826	137	5.42	6.29	
1232	16.11	6.28	.823	140	5.38	6	
1237	// _n . 1/	128	, 8 27	140	5.39	7	
SAMPLE I SAMP TIME 」。イン	LE BOTTLE LOCA	E ID ATION 4 - 6	PRESERV METH Hcl - Alars- HNO-3	OD	# 	CONTAINE TYPE 1/64 1 C 2000 MC	ER LABORATORY ANALYSIS <u>AIHOES JACS</u> SUBCS Metals
	r: Heré	Methels		rles			SAMPLER

APPENDIX F

LABORATORY ANALYTICAL REPORTS

EMSL Analytical, Inc. 7 Constitution Way, Suite 107, Woburn, MA 01801 Phone: (781) 933-8411 Fax: (781) 933-8412 Email: <u>bostonlab@emsl.com</u>

Attn: Judd Newcomb Credere Associates, LLC 776 Main Street Westbrook, ME 04092

Fax: (207) 887-1051 Project: **DPW NEY** Phone: (204) 828-1272

Customer ID: Customer PO: Received: EMSL Order: EMSL Proj:

Analysis Date:

CRED25 10001086 09/26/11 9:20 AM 131104722

10/10/2011

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

				Non-Ast	pestos	Asbestos	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Туре	
SH-1-A 131104722-0001	- Asphalt Siding w/ Card Backing	Black Non-Fibrous Homogeneous	20%	Cellulose	80% Non-fibrous (other)	None Detected	
SH-1-B 131104722-0002	- Asphalt Siding w/ Card Backing	Black Non-Fibrous Homogeneous	20%	Cellulose	80% Non-fibrous (other)	None Detected	
SH-1-C 131104722-0003	- Asphalt Siding w/ Card Backing	Black Non-Fibrous Homogeneous	20%	Cellulose	80% Non-fibrous (other)	None Detected	
SH-2-A 131104722-0004	- Asphalt Roof Shingle	Black Fibrous Heterogeneous	25%	Cellulose	75% Non-fibrous (other)	None Detected	
SH-2-B 131104722-0005	- Asphalt Roof Shingle	Black Fibrous Heterogeneous	25%	Cellulose	75% Non-fibrous (other)	None Detected	
SH-2-C 131104722-0005	- Asphalt Roof Shingle	Black Fibrous Heterogeneous	25%	Cellulose	75% Non-fibrous (other)	None Detected	
SH-3-A 131104722-0007	- Asphalt Roof Paper	Black Fibrous Homogeneous	70%	Cellulose	30% Non-fibrous (other)	None Detected	

Initial report from 10/10/2011 14:39:07

Analyst(s)

Steve Grise (27)

Renaldo Drakes, Laboratory Manager or other approved signatory

Due to magnification limitations inherent in PLM, asbestos fibers in dimensions below the resolution capability of PLM may not be detected. Samples reported as <1% or none detected may require additional testing by TEM to confirm asbestos quantities. The above test report relates only to the items tested and may not be reproduced in any form without the express written approval of EMSL Analytical, Inc. EMSL's liability is limited to the cost of analysis. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available available upong request.

Samples analyzed by EMSL Analytical, Inc. Woburn, MA NVLAP Lab Code 101147-0, CT PH-0315, MA AA000188, RI AAL-107T3 and VT AL357102

	Judd Newcomb Credere Associates, 776 Main Street Westbrook, ME 0409			Customer ID: Customer PO: Received: EMSL Order:	CRED25 10001086 09/26/11 9:20 AM 131104722
Fax: Project:	(207) 887-1051 DPW NEY	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	10/10/2011

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

				Non-Asl	pestos	Asbestos	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Туре	
SH-3-B 131104722-0008	- Asphalt Roof Paper	Black Fibrous Homogeneous	70%	Cellulose	30% Non-fibrous (other)	None Detected	
SH-3-C 131104722-0009	- Asphalt Roof Paper	Black Fibrous Homogeneous	70%	Cellulose	30% Non-fibrous (other)	None Detected	
HB-1-A 131104722-0010	- Asphalt Siding w/ Card Backing	White/Black Fibrous Heterogeneous	35%	Cellulose	65% Non-fibrous (other)	None Detected	
HB-1-B 131104722-0011	- Asphalt Siding w/ Card Backing	White/Black Fibrous Heterogeneous	35%	Cellulose	65% Non-fibrous (other)	None Detected	
HB-1-C 131104722-0012	- Asphalt Siding w/ Card Backing	White/Black Fibrous Heterogeneous	35%	Cellulose	65% Non-fibrous (other)	None Detected	
HB-2-A 131104722-0013	- Asphalt Siding w/ Paper Backing	White/Black Fibrous Heterogeneous	25%	Cellulose	75% Non-fibrous (other)	None Detected	
HB-2-B 131104722-0014	- Asphalt Siding w/ Paper Backing	White/Black Fibrous Heterogeneous	25%	Cellulose	75% Non-fibrous (other)	None Detected	

Initial report from 10/10/2011 14:39:07

Analyst(s)

Steve Grise (27)

Renaldo Drakes, Laboratory Manager or other approved signatory

Due to magnification limitations inherent in PLM, asbestos fibers in dimensions below the resolution capability of PLM may not be detected. Samples reported as <1% or none detected may require additional testing by TEM to confirm asbestos quantities. The above test report relates only to the items tested and may not be reproduced in any form without the express written approval of EMSL Analytical, Inc. EMSL's liability is limited to the cost of analysis. EMSL bears no responsibility for sample collection activities or analytical method limitations, interpretation and use of test results are the responsibility of the client. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available available upong request.

Samples analyzed by EMSL Analytical, Inc. Woburn, MA NVLAP Lab Code 101147-0, CT PH-0315, MA AA000188, RI AAL-107T3 and VT AL357102

	Judd Newcomb Credere Associates, 776 Main Street Westbrook, ME 04092			Customer ID: Customer PO: Received: EMSL Order:	CRED25 10001086 09/26/11 9:20 AM 131104722	
Fax: Project:	(207) 887-1051 DPW NEY	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	10/10/2011	

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

				Non-Ast	<u>bestos</u>	Asbestos
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
HB-2-C 131104722-0015	- Asphalt Siding w/ Paper Backing	White/Black Fibrous Heterogeneous	25%	Cellulose	75% Non-fibrous (other)	None Detected
HB-3-A 131104722-0016	- Asphalt Roof Shingle	Black Fibrous Heterogeneous	15%	Glass	85% Non-fibrous (other)	None Detected
HB-3-B 131104722-0017	- Asphalt Roof Shingle	Black Fibrous Heterogeneous	15%	Glass	85% Non-fibrous (other)	None Detected
HB-3-C 131104722-0018	- Asphalt Roof Shingle	Black Fibrous Heterogeneous	15%	Glass	85% Non-fibrous (other)	None Detected
VS-1-A 131104722-0019	- Black Asphalt Roof Shingle	Black Non-Fibrous Homogeneous	15%	Glass	85% Non-fibrous (other)	None Detected
VS-1-B 131104722-0020	- Black Asphalt Roof Shingle	Black Non-Fibrous Homogeneous	15%	Glass	85% Non-fibrous (other)	None Detected
VS-1-C 131104722-0021	- Black Asphalt Roof Shingle	Black Non-Fibrous Homogeneous	15%	Glass	85% Non-fibrous (other)	None Detected

Initial report from 10/10/2011 14:39:07

Analyst(s)

Steve Grise (27)

Q_l z

Renaldo Drakes, Laboratory Manager or other approved signatory

Due to magnification limitations inherent in PLM, asbestos fibers in dimensions below the resolution capability of PLM may not be detected. Samples reported as <1% or none detected may require additional testing by TEM to confirm asbestos quantilies. The above test report relates only to the items tested and may not be reproduced in any form without the express written approval of EMSL Analytical, Inc. EMSL's liability is limited to the cost of analysis. EMSL bears no responsibility for sample collection activities or analytical method limitations, Interpretation and use of test results are the responsibility of the client. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available available upong request.

Samples analyzed by EMSL Analytical, Inc. Woburn, MA NVLAP Lab Code 101147-0, CT PH-0315, MA AA000188, RI AAL-107T3 and VT AL357102

-	Judd Newcomb Credere Associates, 776 Main Street Westbrook, ME 04092			Customer ID: Customer PO: Received: EMSL Order:	CRED25 10001086 09/26/11 9:20 AM 131104722
Fax: Project:	(207) 887-1051 DPW NEY	Phone:	(204) 828-1272	EMSL Proj: Analysis Date:	10/10/2011

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

				Non-As	<u>pestos</u>	<u>Asbestos</u>	
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type	
VS-2-A 131104722-0022	- Red Asphalt Roof Shingle	Brown/Black Fibrous Heterogeneous	15%	Glass	85% Non-fibrous (other)	None Detected	
VS-2-B 131104722-0023	- Red Asphalt Roof Shingle	Brown/Black Fibrous Heterogeneous	15%	Glass	85% Non-fibrous (other)	None Detected	
VS-2-C 131104722-0024	- Red Asphalt Roof Shingle	Brown/Black Fibrous Heterogeneous	15%	Glass	85% Non-fibrous (other)	None Detected	
SS-1-A 131104722-0025	- Asphalt Roof Shingle	Black Fibrous Heterogeneous	25%	Cellulose	75% Non-fibrous (other)	None Detected	
SS-1-B 131104722-0026	- Asphalt Roof Shingle	Black Fibrous Heterogeneous	25%	Cellulose	75% Non-fibrous (other)	None Detected	
SS-1-C 131104722-0027	- Asphalt Roof Shingle	Black Fibrous Heterogeneous	25%	Cellulose	75% Non-fibrous (other)	None Detected	

Initial report from 10/10/2011 14:39:07

Analyst(s)

Steve Grise (27)

Renaldo Drakes, Laboratory Manager or other approved signatory

Due to magnification limitations inherent in PLM, asbestos fibers in dimensions below the resolution capability of PLM may not be detected. Samples reported as <1% or none detected may require additional testing by TEM to confirm asbestos quantities. The above test report relates only to the items tested and may not be reproduced in any form without the express written approval of EMSL Analytical, Inc. EMSL's liability is limited to the cost of analysis. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available available upong request.

Samples analyzed by EMSL Analytical, Inc. Woburn, MA NVLAP Lab Code 101147-0, CT PH-0315, MA AA000188, RI AAL-107T3 and VT AL357102

Test Report PLM-7.23.0 Printed: 10/10/2011 2:39:07 PM

THIS IS THE LAST PAGE OF THE REPORT.

4

Asbestos Chain of Custody EMSL Order Number (Lab Use Only):

131104722

EMSL ANALYTICAL, INC. 7 CONSTITUTION WAY, STE 107 WOBURN, MA 01801

PHONE: (781) 933-8411 FAX: (781) 933-8412

			EMSL Bill to: M Some D Different								
	Company : Credere Associates, LLC	:	EMSL-Bill to: Same Different If Bill to is Different note instructions in Comments**								
	Street: 776 Main Street			equires written authorizati	And a start of the start of the						
	City: Westbrook	State/Province: ME	Zip/Postal Code: 0409		ntry: USA						
	Report To (Name): JUAD U		Fax #: 207-887-1051		nay. oon						
	Telephone #: 207 - 828-	the second s	Email Address: JNEW (OMBA) CREDERELds. (om								
	Project Name/Number: DPW N		Email Address: JD	EWCOMBOCK	EDEREULS. Com						
		Email Purchase Orde	er: jooaro 84 U.S. State Samples Taken: NH								
Ī		Turnaround Time (TAT)									
	3 Hours 6 Hours 2	24 Hrs 🗌 48 Hrs	3 Days 4	Days 🗌 5 Days	🛛 🛛 10 Days						
	For TEM Air 3 hours/6 hours, please call and an authorization form for this service.	ead to schedule. There is a premiu Analysis completed in accordanc	im charge for 3 Hour TEM AHi e with EMSL's Terms and Cor	ERA or EPA Level II TAT. Iditions located in the Analy	You will be asked to sign dical Price Guide						
	PCM - Air	TEM - Air		TEM- Dust							
	NIOSH 7400	AHERA 40 CF	R, Part 763	Microvac - ASTM	D 5755						
-	– w/ OSHA 8hr. TWA	□ NIOSH 7402		Wipe - ASTM D64	480						
>	PLM - Bulk (reporting limit)	EPA Level II			n (EPA 600/J-93/167)						
N	⊠ ₱LM EPA 600/R-93/116 (<1%)	☐ ISO 10312		Soil/Rock/Vermicul							
	PLM EPA NOB (<1%) Point Count	TEM - Bulk		and the second state of the second second state of the second s	A (0.25% sensitivity)						
-	-Point Count 400 (<0.25%) 1000 (<0.1%)			PLM CARB 435 -							
	Point Count w/Gravimetric	NYS NOB 198.	4 (non-mable-INY)		B (0.1% sensitivity) C (0.01% sensitivity)						
	□ 400 (<0.25%) □ 1000 (<0.1%)		lysis-EPA 600 sec. 2.5	EPA Protocol (Se							
	NYS 198.1 (friable in NY)	TEM - Water: EPA		EPA Protocol (Qu							
	NYS 198.6 NOB (non-friable-NY)		Waste Drinking	Other:							
	□ NIOSH 9002 (<1%)		Waste Drinking								
		k For Positive Stop - Cle		enous Group							
				lunt	1						
ł	Samplers Name: JUDD NEWCOMB Samplers Signature: Juli Alun										
	Sample #	Sample Description	n C	Volume/Area (Air) HA # (Bulk)) Date/Time Sampled						
1	SH-I-A Asphalts	iding w/ Card bas	ching	1	9/22/11 1200						
2	- B		., •	/	1 1						
3	- ("		с,	1							
4	SH-2-A Asphalt Ra	of Shinde		2	1215						
5	- B ''			2							
6	- ("			2							
7	SH-3 - A Asphalt	Roof Paper		3	1230						
8	- TS "	1 "		3	N. th						
Ī	Client Sample # (s): SH - 1 ; SH - 3	HB-1: HB-3 / VS-	1: 15-2/55-1	Total # of Samples:	27						
	Relinquished (Client)	her Date:	9/23/11		: 0800						
	Received (Lab):	Date:	1491								
	Comments/Special Instructions:	Date.	RECEIV	ED Time							
			SFP_26 20	011							
			.000	72							
	Controlled Document - Asbestos COC - R1 - 3/18/2009	Page 1 of <u>3</u> pag	es BY:								
			9. 20 The second								
			FER EX 79	52 1997 158	51						

EMEL	Asbestos Chain of Custody EMSL Order Number (Lab Use Only):	EMSL ANALYTICAL, INC. 7 CONSTITUTION WAY, STE 107 WOBURN, MA 01801
EMSL ANALYTICAL, INC.	131104722	PHONE: (781) 933-8411 FAX: (781) 933-8412

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

	Sample #	Sample Description	Volume/Area (Air) HA # (Bulk)	Date/Time Sampled
9 5	SH - 3 - C	Asphalt Root Pager	3	1230
10 h	HB-1-A	Asphalt Siding w/ Card Backing	4	1245
11	- <u>B</u>	1. 4	4	
12	- C	11 <i>(</i>)	4	l
13 H	HB-2 - A	Asphalt Siding w/ Paper Backing	5	1300
14	- B		5	
15	- C	·, · · · · · · · · · · · · · · · · · ·	5	l
16 +	HB-3- A	Asphalt Root Shingle	6	1315
17	- B		6	
18	- C	u (7	6	
19 1	VS-1-A	Asphalt Root Shingle - Black	7	1330
20	-B	(r	7	
21	- ((x ()	7	J
2 V	15 - 2 - 4	Ashphalt Root Shirk - Red	8	1345
23	- B	i. 1	8	
4	- C	6. (r	8	01
,	*Comments/Special	Instructions:	RECEIVE	D
			SEP 26 2011	
			BY: RP	

Page 2 of 3 pages

EMEL
-
EMSL ANALYTICAL, INC.

Asbestos Chain of Custody EMSL Order Number (Lab Use Only):

131104722

EMSL ANALYTICAL, INC. 7 CONSTITUTION WAY, STE 107 WOBURN, MA 01801 PHONE: (781) 933-8411 FAX: (781) 933-8412

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

	Sample #	Sample Description	Volume/Area (Air) HA # (Bulk)	Date/Time Sampled
25	SS-1-A	Asphalt Roof Shingle	9	2/22/11 1400
26	-B	in F	9	
27	- (lı /r	9	
÷.				
1				
	*Comments/Special	Instructions:		
			SEP 26 2011 BY: <u>FD</u> <u>7:20AN</u>	

Page 3 of 3 pages

Absolute Resource associates

124 Heritage Avenue #10 Portsmouth, NH 03801

Judd Newcomb CREDERE Associates 776 Main Street Westbrook, ME 04092 PO Number: 10001086 Job ID: 22594 Date Received: 10/11/11

Project: New England Yard

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

lluer (for)

Sue Sylvester Principal, General Manager

Date of Approval: 10/25/2011 Total number of pages: 43

Absolute Resource Associates Certifications

New Hampshire 1732 Maine NH903 Massachusetts M-NH902

Lab ID: 22594

Sample Association Table

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
CA-1	Water	10/6/2011 14:28	22594-001	
				PAHs in water by 8270
				Lead in water by 6010
				VOCs in water by 8260 Petro & Haz Waste
CA-2	Water	10/6/2011 13:40	22594-002	
				PAHs in water by 8270
				Lead in water by 6010
				VOCs in water by 8260 Petro & Haz Waste
CA-3	Water	10/6/2011 15:35	22594-003	
				PAHs in water by 8270
				VOCs in water by 8260 Petro & Haz Waste
CA-4	Water	10/6/2011 15:05	22594-004	
				PAHs in water by 8270
				VOCs in water by 8260 Petro & Haz Waste
CA-5	Water	10/6/2011 13:10	22594-005	
				PAHs in water by 8270
				VOCs in water by 8260 Petro & Haz Waste
CA-6	Water	10/6/2011 12:40	22594-006	
				Acid & Base/Neutral Extractables in water by 8270
				Silver in water by 6010
				Arsenic in water by 6010
				Barium in water by 6010
				Cadmium in water by 6010
				Chromium in water by 6010
				Mercury in water by 7470
				Lead in water by 6010 Selenium in water by 6010
				VOCs in water by 8260 Petro & Haz Waste
DUP-GW	Water	10/6/2011 0:00	22594-007	VOCS III water by 6200 Fello & Haz Waste
DOF-GW	valei	10/0/2011 0.00	22394-007	PAHs in water by 8270
				VOCs in water by 8260 Petro & Haz Waste
DUP-GW-2	Water	10/6/2011 0:00	22594-008	
	watch	10/0/2011 0.00	22004-000	Lead in water by 6010
ТВ	Water	10/6/2011 0:00	22594-009	
		10/0/2011 0.00	22001000	VOCs in water by 8260 Petro & Haz Waste

Job ID: 22594

Sample#: 22594-001

Sample ID: CA-1

Matrix: Water

Sampled: 10/6/11 14:28		0								
	Desult	Quant Limit		Instr Dil'n	Analyst	Prep	Batch Da	Analy ate	/sıs Time	Deference
Parameter dichlorodifluoromethane	Result < 2		Units	Factor	Analyst LMM	Date	1102315 10/2			Reference SW5030B8260B
chloromethane	< 2 < 2	2	ug/L	1			1102315 10/			SW5030B8260B
	< 2	2 2	ug/L	1			1102315 10/			SW5030B8260B
vinyl chloride bromomethane	< 2		ug/L	1 1			1102315 10/			SW5030B8260B
chloroethane	< 2	2 2	ug/L				1102315 10/			SW5030B8260B
trichlorofluoromethane	< 2	2	ug/L	1 1			1102315 10/			SW5030B8260B
	< 2 < 5	2 5	ug/L	1	LMM		1102315 10/			SW5030B8260B
diethyl ether acetone	< 50 < 50	50	ug/L ug/L	1			1102315 10/			SW5030B8260B
1,1-dichloroethene	< 50 < 1	50 1	ug/L	1	LMM		1102315 10/			SW5030B8260B
methylene chloride	< 5	5	ug/L	1	LMM		1102315 10/			SW5030B8260B
carbon disulfide	< 2	2	ug/∟ ug/L	1	LMM		1102315 10/			SW5030B8260B
methyl t-butyl ether (MTBE)	< 2	2	ug/∟ ug/L	1	LMM		1102315 10/			SW5030B8260B
trans-1,2-dichloroethene	< 2	2	ug/∟ ug/L	1	LMM		1102315 10/			SW5030B8260B
isopropyl ether (DIPE)	< 2	2	ug/∟ ug/L	1	LMM		1102315 10/			SW5030B8260B
ethyl t-butyl ether (ETBE)	< 2	2	ug/∟ ug/L	1	LMM		1102315 10/			SW5030B8260B
1,1-dichloroethane	< 2	2	ug/∟ ug/L	1	LMM		1102315 10/			SW5030B8260B
t-butanol (TBA)	< 30	30	ug/L	1	LMM		1102315 10/			SW5030B8260B
2-butanone (MEK)	< 30 < 10	30 10	ug/∟ ug/L	1	LMM		1102315 10/			SW5030B8260B
2,2-dichloropropane	< 2	2	ug/L	1	LMM		1102315 10/			SW5030B8260B
cis-1,2-dichloroethene	< 2	2	ug/L	1	LMM		1102315 10/			SW5030B8260B
chloroform	< 2	2	ug/L	1	LMM		1102315 10/			SW5030B8260B
bromochloromethane	< 2	2	ug/L	1	LMM		1102315 10/			SW5030B8260B
tetrahydrofuran (THF)	< 10	10	ug/L	1	LMM		1102315 10/			SW5030B8260B
1,1,1-trichloroethane	< 2	2	ug/L	1	LMM		1102315 10/			SW5030B8260B
1,1-dichloropropene	< 2	2	ug/L	1	LMM		1102315 10/			SW5030B8260B
t-amyl-methyl ether (TAME)	< 2	2	ug/L	1	LMM		1102315 10/			SW5030B8260B
carbon tetrachloride	< 2	2	ug/L	1	LMM		1102315 10/			SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		1102315 10/			SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		1102315 10/			SW5030B8260B
trichloroethene	< 2	2	ug/L	1	LMM		1102315 10/2			SW5030B8260B
1,2-dichloropropane	< 2	2	ug/L	1	LMM		1102315 10/*			SW5030B8260B
bromodichloromethane	< 0.6	0.6	ug/L	1	LMM		1102315 10/			SW5030B8260B
1,4-dioxane	< 50	50	ug/L	1	LMM		1102315 10/*			SW5030B8260B
dibromomethane	< 2	2	ug/L	1	LMM		1102315 10/*			SW5030B8260B
4-methyl-2-pentanone (MIBK)	< 10	10	ug/L	1	LMM		1102315 10/2			SW5030B8260B
cis-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1102315 10/2	14/11	14:53	SW5030B8260B
toluene	< 2	2	ug/L	1	LMM		1102315 10/2			SW5030B8260B
trans-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1102315 10/2			SW5030B8260B
2-hexanone	< 10	10	ug/L	1	LMM		1102315 10/2	14/11	14:53	SW5030B8260B
1,1,2-trichloroethane	< 2	2	ug/L	1	LMM		1102315 10/2	14/11	14:53	SW5030B8260B
1,3-dichloropropane	< 2	2	ug/L	1	LMM		1102315 10/2			SW5030B8260B
tetrachloroethene	< 2	2	ug/L	1	LMM		1102315 10/2			SW5030B8260B
dibromochloromethane	< 2	2	ug/L	1	LMM		1102315 10/2			SW5030B8260B
			0				-			

Job ID: 22594

Sample#: 22594-001

Sample ID: CA-1

Sampled: 10/6/11 14:28		Quant		Instr Dil'n		Prep		Analy	vsis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch [Date	Time	Reference
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
chlorobenzene	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
1,1,1,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
styrene	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
bromoform	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
isopropylbenzene	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
1,1,2,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
1,2,3-trichloropropane	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
n-propylbenzene	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
bromobenzene	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
2-chlorotoluene	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
4-chlorotoluene	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
tert-butylbenzene	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
sec-butylbenzene	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
1,3-dichlorobenzene	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
4-isopropyltoluene	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
1,4-dichlorobenzene	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
1,2-dichlorobenzene	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
n-butylbenzene	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
1,2,4-trichlorobenzene	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
1,3,5-trichlorobenzene	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
hexachlorobutadiene	< 0.5	0.5	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
naphthalene	6	5	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
1,2,3-trichlorobenzene	< 2	2	ug/L	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
Surrogate Recovery		Limits	5							
dibromofluoromethane SUR	99	78-114	%	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
toluene-D8 SUR	95	88-110	%	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B
4-bromofluorobenzene SUR	91	86-115	%	1	LMM		1102315 10)/14/11	14:53	SW5030B8260B

Job ID: 22594

Sample#: 22594-002

Sample ID: CA-2

Sampled: 10/6/11 13:40		0						A 1		
•	Decult	Quant Limit		Instr Dil'n	Analyst	Prep			/sis Time	Deference
Parameter dichlorodifluoromethane	Result < 2		Units	Factor	Analyst LMM	Date	1102315 1			Reference SW5030B8260B
chloromethane	< 2 < 2	2	ug/L	1 1			1102315 1			SW5030B8260B
vinyl chloride	< 2	2	ug/L				1102315 1			SW5030B8260B
bromomethane	< 2	2 2	ug/L	1 1			1102315 1			SW5030B8260B
chloroethane	< 2	2	ug/L				1102315 1			SW5030B8260B
trichlorofluoromethane	< 2	2	ug/L ug/L	1 1			1102315 1			SW5030B8260B
	< 2 < 5	2 5	-	1	LMM		1102315 1			SW5030B8260B
diethyl ether acetone	< 50 < 50	50	ug/L	1			1102315 1			SW5030B8260B
1,1-dichloroethene	< 50 < 1	1	ug/L	1			1102315 1			SW5030B8260B
methylene chloride	< 5	5	ug/L ug/L	1			1102315 1			SW5030B8260B
carbon disulfide	< 3 < 2	2	ug/∟ ug/L	1	LMM		1102315 1			SW5030B8260B
methyl t-butyl ether (MTBE)	< 2	2	ug/∟ ug/L	1	LMM		1102315 1			SW5030B8260B
trans-1,2-dichloroethene	< 2	2	ug/∟ ug/L	1	LMM		1102315 1			SW5030B8260B
isopropyl ether (DIPE)	< 2	2	-	1	LMM		1102315 1			SW5030B8260B
ethyl t-butyl ether (ETBE)	< 2	2	ug/L	1			1102315 1			SW5030B8260B
1,1-dichloroethane	< 2	2	ug/L ug/L	1			1102315 1			SW5030B8260B
	< 30	30	-				1102315 1			SW5030B8260B
t-butanol (TBA) 2-butanone (MEK)	< 30 < 10	30 10	ug/L	1 1			1102315 1			SW5030B8260B
	< 10	2	ug/L				1102315 1			SW5030B8260B
2,2-dichloropropane	< 2		ug/L	1 1			1102315 1			SW5030B8260B
cis-1,2-dichloroethene chloroform	< 2	2 2	ug/L	1			1102315 1			SW5030B8260B
bromochloromethane	< 2	2	ug/L ug/L	1			1102315 1			SW5030B8260B
tetrahydrofuran (THF)	< 10	10	ug/∟ ug/L	1	LMM		1102315 1			SW5030B8260B
1,1,1-trichloroethane	< 10	2	ug/∟ ug/L	1	LMM		1102315 1			SW5030B8260B
1,1-dichloropropene	< 2	2	ug/∟ ug/L	1	LMM		1102315 1			SW5030B8260B
t-amyl-methyl ether (TAME)	< 2	2	ug/∟ ug/L	1	LMM		1102315 1			SW5030B8260B
carbon tetrachloride	< 2	2		1	LMM		1102315 1			SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L ug/L	1			1102315 1			SW5030B8260B
	< 2	2	-				1102315 1			SW5030B8260B
benzene trichloroethene		_	ug/L	1			1102315 1			SW5030B8260B
	< 2	2	ug/L	1						
1,2-dichloropropane	2 > < 0.6	2 0.6	ug/L	1	LMM LMM		1102315 1 1102315 1			SW5030B8260B SW5030B8260B
bromodichloromethane			ug/L	1						SW5030B8260B
1,4-dioxane dibromomethane	< 50 < 2	50	ug/L	1			1102315 1 1102315 1			SW5030B8260B
4-methyl-2-pentanone (MIBK)	< 10	2 10	ug/L	1			1102315 1			
			ug/L	1						SW5030B8260B SW5030B8260B
cis-1,3-dichloropropene	< 2 < 2	2	ug/L	1			1102315 1 1102315 1			SW5030B8260B
toluene	< 2	2 2	ug/L	1			1102315 1			
trans-1,3-dichloropropene			ug/L	1						SW5030B8260B
2-hexanone	< 10	10	ug/L	1			1102315 1			SW5030B8260B
1,1,2-trichloroethane	< 2 < 2	2	ug/L	1			1102315 1			SW5030B8260B
1,3-dichloropropane	< 2 < 2	2	ug/L	1			1102315 1			SW5030B8260B
tetrachloroethene		2	ug/L	1			1102315 1			SW5030B8260B
dibromochloromethane	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	19:08	SW5030B8260B

Job ID: 22594

Sample#: 22594-002

Sample ID: CA-2

Sampled: 10/6/11 13:40	_	Quant		Instr Dil'n		Prep		Analy		
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		1102315			SW5030B8260B
chlorobenzene	< 2	2	ug/L	1	LMM		1102315			SW5030B8260B
1,1,1,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
styrene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
bromoform	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
isopropylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
1,1,2,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
1,2,3-trichloropropane	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
n-propylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
bromobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
2-chlorotoluene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
4-chlorotoluene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
tert-butylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
sec-butylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
1,3-dichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
4-isopropyltoluene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
1,4-dichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
1,2-dichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
n-butylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
1,2,4-trichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
1,3,5-trichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
hexachlorobutadiene	< 0.5	0.5	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
1,2,3-trichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
Surrogate Recovery		Limits	-							
dibromofluoromethane SUR	93	78-114	%	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
toluene-D8 SUR	93	88-110	%	1	LMM		1102315	10/14/11	19:08	SW5030B8260B
4-bromofluorobenzene SUR	94	86-115	%	1	LMM		1102315	10/14/11	19:08	SW5030B8260B

Job ID: 22594

Sample#: 22594-003

Sample ID: CA-3

Matrix: Water

Sampled: 10/6/11 15:35		0							. • .	
•	Desult	Quant Limit		Instr Dil'n	Analyst	Prep	Patab	Analy	vsis Time	Deference
Parameter dichlorodifluoromethane	Result < 2		Units	Factor	Analyst LMM	Date	Batch 1102315 1	Date		Reference SW5030B8260B
chloromethane	< 2	2	ug/L	1			1102315 1			SW5030B8260B
vinyl chloride	< 2	2	ug/L	1			1102315 1			SW5030B8260B
bromomethane	< 2	2 2	ug/L	1 1			1102315 1			SW5030B8260B
chloroethane	< 2	2	ug/L				1102315 1			SW5030B8260B
trichlorofluoromethane	< 2	2	ug/L	1 1			1102315 1			SW5030B8260B
	< 2 < 5	2 5	ug/L	1	LMM		1102315 1			SW5030B8260B
diethyl ether acetone	< 50	50	ug/L	1			1102315 1			SW5030B8260B
1,1-dichloroethene	< 1	1	ug/L ug/L	1	LMM		1102315 1			SW5030B8260B
methylene chloride	< 5	5	ug/∟ ug/L	1	LMM		1102315 1			SW5030B8260B
carbon disulfide	< 2	2	ug/∟ ug/L	1	LMM		1102315 1			SW5030B8260B
methyl t-butyl ether (MTBE)	< 2	2	ug/∟ ug/L	1	LMM		1102315 1			SW5030B8260B
trans-1,2-dichloroethene	< 2	2	ug/∟ ug/L	1	LMM		1102315 1			SW5030B8260B
isopropyl ether (DIPE)	< 2	2	ug/∟ ug/L	1	LMM		1102315 1			SW5030B8260B
ethyl t-butyl ether (ETBE)	< 2	2	ug/∟ ug/L	1	LMM		1102315 1			SW5030B8260B
1,1-dichloroethane	< 2	2	ug/∟ ug/L	1	LMM		1102315 1			SW5030B8260B
t-butanol (TBA)	< 30	30	ug/∟ ug/L	1	LMM		1102315 1			SW5030B8260B
2-butanone (MEK)	< 30 < 10	30 10	ug/∟ ug/L	1	LMM		1102315 1			SW5030B8260B
2,2-dichloropropane	< 2	2	ug/L	1	LMM		1102315 1			SW5030B8260B
cis-1,2-dichloroethene	< 2	2	ug/∟ ug/L	1	LMM		1102315 1			SW5030B8260B
chloroform	< 2	2	ug/L	1	LMM		1102315 1			SW5030B8260B
bromochloromethane	< 2	2	ug/∟ ug/L	1	LMM		1102315 1			SW5030B8260B
tetrahydrofuran (THF)	< 10	10	ug/L	1	LMM		1102315 1			SW5030B8260B
1,1,1-trichloroethane	< 2	2	ug/∟ ug/L	1	LMM		1102315 1			SW5030B8260B
1,1-dichloropropene	< 2	2	ug/L	1	LMM		1102315 1			SW5030B8260B
t-amyl-methyl ether (TAME)	< 2	2	ug/L	1	LMM		1102315 1			SW5030B8260B
carbon tetrachloride	< 2	2	ug/L	1	LMM		1102315 1			SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		1102315 1			SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		1102315 1			SW5030B8260B
trichloroethene	< 2	2	ug/L	1	LMM		1102315 1			SW5030B8260B
1,2-dichloropropane	< 2	2	ug/L	1	LMM		1102315 1			SW5030B8260B
bromodichloromethane	< 0.6	0.6	ug/L	1	LMM		1102315 1			SW5030B8260B
1,4-dioxane	< 50	50	ug/L	1	LMM		1102315 1			SW5030B8260B
dibromomethane	< 2	2	ug/L	1	LMM		1102315 1			SW5030B8260B
4-methyl-2-pentanone (MIBK)	< 10	10	ug/L	1	LMM		1102315 1			SW5030B8260B
cis-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1102315 1			SW5030B8260B
toluene	< 2	2	ug/L	1	LMM		1102315 1			SW5030B8260B
trans-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1102315 1			SW5030B8260B
2-hexanone	- < 10	10	ug/L	1	LMM		1102315 1			SW5030B8260B
1,1,2-trichloroethane	< 2	2	ug/L	1	LMM		1102315 1			SW5030B8260B
1,3-dichloropropane	< 2	2	ug/L	1	LMM		1102315 1			SW5030B8260B
tetrachloroethene	< 2	2	ug/L	1	LMM		1102315 1			SW5030B8260B
dibromochloromethane	< 2	2	ug/L	1	LMM		1102315 1			SW5030B8260B
	· -	-	~9, -					<i></i>		CHOCODOLOOD

Job ID: 22594

Sample#: 22594-003

Sample ID: CA-3

Sampled: 10/6/11 15:35		Quant		Instr Dil'n		Prep		Analy		
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
chlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
1,1,1,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
styrene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
bromoform	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
isopropylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
1,1,2,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
1,2,3-trichloropropane	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
n-propylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
bromobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
2-chlorotoluene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
4-chlorotoluene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
tert-butylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
sec-butylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
1,3-dichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
4-isopropyltoluene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
1,4-dichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
1,2-dichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
n-butylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
1,2,4-trichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
1,3,5-trichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
hexachlorobutadiene	< 0.5	0.5	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
1,2,3-trichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
Surrogate Recovery		Limits	-							
dibromofluoromethane SUR	94	78-114	%	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
toluene-D8 SUR	91	88-110	%	1	LMM		1102315	10/14/11	19:39	SW5030B8260B
4-bromofluorobenzene SUR	91	86-115	%	1	LMM		1102315	10/14/11	19:39	SW5030B8260B

Job ID: 22594

Sample#: 22594-004

Sample ID: CA-4

Matrix: Water

Sampled: 10/6/11 15:05		0						A 1		
•	Desult	Quant Limit		Instr Dil'n	Analyst	Prep	Datah [Analy	vsis Time	Deference
Parameter dichlorodifluoromethane	Result < 2		Units	Factor	Analyst LMM	Date	Batch [Date	20:10	Reference SW5030B8260B
chloromethane	< 2 < 2	2	ug/L	1			1102315 10		20:10	SW5030B8260B
	< 2	2	ug/L	1			1102315 10			
vinyl chloride bromomethane	< 2 < 2	2 2	ug/L	1 1	LMM LMM		1102315 10		20:10	SW5030B8260B SW5030B8260B
chloroethane	< 2		ug/L				1102315 10			
trichlorofluoromethane	< 2 < 2	2 2	ug/L	1 1			1102315 10		20:10	SW5030B8260B SW5030B8260B
	< 2 < 5	2 5	ug/L				1102315 10			SW5030B8260B
diethyl ether acetone	< 50	50	ug/L	1			1102315 10			SW5030B8260B
	< 50 < 1	1	ug/L	1 1			1102315 10			SW5030B8260B
1,1-dichloroethene	< 1 < 5		ug/L	1			1102315 10			SW5030B8260B
methylene chloride carbon disulfide	< 3 < 2	5 2	ug/L				1102315 10			SW5030B8260B
methyl t-butyl ether (MTBE)	< 2	2	ug/L	1 1			1102315 10			SW5030B8260B
	< 2	2	ug/L	1			1102315 10			SW5030B8260B
trans-1,2-dichloroethene	< 2	2	ug/L				1102315 10			SW5030B8260B
isopropyl ether (DIPE) ethyl t-butyl ether (ETBE)	< 2 < 2	2	ug/L	1			1102315 10			SW5030B8260B
	< 2	2	ug/L	1			1102315 10			SW5030B8260B
1,1-dichloroethane		30	ug/L	1			1102315 10			
t-butanol (TBA)	< 30		ug/L	1						SW5030B8260B
2-butanone (MEK)	< 10	10	ug/L	1			1102315 10			SW5030B8260B
2,2-dichloropropane	< 2 < 2	2	ug/L	1	LMM LMM		1102315 10			SW5030B8260B
cis-1,2-dichloroethene		2	ug/L	1			1102315 10			SW5030B8260B
chloroform	< 2 < 2	2	ug/L	1	LMM LMM		1102315 10			SW5030B8260B
bromochloromethane		2	ug/L	1			1102315 10			SW5030B8260B
tetrahydrofuran (THF)	< 10	10	ug/L	1			1102315 10			SW5030B8260B
1,1,1-trichloroethane	< 2	2	ug/L	1			1102315 10			SW5030B8260B
1,1-dichloropropene	< 2	2	ug/L	1			1102315 10			SW5030B8260B
t-amyl-methyl ether (TAME)	< 2	2	ug/L	1	LMM		1102315 10			SW5030B8260B
carbon tetrachloride	< 2	2	ug/L	1			1102315 10			SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		1102315 10			SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		1102315 10			SW5030B8260B
trichloroethene	< 2	2	ug/L	1	LMM		1102315 10			SW5030B8260B
1,2-dichloropropane	< 2	2	ug/L	1	LMM		1102315 10			SW5030B8260B
bromodichloromethane	< 0.6	0.6	ug/L	1	LMM		1102315 10			SW5030B8260B
1,4-dioxane	< 50	50	ug/L	1	LMM		1102315 10			SW5030B8260B
dibromomethane	< 2	2	ug/L	1	LMM		1102315 10			SW5030B8260B
4-methyl-2-pentanone (MIBK)	< 10	10	ug/L	1	LMM		1102315 10			SW5030B8260B
cis-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1102315 10			SW5030B8260B
	< 2	2	ug/L	1	LMM		1102315 10			SW5030B8260B
trans-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1102315 10			SW5030B8260B
2-hexanone	< 10	10	ug/L	1	LMM		1102315 10			SW5030B8260B
1,1,2-trichloroethane	< 2	2	ug/L	1			1102315 10			SW5030B8260B
1,3-dichloropropane	< 2	2	ug/L	1	LMM		1102315 10			SW5030B8260B
tetrachloroethene	< 2	2	ug/L	1	LMM		1102315 10			SW5030B8260B
dibromochloromethane	< 2	2	ug/L	1	LMM		1102315 10)/14/11	20:10	SW5030B8260B

Job ID: 22594

Sample#: 22594-004

Sample ID: CA-4

Sampled: 10/6/11 15:05	_	Quant		Instr Dil'n		Prep		Analy		
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		1102315			SW5030B8260B
chlorobenzene	< 2	2	ug/L	1	LMM		1102315			SW5030B8260B
1,1,1,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
styrene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
bromoform	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
isopropylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
1,1,2,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
1,2,3-trichloropropane	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
n-propylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
bromobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
2-chlorotoluene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
4-chlorotoluene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
tert-butylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
sec-butylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
1,3-dichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
4-isopropyltoluene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
1,4-dichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
1,2-dichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
n-butylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
1,2,4-trichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
1,3,5-trichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
hexachlorobutadiene	< 0.5	0.5	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
1,2,3-trichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
Surrogate Recovery		Limits	-							
dibromofluoromethane SUR	94	78-114	%	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
toluene-D8 SUR	92	88-110	%	1	LMM		1102315	10/14/11	20:10	SW5030B8260B
4-bromofluorobenzene SUR	92	86-115	%	1	LMM		1102315	10/14/11	20:10	SW5030B8260B

Job ID: 22594

Sample#: 22594-005

Sample ID: CA-5

Sampled: 10/6/11 13:10		Quant		Instr Dil'n		Prep	Anal	veie	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time	Reference
dichlorodifluoromethane	< 2	2	ug/L	1	LMM	2	1102315 10/14/11		SW5030B8260B
chloromethane	< 2	2	ug/L	1	LMM		1102315 10/14/11		SW5030B8260B
vinyl chloride	< 2	2	ug/L	1	LMM		1102315 10/14/11		SW5030B8260B
bromomethane	< 2	2	ug/L	1	LMM		1102315 10/14/11		SW5030B8260B
chloroethane	< 2	2	ug/L	1	LMM		1102315 10/14/11		SW5030B8260B
trichlorofluoromethane	< 2	2	ug/L	1	LMM		1102315 10/14/11		SW5030B8260B
diethyl ether	< 5	5	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
acetone	< 50	50	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
1,1-dichloroethene	< 1	1	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
methylene chloride	< 5	5	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
carbon disulfide	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
methyl t-butyl ether (MTBE)	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
trans-1,2-dichloroethene	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
isopropyl ether (DIPE)	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
ethyl t-butyl ether (ETBE)	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
1,1-dichloroethane	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
t-butanol (TBA)	< 30	30	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
2-butanone (MEK)	< 10	10	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
2,2-dichloropropane	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
cis-1,2-dichloroethene	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
chloroform	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
bromochloromethane	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
tetrahydrofuran (THF)	< 10	10	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
1,1,1-trichloroethane	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
1,1-dichloropropene	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
t-amyl-methyl ether (TAME)	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
carbon tetrachloride	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
trichloroethene	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
1,2-dichloropropane	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
bromodichloromethane	< 0.6	0.6	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
1,4-dioxane	< 50	50	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
dibromomethane	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
4-methyl-2-pentanone (MIBK)	< 10	10	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
cis-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
toluene	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
trans-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
2-hexanone	< 10	10	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
1,1,2-trichloroethane	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
1,3-dichloropropane	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
tetrachloroethene	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
dibromochloromethane	< 2	2	ug/L	1	LMM		1102315 10/14/11	20:42	SW5030B8260B
									26.3

Job ID: 22594

Sample#: 22594-005

Sample ID: CA-5

Sampled: 10/6/11 13:10	Quant		Instr Dil'n			Prep	ep Analysis			
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
chlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
1,1,1,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
styrene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
bromoform	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
isopropylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
1,1,2,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
1,2,3-trichloropropane	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
n-propylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
bromobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
2-chlorotoluene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
4-chlorotoluene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
tert-butylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
sec-butylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
1,3-dichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
4-isopropyltoluene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
1,4-dichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
1,2-dichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
n-butylbenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
1,2,4-trichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
1,3,5-trichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
hexachlorobutadiene	< 0.5	0.5	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
1,2,3-trichlorobenzene	< 2	2	ug/L	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
Surrogate Recovery		Limits	5							
dibromofluoromethane SUR	100	78-114	%	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
toluene-D8 SUR	95	88-110	%	1	LMM		1102315	10/14/11	20:42	SW5030B8260B
4-bromofluorobenzene SUR	87	86-115	%	1	LMM		1102315	10/14/11	20:42	SW5030B8260B

Job ID: 22594

Sample#: 22594-006

Sample ID: CA-6

Matrix: Water

Sampled: 10/6/11 12:40		0				Dura		A		
•	Decult	Quant Limit		Instr Dil'n	Analyst	Prep Date	Batch Da	Analy ate	/sıs Time	Deference
Parameter dichlorodifluoromethane	Result < 2	2	Units ug/L	Factor	LMM	Dale	1102315 10/1			Reference SW5030B8260B
chloromethane	< 2	2	ug/∟ ug/L	1	LMM		1102315 10/1			SW5030B8260B
vinyl chloride	< 2	2	ug/∟ ug/L	1	LMM		1102315 10/1			SW5030B8260B
bromomethane	< 2	2	ug/∟ ug/L	1	LMM		1102315 10/1			SW5030B8260B
chloroethane	< 2	2	ug/∟ ug/L	1	LMM		1102315 10/1			SW5030B8260B
trichlorofluoromethane	< 2	2	ug/∟ ug/L	1	LMM		1102315 10/1			SW5030B8260B
diethyl ether	< 5	5	ug/L	1	LMM		1102315 10/1			SW5030B8260B
acetone	< 50	50	ug/L	1	LMM		1102315 10/1			SW5030B8260B
1,1-dichloroethene	< 1	1	ug/L	1	LMM		1102315 10/1			SW5030B8260B
methylene chloride	< 5	5	ug/L	1	LMM		1102315 10/1			SW5030B8260B
carbon disulfide	< 2	2	ug/L	1	LMM		1102315 10/1			SW5030B8260B
methyl t-butyl ether (MTBE)	< 2	2	ug/L	1	LMM		1102315 10/1			SW5030B8260B
trans-1,2-dichloroethene	< 2	2	ug/L	1	LMM		1102315 10/1			SW5030B8260B
isopropyl ether (DIPE)	< 2	2	ug/L	1	LMM		1102315 10/1			SW5030B8260B
ethyl t-butyl ether (ETBE)	< 2	2	ug/L	1	LMM		1102315 10/1			SW5030B8260B
1,1-dichloroethane	< 2	2	ug/L	1	LMM		1102315 10/1			SW5030B8260B
t-butanol (TBA)	- < 30	30	ug/L	1	LMM		1102315 10/1			SW5030B8260B
2-butanone (MEK)	< 10	10	ug/L	1	LMM		1102315 10/1			SW5030B8260B
2,2-dichloropropane	< 2	2	ug/L	1	LMM		1102315 10/1			SW5030B8260B
cis-1,2-dichloroethene	< 2	2	ug/L	1	LMM		1102315 10/1			SW5030B8260B
chloroform	< 2	2	ug/L	1	LMM		1102315 10/1			SW5030B8260B
bromochloromethane	< 2	2	ug/L	1	LMM		1102315 10/1			SW5030B8260B
tetrahydrofuran (THF)	< 10	10	ug/L	1	LMM		1102315 10/1			SW5030B8260B
1,1,1-trichloroethane	< 2	2	ug/L	1	LMM		1102315 10/1			SW5030B8260B
1,1-dichloropropene	< 2	2	ug/L	1	LMM		1102315 10/1			SW5030B8260B
t-amyl-methyl ether (TAME)	< 2	2	ug/L	1	LMM		1102315 10/1	4/11	21:13	SW5030B8260B
carbon tetrachloride	< 2	2	ug/L	1	LMM		1102315 10/1	4/11	21:13	SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		1102315 10/1	4/11	21:13	SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		1102315 10/1	4/11	21:13	SW5030B8260B
trichloroethene	< 2	2	ug/L	1	LMM		1102315 10/1	4/11	21:13	SW5030B8260B
1,2-dichloropropane	< 2	2	ug/L	1	LMM		1102315 10/1	4/11	21:13	SW5030B8260B
bromodichloromethane	< 0.6	0.6	ug/L	1	LMM		1102315 10/1	4/11	21:13	SW5030B8260B
1,4-dioxane	< 50	50	ug/L	1	LMM		1102315 10/1	4/11	21:13	SW5030B8260B
dibromomethane	< 2	2	ug/L	1	LMM		1102315 10/1	4/11	21:13	SW5030B8260B
4-methyl-2-pentanone (MIBK)	< 10	10	ug/L	1	LMM		1102315 10/1	4/11	21:13	SW5030B8260B
cis-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1102315 10/1	4/11	21:13	SW5030B8260B
toluene	< 2	2	ug/L	1	LMM		1102315 10/1	4/11	21:13	SW5030B8260B
trans-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1102315 10/1	4/11	21:13	SW5030B8260B
2-hexanone	< 10	10	ug/L	1	LMM		1102315 10/1	4/11	21:13	SW5030B8260B
1,1,2-trichloroethane	< 2	2	ug/L	1	LMM		1102315 10/1	4/11	21:13	SW5030B8260B
1,3-dichloropropane	< 2	2	ug/L	1	LMM		1102315 10/1	4/11	21:13	SW5030B8260B
tetrachloroethene	< 2	2	ug/L	1	LMM		1102315 10/1	4/11	21:13	SW5030B8260B
dibromochloromethane	< 2	2	ug/L	1	LMM		1102315 10/1	4/11	21:13	SW5030B8260B

Job ID: 22594

Sample#: 22594-006

Sample ID: CA-6

Sampled: 10/6/11 12:40		Quant		Instr Dil'n		Prep		Analy	/sis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
chlorobenzene	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
1,1,1,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
styrene	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
bromoform	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
isopropylbenzene	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
1,1,2,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
1,2,3-trichloropropane	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
n-propylbenzene	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
bromobenzene	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
2-chlorotoluene	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
4-chlorotoluene	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
tert-butylbenzene	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
sec-butylbenzene	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
1,3-dichlorobenzene	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
4-isopropyltoluene	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
1,4-dichlorobenzene	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
1,2-dichlorobenzene	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
n-butylbenzene	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
1,2,4-trichlorobenzene	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
1,3,5-trichlorobenzene	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
hexachlorobutadiene	< 0.5	0.5	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
1,2,3-trichlorobenzene	< 2	2	ug/L	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
Surrogate Recovery		Limits	S							
dibromofluoromethane SUR	95	78-114	%	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
toluene-D8 SUR	91	88-110	%	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B
4-bromofluorobenzene SUR	87	86-115	%	1	LMM		1102315 1	0/14/11	21:13	SW5030B8260B

Job ID: 22594

Sample#: 22594-007

Sample ID: DUP-GW

Sampled: 10/6/11 0:00		Quant		Instr Dil'n		Prep	Analysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch Date Time Refer	rence
dichlorodifluoromethane	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
chloromethane	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
vinyl chloride	< 2	2	ug/L	1	LMM			5030B8260B
bromomethane	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
chloroethane	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
trichlorofluoromethane	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
diethyl ether	< 5	5	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
acetone	< 50	50	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
1,1-dichloroethene	< 1	1	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
methylene chloride	< 5	5	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
carbon disulfide	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
methyl t-butyl ether (MTBE)	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
trans-1,2-dichloroethene	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
isopropyl ether (DIPE)	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
ethyl t-butyl ether (ETBE)	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
1,1-dichloroethane	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
t-butanol (TBA)	< 30	30	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
2-butanone (MEK)	< 10	10	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
2,2-dichloropropane	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
cis-1,2-dichloroethene	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
chloroform	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
bromochloromethane	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
tetrahydrofuran (THF)	< 10	10	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
1,1,1-trichloroethane	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
1,1-dichloropropene	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
t-amyl-methyl ether (TAME)	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
carbon tetrachloride	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
benzene	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
trichloroethene	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
1,2-dichloropropane	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
bromodichloromethane	< 0.6	0.6	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
1,4-dioxane	< 50	50	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
dibromomethane	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
4-methyl-2-pentanone (MIBK)	< 10	10	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
cis-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
toluene	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
trans-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
2-hexanone	< 10	10	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
1,1,2-trichloroethane	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
1,3-dichloropropane	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
tetrachloroethene	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B
dibromochloromethane	< 2	2	ug/L	1	LMM		1102315 10/14/11 21:45 SW5	5030B8260B

Job ID: 22594

Sample#: 22594-007

Sample ID: DUP-GW

Sampled: 10/6/11 0:00		Quant		Instr Dil'n		Prep		Analy	/sis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch D	ate	Time	Reference
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
chlorobenzene	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
1,1,1,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
styrene	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
bromoform	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
isopropylbenzene	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
1,1,2,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
1,2,3-trichloropropane	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
n-propylbenzene	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
bromobenzene	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
2-chlorotoluene	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
4-chlorotoluene	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
tert-butylbenzene	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
sec-butylbenzene	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
1,3-dichlorobenzene	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
4-isopropyltoluene	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
1,4-dichlorobenzene	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
1,2-dichlorobenzene	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
n-butylbenzene	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
1,2,4-trichlorobenzene	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
1,3,5-trichlorobenzene	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
hexachlorobutadiene	< 0.5	0.5	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
1,2,3-trichlorobenzene	< 2	2	ug/L	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
Surrogate Recovery		Limits	5							
dibromofluoromethane SUR	97	78-114	%	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
toluene-D8 SUR	94	88-110	%	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B
4-bromofluorobenzene SUR	94	86-115	%	1	LMM		1102315 10/	14/11	21:45	SW5030B8260B

Job ID: 22594

Sample#: 22594-009

Sample ID: TB

$\mathbf{S}_{\mathbf{n}}$		• •				-				
Sampled: 10/6/11 0:00	Desult	Quant		Instr Dil'n	Analyst	Prep	Datah	Analy		Deferment
	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 2	2	ug/L	1				10/18/11		SW5030B8260B
chloromethane	< 2	2	ug/L	1	LMM			10/18/11		SW5030B8260B
vinyl chloride	< 2	2	ug/L	1	LMM			10/18/11		SW5030B8260B
bromomethane	< 2	2	ug/L	1	LMM			10/18/11		SW5030B8260B
chloroethane	< 2	2	ug/L	1	LMM			10/18/11		SW5030B8260B
trichlorofluoromethane	< 2	2	ug/L	1	LMM			10/18/11		SW5030B8260B
diethyl ether	< 5	5	ug/L	1	LMM			10/18/11		SW5030B8260B
acetone	< 50	50	ug/L	1	LMM			10/18/11		SW5030B8260B
1,1-dichloroethene	< 1	1	ug/L	1	LMM			10/18/11		SW5030B8260B
methylene chloride	< 5	5	ug/L	1	LMM			10/18/11		SW5030B8260B
carbon disulfide	< 2	2	ug/L	1	LMM			10/18/11		SW5030B8260B
methyl t-butyl ether (MTBE)	< 2	2	ug/L	1	LMM			10/18/11		SW5030B8260B
trans-1,2-dichloroethene	< 2	2	ug/L	1	LMM			10/18/11		SW5030B8260B
isopropyl ether (DIPE)	< 2	2	ug/L	1	LMM			10/18/11		SW5030B8260B
ethyl t-butyl ether (ETBE)	< 2	2	ug/L	1	LMM			10/18/11		SW5030B8260B
1,1-dichloroethane	< 2	2	ug/L	1	LMM			10/18/11		SW5030B8260B
t-butanol (TBA)	< 30	30	ug/L	1	LMM			10/18/11		SW5030B8260B
2-butanone (MEK)	< 10	10	ug/L	1	LMM			10/18/11		SW5030B8260B
2,2-dichloropropane	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
cis-1,2-dichloroethene	< 2	2	ug/L	1	LMM			10/18/11		SW5030B8260B
chloroform	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
bromochloromethane	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
tetrahydrofuran (THF)	< 10	10	ug/L	1	LMM			10/18/11		SW5030B8260B
1,1,1-trichloroethane	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
1,1-dichloropropene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
t-amyl-methyl ether (TAME)	< 2	2	ug/L	1	LMM			10/18/11		SW5030B8260B
carbon tetrachloride	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
1,2-dichloroethane	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
benzene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
trichloroethene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
1,2-dichloropropane	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
bromodichloromethane	< 0.6	0.6	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
1,4-dioxane	< 50	50	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
dibromomethane	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
4-methyl-2-pentanone (MIBK)	< 10	10	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
cis-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
toluene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
trans-1,3-dichloropropene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
2-hexanone	< 10	10	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
1,1,2-trichloroethane	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
1,3-dichloropropane	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
tetrachloroethene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
dibromochloromethane	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B

Job ID: 22594

Sample#: 22594-009

Sample ID: TB

Sampled: 10/6/11 0:00		Quant		Instr Dil'n		Prep		Analy	/sis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
chlorobenzene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
1,1,1,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
ethylbenzene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
m&p-xylenes	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
o-xylene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
styrene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
bromoform	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
isopropylbenzene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
1,1,2,2-tetrachloroethane	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
1,2,3-trichloropropane	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
n-propylbenzene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
bromobenzene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
1,3,5-trimethylbenzene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
2-chlorotoluene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
4-chlorotoluene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
tert-butylbenzene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
1,2,4-trimethylbenzene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
sec-butylbenzene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
1,3-dichlorobenzene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
4-isopropyltoluene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
1,4-dichlorobenzene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
1,2-dichlorobenzene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
n-butylbenzene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
1,2-dibromo-3-chloropropane (DBCP)	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
1,2,4-trichlorobenzene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
1,3,5-trichlorobenzene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
hexachlorobutadiene	< 0.5	0.5	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
naphthalene	< 5	5	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
1,2,3-trichlorobenzene	< 2	2	ug/L	1	LMM		1102331	10/18/11	18:05	SW5030B8260B
Surrogate Recovery		Limits	5							
dibromofluoromethane SUR	86	78-114	%	1	LMM		1102331			SW5030B8260B
toluene-D8 SUR	93	88-110	%	1	LMM		1102331			SW5030B8260B
4-bromofluorobenzene SUR	91	86-115	%	1	LMM		1102331	10/18/11	18:05	SW5030B8260B

Job ID: 22594

Sample#: 22594-001

Sample ID: CA-1

Sampled: 10/6/11 14:28		Quant		Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Dat	e Time	Reference
naphthalene	1.4	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:06	SW3510C8270D
2-methylnaphthalene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:06	SW3510C8270D
acenaphthylene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:06	SW3510C8270D
acenaphthene	0.7	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:06	SW3510C8270D
dibenzofuran	0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1)/11 15:06	SW3510C8270D
fluorene	0.8	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:06	SW3510C8270D
phenanthrene	0.9	0.5	ug/L	1	AJD 10/13/11	4624 10/1)/11 15:06	SW3510C8270D
anthracene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:06	SW3510C8270D
fluoranthene	0.9	0.5	ug/L	1	AJD 10/13/11	4624 10/1)/11 15:06	SW3510C8270D
pyrene	0.8	0.5	ug/L	1	AJD 10/13/11	4624 10/1)/11 15:06	SW3510C8270D
benzo(a)anthracene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:06	SW3510C8270D
chrysene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:06	SW3510C8270D
benzo(b)fluoranthene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:06	SW3510C8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:06	SW3510C8270D
benzo(a)pyrene	0.3	0.2	ug/L	1	AJD 10/13/11	4624 10/1)/11 15:06	SW3510C8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:06	SW3510C8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:06	SW3510C8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:06	SW3510C8270D
Surrogate Recovery		Limits	S					
2-fluorobiphenyl SUR	70	43-116	%	1	AJD 10/13/11	4624 10/1	//11 15:06	SW3510C8270D
o-terphenyl SUR	69	33-141	%	1	AJD 10/13/11	4624 10/1	9/11 15:06	SW3510C8270D

Job ID: 22594

Sample#: 22594-002

Sample ID: CA-2

Sampled: 10/6/11 13:40		Quant		Instr Dil'n	Prep	Analy	sis
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time Reference
naphthalene	0.9	0.5	ug/L	1	AJD 10/13/11	4624 10/19/11	17:03 SW3510C8270D
2-methylnaphthalene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/19/11	17:03 SW3510C8270D
acenaphthylene	1.0	0.5	ug/L	1	AJD 10/13/11	4624 10/19/11	17:03 SW3510C8270D
acenaphthene	0.7	0.5	ug/L	1	AJD 10/13/11	4624 10/19/11	17:03 SW3510C8270D
dibenzofuran	1.1	0.5	ug/L	1	AJD 10/13/11	4624 10/19/11	17:03 SW3510C8270D
fluorene	1.4	0.5	ug/L	1	AJD 10/13/11	4624 10/19/11	17:03 SW3510C8270D
phenanthrene	4.6	0.5	ug/L	1	AJD 10/13/11	4624 10/19/11	17:03 SW3510C8270D
anthracene	1.1	0.5	ug/L	1	AJD 10/13/11	4624 10/19/11	17:03 SW3510C8270D
fluoranthene	2.7	0.5	ug/L	1	AJD 10/13/11	4624 10/19/11	17:03 SW3510C8270D
pyrene	2.6	0.5	ug/L	1	AJD 10/13/11	4624 10/19/11	17:03 SW3510C8270D
benzo(a)anthracene	1.1	0.5	ug/L	1	AJD 10/13/11	4624 10/19/11	17:03 SW3510C8270D
chrysene	1.0	0.5	ug/L	1	AJD 10/13/11	4624 10/19/11	17:03 SW3510C8270D
benzo(b)fluoranthene	1.0	0.5	ug/L	1	AJD 10/13/11	4624 10/19/11	17:03 SW3510C8270D
benzo(k)fluoranthene	0.6	0.5	ug/L	1	AJD 10/13/11	4624 10/19/11	17:03 SW3510C8270D
benzo(a)pyrene	0.8	0.2	ug/L	1	AJD 10/13/11	4624 10/19/11	17:03 SW3510C8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/19/11	17:03 SW3510C8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/19/11	17:03 SW3510C8270D
benzo(g,h,i)perylene	0.6	0.5	ug/L	1	AJD 10/13/11	4624 10/19/11	17:03 SW3510C8270D
Surrogate Recovery		Limits	S				
2-fluorobiphenyl SUR	72	43-116	%	1	AJD 10/13/11	4624 10/19/11	17:03 SW3510C8270D
o-terphenyl SUR	67	33-141	%	1	AJD 10/13/11	4624 10/19/11	17:03 SW3510C8270D

Job ID: 22594

Sample#: 22594-003

Sample ID: CA-3

Sampled: 10/6/11 15:35		Quant		Instr Dil'n	Prep	1	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Dat	e Time	Reference
naphthalene	0.8	0.5	ug/L	1	AJD 10/13/11	4624 10/19	/11 14:28	SW3510C8270D
2-methylnaphthalene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/19	/11 14:28	SW3510C8270D
acenaphthylene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/19	/11 14:28	SW3510C8270D
acenaphthene	0.6	0.5	ug/L	1	AJD 10/13/11	4624 10/19	/11 14:28	SW3510C8270D
dibenzofuran	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/19	/11 14:28	SW3510C8270D
fluorene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/19	/11 14:28	SW3510C8270D
phenanthrene	0.7	0.5	ug/L	1	AJD 10/13/11	4624 10/19	/11 14:28	SW3510C8270D
anthracene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/19	/11 14:28	SW3510C8270D
fluoranthene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/19	/11 14:28	SW3510C8270D
pyrene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/19	/11 14:28	SW3510C8270D
benzo(a)anthracene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/19	/11 14:28	SW3510C8270D
chrysene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/19	/11 14:28	SW3510C8270D
benzo(b)fluoranthene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/19	/11 14:28	SW3510C8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/19	/11 14:28	SW3510C8270D
benzo(a)pyrene	< 0.2	0.2	ug/L	1	AJD 10/13/11	4624 10/19	/11 14:28	SW3510C8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/19	/11 14:28	SW3510C8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/19	/11 14:28	SW3510C8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/19	/11 14:28	SW3510C8270D
Surrogate Recovery		Limit	S					
2-fluorobiphenyl SUR	68	43-116	%	1	AJD 10/13/11	4624 10/19	/11 14:28	SW3510C8270D
o-terphenyl SUR	68	33-141	%	1	AJD 10/13/11	4624 10/19	/11 14:28	SW3510C8270D

Job ID: 22594

Sample#: 22594-004

Sample ID: CA-4

Sampled: 10/6/11 15:05		Quant		Instr Dil'n	Prep		nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Dat	e Time	Reference
naphthalene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:44	SW3510C8270D
2-methylnaphthalene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1)/11 15:44	SW3510C8270D
acenaphthylene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:44	SW3510C8270D
acenaphthene	0.6	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:44	SW3510C8270D
dibenzofuran	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1)/11 15:44	SW3510C8270D
fluorene	0.7	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:44	SW3510C8270D
phenanthrene	1.0	0.5	ug/L	1	AJD 10/13/11	4624 10/1)/11 15:44	SW3510C8270D
anthracene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:44	SW3510C8270D
fluoranthene	1.4	0.5	ug/L	1	AJD 10/13/11	4624 10/1)/11 15:44	SW3510C8270D
pyrene	1.4	0.5	ug/L	1	AJD 10/13/11	4624 10/1)/11 15:44	SW3510C8270D
benzo(a)anthracene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:44	SW3510C8270D
chrysene	0.6	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:44	SW3510C8270D
benzo(b)fluoranthene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:44	SW3510C8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:44	SW3510C8270D
benzo(a)pyrene	0.4	0.2	ug/L	1	AJD 10/13/11	4624 10/1)/11 15:44	SW3510C8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:44	SW3510C8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 15:44	SW3510C8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1)/11 15:44	SW3510C8270D
Surrogate Recovery		Limits	S					
2-fluorobiphenyl SUR	56	43-116	%	1	AJD 10/13/11	4624 10/1)/11 15:44	SW3510C8270D
o-terphenyl SUR	54	33-141	%	1	AJD 10/13/11	4624 10/1	9/11 15:44	SW3510C8270D

Job ID: 22594

Sample#: 22594-005

Sample ID: CA-5

Sampled: 10/6/11 13:10		Quant	1	Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Da	ate Time	Reference
naphthalene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/	19/11 13:51	SW3510C8270D
2-methylnaphthalene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/	19/11 13:51	SW3510C8270D
acenaphthylene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/	19/11 13:51	SW3510C8270D
acenaphthene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/	19/11 13:51	SW3510C8270D
dibenzofuran	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/	19/11 13:51	SW3510C8270D
fluorene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/	19/11 13:51	SW3510C8270D
phenanthrene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/	19/11 13:51	SW3510C8270D
anthracene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/	19/11 13:51	SW3510C8270D
fluoranthene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/	19/11 13:51	SW3510C8270D
pyrene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/	19/11 13:51	SW3510C8270D
benzo(a)anthracene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/	19/11 13:51	SW3510C8270D
chrysene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/	19/11 13:51	SW3510C8270D
benzo(b)fluoranthene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/	19/11 13:51	SW3510C8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/	19/11 13:51	SW3510C8270D
benzo(a)pyrene	< 0.2	0.2	ug/L	1	AJD 10/13/11	4624 10/	19/11 13:51	SW3510C8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/	19/11 13:51	SW3510C8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/	19/11 13:51	SW3510C8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/	19/11 13:51	SW3510C8270D
Surrogate Recovery		Limits	S					
2-fluorobiphenyl SUR	70	43-116	%	1	AJD 10/13/11	4624 10/	19/11 13:51	SW3510C8270D
o-terphenyl SUR	69	33-141	%	1	AJD 10/13/11	4624 10/	19/11 13:51	SW3510C8270D

Job ID: 22594

Sample#: 22594-006

Sample ID: CA-6

Sampled: 10/6/11 12:40		Quant			Dron		Analı	<i></i>	
Parameter	Result	Quant Limit	Units	Instr Dil'n Factor	Prep Analyst Date	Batch	Analy Date	/sis Time	Reference
N-nitrosodimethylamine	< 2	2	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
aniline	< 2	2	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
phenol	< 2	2	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
2-chlorophenol	< 2 < 5	5	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
	< 2	2	-	1	AJD 10/13/11		10/20/11		SW3510C8270D
bis(2-chloroethyl)ether 1,3-dichlorobenzene	< 2	2	ug/L ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
1,4-dichlorobenzene	< 2	2	-	1	AJD 10/13/11		10/20/11		SW3510C8270D
,	< 2	2	ug/L	1	AJD 10/13/11 AJD 10/13/11		10/20/11		SW3510C8270D SW3510C8270D
1,2-dichlorobenzene	< 2		ug/L		AJD 10/13/11		10/20/11		SW3510C8270D SW3510C8270D
benzyl alcohol	< 2	2	ug/L	1					
2-methylphenol		2	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
bis(2-chloroisopropyl) ether	< 2 < 2	2	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
hexachloroethane		2	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
N-nitroso-di-N-propylamine	< 2	2	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
4-methylphenol	< 2	2	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
nitrobenzene	< 2	2	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
isophorone	< 5	5	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
2-nitrophenol	< 2	2	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
2,4-dimethylphenol	< 2	2	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
bis(2-chloroethoxy)methane	< 5	5	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
2,4-dichlorophenol	< 5	5	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
1,2,4-trichlorobenzene	< 5	5	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
naphthalene	< 0.5	0.5	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
benzoic acid	< 50	50	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
4-chloroaniline	< 2	2	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
hexachlorobutadiene	< 2	2	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
4-chloro-3-methylphenol	< 2	2	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
2-methylnaphthalene	< 0.5	0.5	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
hexachlorocyclopentadiene	< 10	10	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
2,4,6-trichlorophenol	< 2	2	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
2,4,5-trichlorophenol	< 2	2	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
2-chloronaphthalene	< 5	5	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
2-nitroaniline	< 2	2	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
acenaphthylene	< 0.5	0.5	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
dimethylphthalate	< 5	5	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
2,6-dinitrotoluene	< 2	2	ug/L	1	AJD 10/13/11		10/20/11		SW3510C8270D
2,4-dinitrotoluene	< 2	2	ug/L	1	AJD 10/13/11	4624	10/20/11	11:26	SW3510C8270D
acenaphthene	0.6	0.5	ug/L	1	AJD 10/13/11	4624	10/20/11	11:26	SW3510C8270D
3-nitroaniline	< 2	2	ug/L	1	AJD 10/13/11	4624	10/20/11	11:26	SW3510C8270D
2,4-dinitrophenol	< 50	50	ug/L	1	AJD 10/13/11	4624	10/20/11	10:48	SW3510C8270D
dibenzofuran	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624	10/20/11	11:26	SW3510C8270D
4-nitrophenol	< 10	10	ug/L	1	AJD 10/13/11	4624	10/20/11	10:48	SW3510C8270D
fluorene	0.7	0.5	ug/L	1	AJD 10/13/11	4624	10/20/11	11:26	SW3510C8270D
diethyl phthalate	< 5	5	ug/L	1	AJD 10/13/11	4624	10/20/11	11:26	SW3510C8270D

Job ID: 22594

Sample#: 22594-006

Sample ID: CA-6

Sampled: 10/6/11 12:40		Quant		Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date Time	Reference
4-chlorophenyl phenyl ether	< 5	5	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
4-nitroaniline	< 5	5	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
4,6-dinitro-2-methylphenol	< 20	20	ug/L	1	AJD 10/13/11	4624 1	0/20/11 10:48	SW3510C8270D
azobenzene	< 2	2	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
N-nitrosodiphenylamine	< 2	2	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
4-bromophenyl phenyl ether	< 2	2	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
hexachlorobenzene	< 2	2	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
pentachlorophenol	< 10	10	ug/L	1	AJD 10/13/11	4624 1	0/20/11 10:48	SW3510C8270D
phenanthrene	1.1	0.5	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
anthracene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
carbazole	< 2	2	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
di-n-butylphthalate	< 5	5	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
fluoranthene	1.6	0.5	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
benzidine	< 30	30	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
pyrene	1.6	0.5	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
butyl benzyl phthalate	< 5	5	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
benzo(a)anthracene	0.5	0.5	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
chrysene	0.7	0.5	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
3,3'-dichlorobenzidine	< 30	30	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
bis(2-ethylhexyl)phthalate	< 5	5	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
di-n-octyl phthalate	< 2	2	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
benzo(b)fluoranthene	0.6	0.5	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
benzo(a)pyrene	0.5	0.2	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
Surrogate Recovery		Limits						
2-fluorophenol SUR	29	21-100	%	1	AJD 10/13/11	4624 1	0/20/11 10:48	SW3510C8270D
phenol-D5 SUR	16	10-102	%	1	AJD 10/13/11	4624 1	0/20/11 10:48	SW3510C8270D
2,4,6-tribromophenol SUR	64	10-123	%	1	AJD 10/13/11		0/20/11 10:48	SW3510C8270D
nitrobenzene-D5 SUR	68	35-114	%	1	AJD 10/13/11		0/20/11 11:26	SW3510C8270D
2-fluorobiphenyl SUR	62	43-116	%	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D
p-terphenyl-D14 SUR	81	33-141	%	1	AJD 10/13/11	4624 1	0/20/11 11:26	SW3510C8270D

Job ID: 22594

Sample#: 22594-007

Sample ID: DUP-GW

Sampled: 10/6/11 0:00		Quant		Instr Dil'n	Prep		nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Dat	e Time	Reference
naphthalene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1)/11 13:13	SW3510C8270D
2-methylnaphthalene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1)/11 13:13	SW3510C8270D
acenaphthylene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1)/11 13:13	SW3510C8270D
acenaphthene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1)/11 13:13	SW3510C8270D
dibenzofuran	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	/11 13:13	SW3510C8270D
fluorene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1)/11 13:13	SW3510C8270D
phenanthrene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1)/11 13:13	SW3510C8270D
anthracene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1)/11 13:13	SW3510C8270D
fluoranthene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1)/11 13:13	SW3510C8270D
pyrene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	/11 13:13	SW3510C8270D
benzo(a)anthracene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1)/11 13:13	SW3510C8270D
chrysene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 13:13	SW3510C8270D
benzo(b)fluoranthene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 13:13	SW3510C8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 13:13	SW3510C8270D
benzo(a)pyrene	< 0.2	0.2	ug/L	1	AJD 10/13/11	4624 10/1	/11 13:13	SW3510C8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 13:13	SW3510C8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	9/11 13:13	SW3510C8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/L	1	AJD 10/13/11	4624 10/1	/11 13:13	SW3510C8270D
Surrogate Recovery		Limits	5					
2-fluorobiphenyl SUR	69	43-116	%	1	AJD 10/13/11	4624 10/1	/11 13:13	SW3510C8270D
o-terphenyl SUR	68	33-141	%	1	AJD 10/13/11	4624 10/1	9/11 13:13	SW3510C8270D

Project ID: New Engla Job ID: 22594	and Yard										
Sample#: 22594-(001										
Sample ID: CA-1											
Matrix: Water											
Sampled: 10/6/11	14:28		Quant		Instr Dil'n		Prep		Analy	/sis	
Parameter		Result	Limit	Units	Factor	Analyst	•	Batch	Date	Time	Reference
Lead		< 0.008	0.008	mg/L	1	BJS		1102281	10/13/11	15:44	SW3005A6010C
Sample#: 22594-(002										
Sample ID: CA-2											
Matrix: Water											
Sampled: 10/6/11	13:40		Quant				Dron		Anah	/oio	
Parameter	10110	Result	Limit	Units	Instr Dil'n Factor	Analyst	Prep Date	Batch	Analy Date	Time	Reference
Lead		< 0.008	0.008	mg/L	1	BJS	Duit		10/13/11		SW3005A6010C
		0.000				200					
Sample#: 22594-0	006										
Sample ID: CA-6											
Matrix: Water											
Matrix: Water Sampled: 10/6/11	12:40		Quant		Instr Dil'n		Prep		Analy	/sis	
	12:40	Result	Quant Limit	Units	Instr Dil'n Factor	Analyst	•	Batch	Analy Date	/sis Time	Reference
Sampled: 10/6/11	12:40	Result < 0.008	-			Analyst BJS	•		-	Time	Reference SW3005A6010C
Sampled: 10/6/11 Parameter	12:40		Limit	Units	Factor	-	•	1102281	Date	Time 14:06	
Sampled: 10/6/11 Parameter Arsenic	12:40	< 0.008	Limit 0.008	Units mg/L	Factor	BJS	•	1102281 1102281	Date 10/13/11	Time 14:06 14:06	SW3005A6010C
Sampled: 10/6/11 Parameter Arsenic Barium	12:40	< 0.008	Limit 0.008 0.05	Units mg/L mg/L	Factor 1 1	BJS BJS	•	1102281 1102281 1102281	Date 10/13/11 10/13/11	Time 14:06 14:06 14:06	SW3005A6010C SW3005A6010C
Sampled: 10/6/11 Parameter Arsenic Barium Cadmium	12:40	< 0.008 0.06 < 0.004 < 0.05 < 0.008	Limit 0.008 0.05 0.004	Units mg/L mg/L mg/L	Factor 1 1 1	BJS BJS BJS BJS BJS	Date	1102281 1102281 1102281 1102281 1102281	Date 10/13/11 10/13/11 10/13/11	Time 14:06 14:06 14:06 14:06	SW3005A6010C SW3005A6010C SW3005A6010C
Sampled: 10/6/11 Parameter Arsenic Barium Cadmium Chromium	12:40	< 0.008 0.06 < 0.004 < 0.05	Limit 0.008 0.05 0.004 0.05	Units mg/L mg/L mg/L mg/L	Factor 1 1 1 1	BJS BJS BJS BJS BJS	•	1102281 1102281 1102281 1102281 1102281 1102281	Date 10/13/11 10/13/11 10/13/11 10/13/11	Time 14:06 14:06 14:06 14:06 14:06	SW3005A6010C SW3005A6010C SW3005A6010C SW3005A6010C
Sampled: 10/6/11 Parameter Arsenic Barium Cadmium Cadmium Lead Mercury Selenium	12:40	< 0.008 0.06 < 0.004 < 0.005 < 0.008 < 0.0002 < 0.05	Limit 0.008 0.05 0.004 0.05 0.008 0.008 0.002 0.05	Units mg/L mg/L mg/L mg/L mg/L mg/L	Factor 1 1 1 1 1	BJS BJS BJS BJS AJD 1 BJS	Date	1102281 1102281 1102281 1102281 1102281 1102281 4630 1102281	Date 10/13/11 10/13/11 10/13/11 10/13/11 10/13/11 10/14/11 10/13/11	Time 14:06 14:06 14:06 14:06 14:06 9:23 14:06	SW3005A6010C SW3005A6010C SW3005A6010C SW3005A6010C SW3005A6010C SW7470A SW3005A6010C
Sampled: 10/6/11 Parameter Arsenic Barium Cadmium Chromium Lead Mercury	12:40	< 0.008 0.06 < 0.004 < 0.005 < 0.008 < 0.0002	Limit 0.008 0.05 0.004 0.05 0.008 0.0002	Units mg/L mg/L mg/L mg/L mg/L	Factor 1 1 1 1 1 1 1	BJS BJS BJS BJS BJS AJD 1	Date	1102281 1102281 1102281 1102281 1102281 1102281 4630 1102281	Date 10/13/11 10/13/11 10/13/11 10/13/11 10/13/11 10/14/11	Time 14:06 14:06 14:06 14:06 14:06 9:23 14:06	SW3005A6010C SW3005A6010C SW3005A6010C SW3005A6010C SW3005A6010C SW7470A
Sampled: 10/6/11 Parameter Arsenic Barium Cadmium Cadmium Lead Mercury Selenium		< 0.008 0.06 < 0.004 < 0.005 < 0.008 < 0.0002 < 0.05	Limit 0.008 0.05 0.004 0.05 0.008 0.008 0.002 0.05	Units mg/L mg/L mg/L mg/L mg/L mg/L	Factor 1 1 1 1 1 1 1 1	BJS BJS BJS BJS AJD 1 BJS	Date	1102281 1102281 1102281 1102281 1102281 1102281 4630 1102281	Date 10/13/11 10/13/11 10/13/11 10/13/11 10/13/11 10/14/11 10/13/11	Time 14:06 14:06 14:06 14:06 14:06 9:23 14:06	SW3005A6010C SW3005A6010C SW3005A6010C SW3005A6010C SW3005A6010C SW7470A SW3005A6010C
Sampled: 10/6/11 Parameter Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver	008	< 0.008 0.06 < 0.004 < 0.005 < 0.008 < 0.0002 < 0.05	Limit 0.008 0.05 0.004 0.05 0.008 0.008 0.002 0.05	Units mg/L mg/L mg/L mg/L mg/L mg/L	Factor 1 1 1 1 1 1 1 1	BJS BJS BJS BJS AJD 1 BJS	Date	1102281 1102281 1102281 1102281 1102281 1102281 4630 1102281	Date 10/13/11 10/13/11 10/13/11 10/13/11 10/13/11 10/14/11 10/13/11	Time 14:06 14:06 14:06 14:06 14:06 9:23 14:06	SW3005A6010C SW3005A6010C SW3005A6010C SW3005A6010C SW3005A6010C SW7470A SW3005A6010C
Sampled: 10/6/11 Parameter Arsenic Barium Cadmium Cadmium Chromium Lead Mercury Selenium Silver Sample#: 22594-0	008	< 0.008 0.06 < 0.004 < 0.005 < 0.008 < 0.0002 < 0.05	Limit 0.008 0.05 0.004 0.05 0.008 0.008 0.002 0.05	Units mg/L mg/L mg/L mg/L mg/L mg/L	Factor 1 1 1 1 1 1 1 1	BJS BJS BJS BJS AJD 1 BJS	Date	1102281 1102281 1102281 1102281 1102281 1102281 4630 1102281	Date 10/13/11 10/13/11 10/13/11 10/13/11 10/13/11 10/14/11 10/13/11	Time 14:06 14:06 14:06 14:06 14:06 9:23 14:06	SW3005A6010C SW3005A6010C SW3005A6010C SW3005A6010C SW3005A6010C SW7470A SW3005A6010C
Sampled: 10/6/11 Parameter Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver Sample#: 22594-0 Sample ID: DUP-G	008 W-2	< 0.008 0.06 < 0.004 < 0.005 < 0.008 < 0.0002 < 0.05	Limit 0.008 0.05 0.004 0.05 0.008 0.008 0.002 0.05	Units mg/L mg/L mg/L mg/L mg/L mg/L	Factor 1 1 1 1 1 1 1 1	BJS BJS BJS BJS AJD 1 BJS	Date	1102281 1102281 1102281 1102281 1102281 1102281 4630 1102281	Date 10/13/11 10/13/11 10/13/11 10/13/11 10/13/11 10/14/11 10/13/11	Time 14:06 14:06 14:06 14:06 14:06 9:23 14:06 14:06	SW3005A6010C SW3005A6010C SW3005A6010C SW3005A6010C SW3005A6010C SW7470A SW3005A6010C
Sampled: 10/6/11 Parameter Arsenic Barium Cadmium Cadmium Chromium Lead Mercury Selenium Silver Sample#: 22594-0 Sample ID: DUP-G Matrix: Water	008 W-2	< 0.008 0.06 < 0.004 < 0.005 < 0.008 < 0.0002 < 0.05	Limit 0.008 0.05 0.004 0.05 0.008 0.0002 0.05 0.007	Units mg/L mg/L mg/L mg/L mg/L mg/L	Factor 1 1 1 1 1 1 1	BJS BJS BJS BJS AJD 1 BJS	Date 0/13/11 Prep	1102281 1102281 1102281 1102281 1102281 1102281 4630 1102281	Date 10/13/11 10/13/11 10/13/11 10/13/11 10/13/11 10/13/11 10/13/11	Time 14:06 14:06 14:06 14:06 14:06 9:23 14:06 14:06	SW3005A6010C SW3005A6010C SW3005A6010C SW3005A6010C SW3005A6010C SW7470A SW3005A6010C

Quality Control Report

124 Heritage Avenue Unit 10 Portsmouth, NH 03801 www.absoluteresourceassociates.com

Absolute Resource

issociates

Case Narrative Lab # 22594

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 2 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

Calibration

No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

No exceptions noted.

Laboratory Control Sample Results

VOC: The LCS/D1102315 did not meet the acceptance criteria for dichlorodifluoromethane and 1,4-dioxane. These compounds showed high recovery. There is no impact to the data as these analytes were not detected in the associated samples. The LCS/D1102315 did not meet the acceptance criteria for bromomethane, 2-butanone (MEK), and 2,2-dichloropropane. Since <10% of the compounds were outside of the acceptance criteria, reanalysis is not required.

SVOC: The LCS/D4624 did not meet the acceptance criteria for phenol, hexachlorocyclopentadiene, and dimethylphthalate. Since <10% of the compounds were outside of the acceptance criteria, reanalysis is not required.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Not requested for this project.

Other

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

- QC Report -

Method	QC ID	Parameter As	ssociated Sample		Result	Units Amt Added	%R	Limits	RPD	RPD Limi
SW5030B8260B	BLK1102315	dichlorodifluoromethane		<	2	ug/L				
		chloromethane		<	2	ug/L				
		vinyl chloride		<	2	ug/L				
		bromomethane		<	2	ug/L				
		chloroethane		<	2	ug/L				
		trichlorofluoromethane		<	2	ug/L				
		diethyl ether		<	10	ug/L				
		acetone		<	50	ug/L				
		1,1-dichloroethene		<	1	ug/L				
		methylene chloride		<	5	ug/L				
		carbon disulfide		<	2	ug/L				
		methyl t-butyl ether (MTBE)		<	2	ug/L				
		trans-1,2-dichloroethene		<	2	ug/L				
		isopropyl ether (DIPE)		<	2	ug/L				
		ethyl t-butyl ether (ETBE)		<	2	ug/L				
		1,1-dichloroethane		<	2	ug/L				
		t-butanol (TBA)		<	30	ug/L				
		2-butanone (MEK)		<	10	ug/L				
		2,2-dichloropropane		<	2	ug/L				
		cis-1,2-dichloroethene		<	2	ug/L				
		chloroform		<	2	ug/L				
		bromochloromethane		<	2	ug/L				
		tetrahydrofuran (THF)		<	10	ug/L				
		1,1,1-trichloroethane		<	2	ug/L				
		1,1-dichloropropene		<	2	ug/L				
		t-amyl-methyl ether (TAME)		<	2	ug/L				
		carbon tetrachloride		<	2	ug/L				
		1,2-dichloroethane		<	2	ug/L				
		benzene		<	2	ug/L				
		trichloroethene		<	2	ug/L				
		1,2-dichloropropane		<	2	ug/L				
		bromodichloromethane		<	0.6	ug/L				
		1,4-dioxane		<	50	ug/L				
		dibromomethane		<	2	ug/L				
		4-methyl-2-pentanone (MIBK)		<	10	ug/L				
		cis-1,3-dichloropropene		<	2	ug/L				
		toluene		<	2	ug/L				
		trans-1,3-dichloropropene		<	2	ug/L				
		2-hexanone		<	10	ug/L				
		1,1,2-trichloroethane		<	2	ug/L				
		1,3-dichloropropane		<	2	ug/L				
		tetrachloroethene		<	2	ug/L				
		dibromochloromethane		<	2	ug/L				
				<	2					
		1,2-dibromoethane (EDB) chlorobenzene		<	2	ug/L				
						ug/L				
		1,1,1,2-tetrachloroethane		<	2	ug/L				
		ethylbenzene		<	2	ug/L				
		m&p-xylenes		<	2	ug/L				
		o-xylene		<	2	ug/L				
		styrene		<	2	ug/L				

Method	QC ID	Parameter A	ssociated Sample		Result	Units Amt Added	%R	Lin	nits	RPD	RPD Limit
SW5030B8260	B BLK1102315	bromoform		<	2	ug/L					
		isopropylbenzene		<	2	ug/L					
		1,1,2,2-tetrachloroethane		<	2	ug/L					
		1,2,3-trichloropropane		<	2	ug/L					
		n-propylbenzene		<	2	ug/L					
		bromobenzene		<	2	ug/L					
		1,3,5-trimethylbenzene		<	2	ug/L					
		2-chlorotoluene		<	2	ug/L					
		4-chlorotoluene		<	2	ug/L					
		tert-butylbenzene		<	2	ug/L					
		1,2,4-trimethylbenzene		<	2	ug/L					
		sec-butylbenzene		<	2	ug/L					
		1,3-dichlorobenzene		<	2	ug/L					
		4-isopropyltoluene		<	2	ug/L					
		1,4-dichlorobenzene		<	2	ug/L					
		1,2-dichlorobenzene		<	2	ug/L					
		n-butylbenzene		<	2	ug/L					
		1,2-dibromo-3-chloropropane		<	2	ug/L					
		1,2,4-trichlorobenzene		<	2	ug/L					
		1,3,5-trichlorobenzene		<	2	ug/L					
		hexachlorobutadiene		<	0.5	ug/L					
		naphthalene		<	5	ug/L					
		1,2,3-trichlorobenzene		<	2	ug/L					
		dibromofluoromethane SUR			98	%		78	114		
		toluene-D8 SUR			93	%		88	110		
		4-bromofluorobenzene SUR			95	%		86	115		

LCS1102315	dichlorodifluoromethane											
				36	ug/L	20	181	*	70	130		
	chloromethane			22	ug/L	20	112		70	130		
	vinyl chloride			23	ug/L	20	117		70	130		
	bromomethane			13	ug/L	20	65	*	70	130		
	chloroethane			21	ug/L	20	103		70	130		
	trichlorofluoromethane			23	ug/L	20	116		70	130		
	diethyl ether			19	ug/L	20	93		70	130		
	acetone		<	50	ug/L	20	79					
	1,1-dichloroethene			20	ug/L	20	100		70	130		
	methylene chloride			20	ug/L	20	100		70	130		
	carbon disulfide			16	ug/L	20	81		70	130		
	methyl t-butyl ether (MTBE))		20	ug/L	20	102		70	130		
	trans-1,2-dichloroethene			19	ug/L	20	97		70	130		
	isopropyl ether (DIPE)			19	ug/L	20	95		70	130		
	ethyl t-butyl ether (ETBE)			19	ug/L	20	93		70	130		
	1,1-dichloroethane			19	ug/L	20	97		70	130		
	t-butanol (TBA)			130	ug/L	100	125		70	130		
	2-butanone (MEK)			13	ug/L	20	66	*	70	130		
	2,2-dichloropropane			13	ug/L	20	64	*	70	130		
	cis-1,2-dichloroethene			19	ug/L	20	94		70	130		
	chloroform			20	ug/L	20	100		70	130		
	bromochloromethane			18	ug/L	20	90		70	130		
	tetrahydrofuran (THF)			21	ug/L	20	103		70	130		
	1,1,1-trichloroethane			19	ug/L	20	94		70	130		
	1,1-dichloropropene			19	ug/L	20	96		70	130		
	t-amyl-methyl ether (TAME)			17	ug/L	20	86		70	130		
	carbon tetrachloride			17	ug/L	20	86		70	130		
	1,2-dichloroethane			21	ug/L	20	105		70	130		
	benzene			19	ug/L	20	96		70	130		
	trichloroethene			19	ug/L	20	95		70	130		
	1,2-dichloropropane			19	ug/L	20	94		70	130		
	bromodichloromethane			16	ug/L	20	82		70	130		
	1,4-dioxane			56	ug/L	40	140	*	70	130		
	dibromomethane			19	ug/L	20	96		70	130		
	4-methyl-2-pentanone (MIBI	K)		15	ug/L	20	76		70	130		
	cis-1,3-dichloropropene			15	ug/L	20	76		70	130		
	toluene			21	ug/L	20	104		70	130		
	trans-1,3-dichloropropene			14	ug/L	20	71		70	130		
	2-hexanone			18	ug/L	20	88		70	130		
	1,1,2-trichloroethane			20	ug/L	20	100		70	130		
	1,3-dichloropropane			22	ug/L	20	112		70	130		
	tetrachloroethene			21	ug/L	20	104		70	130		
	dibromochloromethane			18	ug/L	20	90		70	130		
	1,2-dibromoethane (EDB)			21	ug/L	20	106		70	130		
	chlorobenzene			21	ug/L	20	105		70	130		
	1,1,1,2-tetrachloroethane			20	ug/L	20	98		70	130		
	ethylbenzene			22	ug/L	20	110		70	130		
	m&p-xylenes			44	ug/L	40	109		70	130		
	o-xylene			22	ug/L	20	109		70	130		
				21		20	104		70	130		
	bromoform											
		1,1-dichloroethene methylene chloride carbon disulfide methyl t-butyl ether (MTBE) trans-1,2-dichloroethene isopropyl ether (DIPE) ethyl t-butyl ether (ETBE) 1,1-dichloroethane t-butanol (TBA) 2-butanone (MEK) 2,2-dichloropropane cis-1,2-dichloroethene chloroform bromochloromethane tetrahydrofuran (THF) 1,1,1-trichloroethane 1,1-dichloropropene t-amyl-methyl ether (TAME) carbon tetrachloride 1,2-dichloropropane benzene trichloroethene 1,2-dichloropropane bromodichloromethane 1,4-dioxane dibromomethane 4-methyl-2-pentanone (MIB cis-1,3-dichloropropene toluene trans-1,3-dichloropropene 2-hexanone 1,1,2-trichloroethane 1,3-dichloropropane tetrachloroethene dibromochloromethane 1,2-dibromoethane	1,1-dichloroethene methylene chloride carbon disulfide methyl t-butyl ether (MTBE) trans-1,2-dichloroethene isopropyl ether (DIPE) ethyl t-butyl ether (ETBE) 1,1-dichloroethane t-butanol (TBA) 2-butanone (MEK) 2,2-dichloroptopane cis-1,2-dichloroethene chloroform bromochloromethane tetrahydrofuran (THF) 1,1,1-trichloroethane 1,1-dichloroptopene t-amyl-methyl ether (TAME) carbon tetrachloride 1,2-dichloroptopane benzene trichloroethane 1,2-dichloroptopane bromodichloromethane 1,4-dioxane dibromomethane 4-methyl-2-pentanone (MIBK) cis-1,3-dichloroptopene toluene trans-1,3-dichloroptopene 1,1,2-trichloroethane 1,3-dichloroptopane tetrachloroethene 1,2-dichloroptopene toluene trans-1,3-dichloroptopene 1,1,2-trichloroethane 1,2-dichloroptopane tetrachloroethene dibromochlanoethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dibromoethane ethylbenzene m&p-xylenes o-xylene styrene	1,1-dichloroethene methylene chloride carbon disulfide methyl t-butyl ether (MTBE) trans-1,2-dichloroethene isopropyl ether (DIPE) ethyl t-butyl ether (ETBE) 1,1-dichloroethane t-butanol (TBA) 2-butanone (MEK) 2,2-dichloropropane cis-1,2-dichloroethene chloroform bromochloromethane tetrahydrofuran (THF) 1,1,1-trichloroethane 1,1-dichloropropene t-amyl-methyl ether (TAME) carbon tetrachloride 1,2-dichloroethane benzene trichloroethene 1,2-dichloropropane bromodichloromethane 1,4-dioxane dibromomethane 4-methyl-2-pentanone (MIBK) cis-1,3-dichloropropene toluene trans-1,3-dichloropropene 2-hexanone 1,1,2-trichloroethane 1,3-dichloropropane tetrachloroethene 1,2-dibromoethane 1,1,2-trichloroethane 1,1,2-trichloroethane 1,2-dibromoethane 1,1,2-tetrachloroethane 1,1,2-tetrachloroethane 1,1,1,2-tetrachloroethane 1,1,1,2-tetrachloroethane tetrachloroethane 1,1,1,2-tetrachloroethane m&p-xylenes o-xylene styrene	1,1-dichloroethene 20 methylene chloride 20 carbon disulfide 16 methyl t-butyl ether (MTBE) 20 trans-1,2-dichloroethene 19 isopropyl ether (DIPE) 19 ethyl t-butyl ether (ETBE) 19 1,1-dichloroethane 19 t-butanol (TBA) 130 2-butanone (MEK) 13 2,2-dichloroethene 19 chloroform 20 bromochloromethane 18 tetrahydrofuran (THF) 21 1,1,1-trichloroethane 19 1,1-dichloropthane 19 1,1-dichloropthane 19 1,2-dichloroethane 19 1,2-dichloropthane 10 1,1-dithoropthane 10	1,1-dichloroethene 20 ug/L methylene chloride 20 ug/L carbon disulfide 16 ug/L methyl I-butyl ether (MTBE) 20 ug/L isopropyl ether (DIPE) 19 ug/L ethyl I-butyl ether (ETBE) 19 ug/L t-butanol (TBA) 130 ug/L 2.butanone (MEK) 13 ug/L chloropropane 13 ug/L chloroform 20 ug/L bromochloromethane 19 ug/L chloroform 20 ug/L tetrahydrofuran (THF) 21 ug/L 1,1-dichloropropene 19 ug/L taranyl-methyl ether (TAME) 17 ug/L carbon tetrachloride 17 ug/L trichloroethane 19 ug/L trichloroethane 19 ug/L taranyl-methyl ether (TAME) 17 ug/L tarabyl-othoropropane 19 ug/L tarabyl-achonorethane 19 ug/L	1,1-dichloroethene 20 ug/L 20 methylene chloride 20 ug/L 20 carbon disulfide 16 ug/L 20 methyl + butyl ether (MTBE) 20 ug/L 20 isopropyl ether (DIPE) 19 ug/L 20 ethyl + butyl ether (ETBE) 19 ug/L 20 1,1-dichloroethane 19 ug/L 20 1,1-dichloroethane 19 ug/L 20 2,2-dichloropropane 13 ug/L 20 2,2-dichloropropane 13 ug/L 20 chloroform 20 ug/L 20 chloroform 20 ug/L 20 chloroform 20 ug/L 20 1,1-4 ug/L 20 ug/L 20	1,1-dichloroethene 20 ug/L 20 100 carbon disuffide 20 ug/L 20 100 carbon disuffide 16 ug/L 20 102 methyl Houtyl ether (MTBE) 0 ug/L 20 97 isopropyl ether (DIPE) 19 ug/L 20 93 1,1-dichloroethane 19 ug/L 20 97 tbuanol (TBA) 100 ug/L 20 97 tbuanol (TBA) 100 ug/L 20 97 tbuanol (TBA) 10 ug/L 20 97 tbuanol (TBA) 10 ug/L 20 96 choroform 20 ug/L 20 100 bromochloromethane 18 ug/L 20 96 t-1,1-tichloroethane 19 ug/L 20 96 t-1,1-tichloroethane 19 ug/L 20 96 t-1,2-dichloropropane 19 ug/L 20 96 <td>1,1-dichloroethene 20 ug/L 20 100 carbon disulfide 16 ug/L 20 100 carbon disulfide 16 ug/L 20 102 methyl-bluyl ether (MTBE) 20 ug/L 20 97 isopropyl ether (DIPE) 19 ug/L 20 93 1,1-dichloroethane 19 ug/L 20 97 t-butanol (TBA) 130 ug/L 20 94 c.si-1,2-dichloroethane 13 ug/L 20 94 c.si-1,2-dichloroethane 19 ug/L 20 94 chloroform 20 ug/L 20 100 bromochloromethane 18 ug/L 20 94 1,1.1-tichloroethane 19 ug/L 20 94 1,1.1-tichloropropane 19 ug/L 20 94 1,1.1-tichloroethane 19 ug/L 20 96 t-amyl-methyl ether (TAME) 17 ug/L 20 96 t-adichloroethane 19 ug/L 20</td> <td>1,1-dichloroethene 20 ug/L 20 100 70 methylbene chloride 20 ug/L 20 101 70 carbon disulfide 16 ug/L 20 102 70 methyl bulyl ether (MTBE) 20 ug/L 20 97 70 isopropyl ether (DIPE) 19 ug/L 20 93 70 1,1-dichloroethane 19 ug/L 20 97 70 2-butanon (MEK) 13 ug/L 20 66 70 2-dichloroethene 19 ug/L 20 94 70 chloroform 20 ug/L 20 94 70 1,1-dichloroethane 19 ug/L 20 96 70 1,4-dioknoroethan</td> <td>1,1-dichloroethene 20 ug/L 20 100 70 130 methylehe chloride 16 ug/L 20 102 70 130 arbon disulfde 16 ug/L 20 81 70 130 methyl t-buly ether (MTBE) 20 ug/L 20 97 70 130 isopropyl ether (DPE) 19 ug/L 20 97 70 130 ethyl t-buly ether (ETBE) 19 ug/L 20 97 70 130 1,1-dichloroethane 19 ug/L 20 64 * 70 130 2,2-dichloroptopane 13 ug/L 20 64 * 70 130 cichloroftrm 20 103 70 130 130 14 130 130 14 70 130 cichloroptopane 13 ug/L 20 64 * 70 130 cichloroftrm 19 ug/L 20 64 * 70 130 1,1,1.trichloroethane 19 ug/L 20 66 <</td> <td>1,1-dichloroethene 20 ug/L 20 100 70 130 methylene chloride 16 ug/L 20 102 70 130 carbon disulfide 16 ug/L 20 912 70 130 methyl +butyl ether (MTBE) 20 ug/L 20 97 70 130 isporoy ether (DFE) 19 ug/L 20 97 70 130 ethyl +butyl ether (ETBE) 19 ug/L 20 97 70 130 2-butanone (MEK) 13 ug/L 20 64 70 130 2-butanone (MEK) 13 ug/L 20 64 70 130 2-butanone (MEK) 13 ug/L 20 64 70 130 2-butanone (MEK) 13 ug/L 20 90 70 130 1-1.4-ichloroethane 19 ug/L 20 90 70 130 1-1.4-ichloroethane 19 ug/L 20 96 70 130 1.1.4-ichloroethane 1</td>	1,1-dichloroethene 20 ug/L 20 100 carbon disulfide 16 ug/L 20 100 carbon disulfide 16 ug/L 20 102 methyl-bluyl ether (MTBE) 20 ug/L 20 97 isopropyl ether (DIPE) 19 ug/L 20 93 1,1-dichloroethane 19 ug/L 20 97 t-butanol (TBA) 130 ug/L 20 94 c.si-1,2-dichloroethane 13 ug/L 20 94 c.si-1,2-dichloroethane 19 ug/L 20 94 chloroform 20 ug/L 20 100 bromochloromethane 18 ug/L 20 94 1,1.1-tichloroethane 19 ug/L 20 94 1,1.1-tichloropropane 19 ug/L 20 94 1,1.1-tichloroethane 19 ug/L 20 96 t-amyl-methyl ether (TAME) 17 ug/L 20 96 t-adichloroethane 19 ug/L 20	1,1-dichloroethene 20 ug/L 20 100 70 methylbene chloride 20 ug/L 20 101 70 carbon disulfide 16 ug/L 20 102 70 methyl bulyl ether (MTBE) 20 ug/L 20 97 70 isopropyl ether (DIPE) 19 ug/L 20 93 70 1,1-dichloroethane 19 ug/L 20 97 70 2-butanon (MEK) 13 ug/L 20 66 70 2-dichloroethene 19 ug/L 20 94 70 chloroform 20 ug/L 20 94 70 1,1-dichloroethane 19 ug/L 20 96 70 1,4-dioknoroethan	1,1-dichloroethene 20 ug/L 20 100 70 130 methylehe chloride 16 ug/L 20 102 70 130 arbon disulfde 16 ug/L 20 81 70 130 methyl t-buly ether (MTBE) 20 ug/L 20 97 70 130 isopropyl ether (DPE) 19 ug/L 20 97 70 130 ethyl t-buly ether (ETBE) 19 ug/L 20 97 70 130 1,1-dichloroethane 19 ug/L 20 64 * 70 130 2,2-dichloroptopane 13 ug/L 20 64 * 70 130 cichloroftrm 20 103 70 130 130 14 130 130 14 70 130 cichloroptopane 13 ug/L 20 64 * 70 130 cichloroftrm 19 ug/L 20 64 * 70 130 1,1,1.trichloroethane 19 ug/L 20 66 <	1,1-dichloroethene 20 ug/L 20 100 70 130 methylene chloride 16 ug/L 20 102 70 130 carbon disulfide 16 ug/L 20 912 70 130 methyl +butyl ether (MTBE) 20 ug/L 20 97 70 130 isporoy ether (DFE) 19 ug/L 20 97 70 130 ethyl +butyl ether (ETBE) 19 ug/L 20 97 70 130 2-butanone (MEK) 13 ug/L 20 64 70 130 2-butanone (MEK) 13 ug/L 20 64 70 130 2-butanone (MEK) 13 ug/L 20 64 70 130 2-butanone (MEK) 13 ug/L 20 90 70 130 1-1.4-ichloroethane 19 ug/L 20 90 70 130 1-1.4-ichloroethane 19 ug/L 20 96 70 130 1.1.4-ichloroethane 1

Method	QC ID	Parameter	Associated Sample	Result	Units A	mt Added	%R	Lir	nits	RPD	RPD Limit
SW5030B8260E	3 LCS1102315	isopropylbenzene		19	ug/L	20	95	70	130		
		1,1,2,2-tetrachloroethane		24	ug/L	20	122	70	130		
		1,2,3-trichloropropane		25	ug/L	20	124	70	130		
		n-propylbenzene		23	ug/L	20	113	70	130		
		bromobenzene		22	ug/L	20	110	70	130		
		1,3,5-trimethylbenzene		22	ug/L	20	112	70	130		
		2-chlorotoluene		23	ug/L	20	117	70	130		
		4-chlorotoluene		23	ug/L	20	115	70	130		
		tert-butylbenzene		22	ug/L	20	111	70	130		
		1,2,4-trimethylbenzene		23	ug/L	20	117	70	130		
		sec-butylbenzene		21	ug/L	20	104	70	130		
		1,3-dichlorobenzene		21	ug/L	20	106	70	130		
		4-isopropyltoluene		20	ug/L	20	100	70	130		
		1,4-dichlorobenzene		21	ug/L	20	106	70	130		
		1,2-dichlorobenzene		22	ug/L	20	109	70	130		
		n-butylbenzene		21	ug/L	20	107	70	130		
		1,2-dibromo-3-chloropropa	ane	19	ug/L	20	97	70	130		
		1,2,4-trichlorobenzene		18	ug/L	20	89	70	130		
		1,3,5-trichlorobenzene		20	ug/L	20	99	70	130		
		hexachlorobutadiene		21	ug/L	20	106	70	130		
		naphthalene		20	ug/L	20	99	70	130		
		1,2,3-trichlorobenzene		19	ug/L	20	97	70	130		
		dibromofluoromethane SL	JR	100	%			78	114		
		toluene-D8 SUR		96	%			88	110		
		4-bromofluorobenzene SL	IR	97	%			86	115		

Method	QC ID	Parameter	Associated Sample		Result	Units /	Amt Added	%R		Lir	mits	RPD	RPD Limit
SW5030B8260B	3 LCSD1102315	dichlorodifluoromethane			36	ug/L	20	181	* 7	70	130	0	20
		chloromethane			22	ug/L	20	112		70	130	1	20
		vinyl chloride			24	ug/L	20	122	7	70	130	5	20
		bromomethane			15	ug/L	20	74	7	70	130	12	20
		chloroethane			21	ug/L	20	107	7	70	130	4	20
		trichlorofluoromethane			23	ug/L	20	117	7	70	130	1	20
		diethyl ether			20	ug/L	20	102	7	70	130	9	20
		acetone		<	50	ug/L	20	70				12	20
		1,1-dichloroethene			15	ug/L	20	77	7	70	130	26	* 20
		methylene chloride			20	ug/L	20	102	7	70	130	3	20
		carbon disulfide			17	ug/L	20	85	7	70	130	4	20
		methyl t-butyl ether (MTBE)		19	ug/L	20	96	7	70	130	6	20
		trans-1,2-dichloroethene	,		18	ug/L	20	90		70	130	8	20
		isopropyl ether (DIPE)			18	ug/L	20	92		70	130	3	20
		ethyl t-butyl ether (ETBE)			18	ug/L	20	90		70	130	3	20
		1,1-dichloroethane			20	ug/L	20	99	7	70	130	2	20
		t-butanol (TBA)			110	ug/L	100	111	7	70	130	12	20
		2-butanone (MEK)			12	ug/L	20	61		70	130	8	20
		2,2-dichloropropane			13	ug/L	20	63		70	130	2	20
		cis-1,2-dichloroethene			18	ug/L	20	88		70	130	6	20
		chloroform			20	ug/L	20	100		70	130	0	20
		bromochloromethane			18	ug/L	20	91		70	130	1	20
		tetrahydrofuran (THF)			20	ug/L	20	102		70	130	1	20
		1,1,1-trichloroethane			19	ug/L	20	94		70	130	0	20
		1,1-dichloropropene			20	ug/L	20	98	7	70	130	2	20
		t-amyl-methyl ether (TAME)		17	ug/L	20	84		70	130	3	20
		carbon tetrachloride	,		17	ug/L	20	86	7	70	130	0	20
		1,2-dichloroethane			21	ug/L	20	105		70	130	0	20
		benzene			19	ug/L	20	95	7	70	130	1	20
		trichloroethene			19	ug/L	20	95	7	70	130	0	20
		1,2-dichloropropane			19	ug/L	20	94	7	70	130	0	20
		bromodichloromethane			17	ug/L	20	85		70	130	4	20
		1,4-dioxane		<	50	ug/L	40	119	7	70	130	16	20
		dibromomethane			20	ug/L	20	98	7	70	130	1	20
		4-methyl-2-pentanone (MIB	K)		15	ug/L	20	74		70	130	3	20
		cis-1,3-dichloropropene	,		15	ug/L	20	77		70	130	2	20
		toluene			20	ug/L	20	99	7	70	130	4	20
		trans-1,3-dichloropropene			14	ug/L	20	71	7	70	130	0	20
		2-hexanone			18	ug/L	20	89	7	70	130	0	20
		1,1,2-trichloroethane			20	ug/L	20	100	7	70	130	0	20
		1,3-dichloropropane			23	ug/L	20	113	7	70	130	0	20
		tetrachloroethene			21	ug/L	20	103		70	130	1	20
		dibromochloromethane			18	ug/L	20	89		70	130	1	20
		1,2-dibromoethane (EDB)			21	ug/L	20	106		70	130	0	20
		chlorobenzene			21	ug/L	20	104	7	70	130	1	20
		1,1,1,2-tetrachloroethane			19	ug/L	20	97		70	130	1	20
		ethylbenzene			21	ug/L	20	107		70	130	2	20
		m&p-xylenes			42	ug/L	40	106		70	130	3	20
		o-xylene			21	ug/L	20	107		70	130	2	20
		styrene			21	ug/L	20	103		70	130	1	20
		SLYICHE											

Method	QC ID	Parameter	Associated Sample	Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limit
SW5030B826	0B LCSD1102315	isopropylbenzene		19	ug/L	20	94	70	130	2	20
		1,1,2,2-tetrachloroethane		24	ug/L	20	118	70	130	3	20
		1,2,3-trichloropropane		24	ug/L	20	122	70	130	2	20
		n-propylbenzene		23	ug/L	20	114	70	130	2	20
		bromobenzene		23	ug/L	20	114	70	130	3	20
		1,3,5-trimethylbenzene		23	ug/L	20	114	70	130	1	20
		2-chlorotoluene		24	ug/L	20	118	70	130	1	20
		4-chlorotoluene		23	ug/L	20	113	70	130	1	20
		tert-butylbenzene		23	ug/L	20	116	70	130	5	20
		1,2,4-trimethylbenzene		23	ug/L	20	115	70	130	2	20
		sec-butylbenzene		21	ug/L	20	107	70	130	3	20
		1,3-dichlorobenzene		21	ug/L	20	106	70	130	0	20
		4-isopropyltoluene		20	ug/L	20	102	70	130	2	20
		1,4-dichlorobenzene		21	ug/L	20	107	70	130	1	20
		1,2-dichlorobenzene		22	ug/L	20	110	70	130	1	20
		n-butylbenzene		22	ug/L	20	109	70	130	2	20
		1,2-dibromo-3-chloropropa	ne	19	ug/L	20	97	70	130	0	20
		1,2,4-trichlorobenzene		18	ug/L	20	92	70	130	3	20
		1,3,5-trichlorobenzene		20	ug/L	20	100	70	130	1	20
		hexachlorobutadiene		22	ug/L	20	109	70	130	2	20
		naphthalene		20	ug/L	20	100	70	130	1	20
		1,2,3-trichlorobenzene		20	ug/L	20	101	70	130	4	20
		dibromofluoromethane SUI	२	101	%			78	114		
		toluene-D8 SUR		95	%			88	110		
		4-bromofluorobenzene SU	२	98	%			86	115		

Method QC ID	Parameter A	ssociated Sample		Result	Units Amt Added	%R	Limits	RPD	RPD Limi
SW3510C8270D BLK4624	N-nitrosodimethylamine		<	2	ug/L				
	aniline		<	2	ug/L				
	phenol		<	2	ug/L				
	2-chlorophenol		<	5	ug/L				
	bis(2-chloroethyl)ether		<	2	ug/L				
	1,3-dichlorobenzene		<	2	ug/L				
	1,4-dichlorobenzene		<	2	ug/L				
	1,2-dichlorobenzene		<	2	ug/L				
	benzyl alcohol		<	2	ug/L				
	2-methylphenol		<	2	ug/L				
	bis(2-chloroisopropyl) ether		<	2	ug/L				
	hexachloroethane		<	2	ug/L				
	N-nitroso-di-N-propylamine		<	2	ug/L				
	4-methylphenol		<	2	ug/L				
	nitrobenzene		<	2	ug/L				
	isophorone		<	5	ug/L				
	2-nitrophenol		<	2	ug/L				
	2,4-dimethylphenol		<	2	ug/L				
	bis(2-chloroethoxy)methane		<	5	ug/L				
	2,4-dichlorophenol		<	5	ug/L				
	1,2,4-trichlorobenzene		<	5	ug/L				
	naphthalene		<	0.5	ug/L				
	benzoic acid		<	50	ug/L				
	4-chloroaniline		<	2	ug/L				
	hexachlorobutadiene		<	2	ug/L				
	4-chloro-3-methylphenol		<	2	ug/L				
	2-methylnaphthalene		<	0.5	ug/L				
	hexachlorocyclopentadiene		<	10	ug/L				
	2,4,6-trichlorophenol		<	2	ug/L				
	2,4,5-trichlorophenol		<	2	ug/L				
	2-chloronaphthalene		<	5	ug/L				
	2-nitroaniline		<	2	ug/L				
	acenaphthylene		<	0.5	ug/L				
	dimethylphthalate		<	5	ug/L				
	2,6-dinitrotoluene		<	2	ug/L				
	2,4-dinitrotoluene		<	2	ug/L				
	acenaphthene		<	0.5	ug/L				
	3-nitroaniline		<	2	ug/L				
	2,4-dinitrophenol		<	50	ug/L				
	dibenzofuran		<	0.5	ug/L				
	4-nitrophenol		<	10	ug/L				
	fluorene		<	0.5	ug/L				
	diethyl phthalate		<	5	ug/L				
	4-chlorophenyl phenyl ether		<	5	ug/L				
	4-nitroaniline		<	5	ug/L				
	4,6-dinitro-2-methylphenol		<	20	ug/L				
	azobenzene		<	20	ug/L				
	N-nitrosodiphenylamine		<	2	ug/L				
	4-bromophenyl phenyl ether		<	2	ug/L				
	hexachlorobenzene		<	2	ug/L				
	pentachlorophenol		<	10	ug/L				
				10	uy/L				

Method	QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Lir	nits	RPD	RPD Limit
SW3510C82	70D BLK4624	phenanthrene		<	0.5	ug/L					
		anthracene		<	0.5	ug/L					
		carbazole		<	2	ug/L					
		di-n-butylphthalate		<	5	ug/L					
		fluoranthene		<	0.5	ug/L					
		benzidine		<	30	ug/L					
		pyrene		<	0.5	ug/L					
		butyl benzyl phthalate		<	5	ug/L					
		benzo(a)anthracene		<	0.5	ug/L					
		chrysene		<	0.5	ug/L					
		3,3'-dichlorobenzidine		<	30	ug/L					
		bis(2-ethylhexyl)phthalate		<	5	ug/L					
		di-n-octyl phthalate		<	2	ug/L					
		benzo(b)fluoranthene		<	0.5	ug/L					
		benzo(k)fluoranthene		<	0.5	ug/L					
		benzo(a)pyrene		<	0.2	ug/L					
		indeno(1,2,3-cd)pyrene		<	0.5	ug/L					
		dibenzo(a,h)anthracene		<	0.5	ug/L					
		benzo(g,h,i)perylene		<	0.5	ug/L					
		2-fluorophenol SUR			33	%		21	100		
		phenol-D5 SUR			19	%		10	102		
		2,4,6-tribromophenol SUR			59	%		10	123		
		nitrobenzene-D5 SUR			69	%		35	114		
		2-fluorobiphenyl SUR			65	%		43	116		
		p-terphenyl-D14 SUR			83	%		33	141		

Nethod	QC ID	Parameter	Associated Sample	Result	Units /	Amt Added	%R	Li	nits	RPD	RPD Limit
SW3510C827	0D LCS4624	N-nitrosodimethylamine		22	ug/L	40	55	40	140		
		aniline		18	ug/L	40	46	40	140		
		phenol		10	ug/L	40	26	* 30	130		
		2-chlorophenol		25	ug/L	40	63	30	130		
		bis(2-chloroethyl)ether		30	ug/L	40	74	40	140		
		1,3-dichlorobenzene		25	ug/L	40	62	40	140		
		1,4-dichlorobenzene		24	ug/L	40	60	40	140		
		1,2-dichlorobenzene		26	ug/L	40	64	40	140		
		benzyl alcohol		19	ug/L	40	46	30	130		
		2-methylphenol		20	ug/L	40	49	30	130		
		bis(2-chloroisopropyl) ether		27	ug/L	40	67	40	140		
		hexachloroethane		23	ug/L	40	58	40	140		
		N-nitroso-di-N-propylamine		28	ug/L	40	69	40	140		
		4-methylphenol		18	ug/L	40	45	30	130		
		nitrobenzene		28	ug/L	40	69	40	140		
		isophorone		29	ug/L	40	72	40	140		
		2-nitrophenol		27	ug/L	40	69	30	130		
		2,4-dimethylphenol		24	ug/L	40	61	30	130		
		bis(2-chloroethoxy)methane	9	30	ug/L	40	75	40	140		
		2,4-dichlorophenol		28	ug/L	40	70	30	130		
		1,2,4-trichlorobenzene		30	ug/L	40	74	40	140		
		naphthalene		27	ug/L	40	68	40	140		
		benzoic acid		< 50	ug/L						
		4-chloroaniline		30	ug/L	40	76	40	140		
		hexachlorobutadiene		26	ug/L	40	65	40	140		
		4-chloro-3-methylphenol		29	ug/L	40	73	30	130		
		2-methylnaphthalene		29	ug/L	40	71	40	140		
		hexachlorocyclopentadiene		13	ug/L	40	32	* 40	140		
		2,4,6-trichlorophenol		30	ug/L	40	74	30	130		
		2,4,5-trichlorophenol		29	ug/L	40	71	30	130		
		2-chloronaphthalene		28	ug/L	40	70	40	140		
		2-nitroaniline		30	ug/L	40	75	40	140		
		acenaphthylene		31	ug/L	40	78	40	140		
		dimethylphthalate		12		40	29	* 40	140		
		2,6-dinitrotoluene		34	ug/L	40	85	40	140		
		2,4-dinitrotoluene		29	ug/L	40	74	40	140		
		acenaphthene		29	ug/L	40	74	40	140		
		3-nitroaniline		36	ug/L	40	91	40	140		
		2,4-dinitrophenol		< 50	ug/L	40	•	*			
		dibenzofuran		31	ug/L	40	78	40	140		
		4-nitrophenol		12		40	31	30	130		
		fluorene		32	-	40	79	40	140		
		diethyl phthalate		24	ug/L	40	60	40	140		
		4-chlorophenyl phenyl ether	r	31	ug/L	40	78	40	140		
		4-nitroaniline		28	ug/L	40	71	40	140		
		4,6-dinitro-2-methylphenol		< 20	ug/L	10		10			
		azobenzene		30	ug/L	40	74	40	140		
		N-nitrosodiphenylamine		42		40	105	40	140		
		4-bromophenyl phenyl ethe	r	42	ug/L	40 40	72	40 40	140		
		hexachlorobenzene	1	29	ug/L	40 40	67	40 40	140		
				//	uy/L	- 1 0	01	40	140		
		pentachlorophenol		36	ug/L	40	89	30	130		

Method	QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limi
SW3510C827	'0D LCS4624	phenanthrene			34	ug/L	40	84	40	140		
		anthracene			32	ug/L	40	80	40	140		
		carbazole			34	ug/L	40	86	40	140		
		di-n-butylphthalate			30	ug/L	40	75	40	140		
		fluoranthene			32	ug/L	40	81	40	140		
		benzidine		<	30	ug/L						
		pyrene			41	ug/L	40	102	40	140		
		butyl benzyl phthalate			27	ug/L	40	68	40	140		
		benzo(a)anthracene			34	ug/L	40	86	40	140		
		chrysene			31	ug/L	40	78	40	140		
		3,3'-dichlorobenzidine		<	30	ug/L						
		bis(2-ethylhexyl)phthalate			35	ug/L	40	88	40	140		
		di-n-octyl phthalate			30	ug/L	40	75	40	140		
		benzo(b)fluoranthene			32	ug/L	40	79	40	140		
		benzo(k)fluoranthene			31	ug/L	40	77	40	140		
		benzo(a)pyrene			31	ug/L	40	78	40	140		
		indeno(1,2,3-cd)pyrene			28	ug/L	40	71	40	140		
		dibenzo(a,h)anthracene			23	ug/L	40	59	40	140		
		benzo(g,h,i)perylene			27	ug/L	40	67	40	140		
		2-fluorophenol SUR			33	%			21	100		
		phenol-D5 SUR			19	%			10	102		
		2,4,6-tribromophenol SUR			69	%			10	123		
		nitrobenzene-D5 SUR			72	%			35	114		
		2-fluorobiphenyl SUR			59	%			43	116		
		p-terphenyl-D14 SUR			93	%			33	141		

Method QC ID	Parameter Associated Sample	e	Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limi
SW3510C8270D LCSD4624	N-nitrosodimethylamine		23	ug/L	40	57	40	140	3	20
	aniline		19	ug/L	40	48	40	140	4	20
	phenol		9	ug/L	40		* 30	130	17	20
	2-chlorophenol		27	ug/L	40	68	30	130	7	20
	bis(2-chloroethyl)ether		28	ug/L	40	70	40	140	6	20
	1,3-dichlorobenzene		25	ug/L	40	61	40	140	1	20
	1,4-dichlorobenzene		24	ug/L	40	60	40	140	0	20
	1,2-dichlorobenzene		25	ug/L	40	63	40	140	2	20
	benzyl alcohol		19	ug/L	40	48	30	130	3	20
	2-methylphenol		20	ug/L	40	49	30	130	0	20
	bis(2-chloroisopropyl) ether		26	ug/L	40	65	40	140	2	20
	hexachloroethane		24	ug/L	40	60	40	140	3	20
	N-nitroso-di-N-propylamine		27	ug/L	40	67	40	140	3	20
	4-methylphenol		18	ug/L	40	44	30	130	2	20
	nitrobenzene		28	ug/L	40	71	40	140	2	20
	isophorone		29	ug/L	40	72	40	140	0	20
	2-nitrophenol		31	ug/L	40	78	30	130	13	20
	2,4-dimethylphenol		25	ug/L	40	63	30	130	3	20
	bis(2-chloroethoxy)methane		30	ug/L	40	75	40	140	1	20
	2,4-dichlorophenol		31	ug/L	40	77	30	130	9	20
	1,2,4-trichlorobenzene		30	ug/L	40	75	40	140	1	20
	naphthalene		27	ug/L	40	68	40	140	0	20
	benzoic acid	<	50	ug/L	10	00	10	110	Ū	20
	4-chloroaniline		31	ug/L	40	77	40	140	1	20
	hexachlorobutadiene		27	ug/L	40	67	40	140	3	20
	4-chloro-3-methylphenol		30	ug/L	40	75	30	130	3	20
	2-methylnaphthalene		29	ug/L	40	73 72	40	140	0	20
	hexachlorocyclopentadiene		13	ug/L	40		* 40	140	0	20
	2,4,6-trichlorophenol		32	ug/L	40 40	81	40 30	130	8	20 20
	2,4,5-trichlorophenol		30	ug/L	40 40	76	30	130	6	20 20
	2-chloronaphthalene		27	ug/L	40 40	69	30 40	140	2	20
	2-chloronaphraiane 2-nitroaniline		29	-	40 40	09 72	40 40	140	5	20
			29 31	ug/L	40 40	72 77	40 40	140	5 1	20 20
	acenaphthylene		31 11	ug/L						20 20
	dimethylphthalate		33	ug/L	40 40	28 83	* 40 40	140 140	4 2	
	2,6-dinitrotoluene 2,4-dinitrotoluene		30 30	ug/L ug/L	40 40	63 74	40 40	140	2	20 20
			30 29	-		74 73	40 40	140 140	1	
	acenaphthene			ug/L	40					20
	3-nitroaniline		34	ug/L	40	86	40 *	140	6	20
	2,4-dinitrophenol	<	50	ug/L	40			110	2	20
	dibenzofuran		30	ug/L	40	75	40	140	3	20
	4-nitrophenol		12	ug/L	40	31	30	130	0	20
	fluorene		30	ug/L	40	75	40	140	5	20
	diethyl phthalate		24	ug/L	40	59	40	140	2	20
	4-chlorophenyl phenyl ether		30	ug/L	40	75	40	140	5	20
	4-nitroaniline		28	ug/L	40	70	40	140	2	20
	4,6-dinitro-2-methylphenol	<	20	ug/L	10				-	
	azobenzene		29	ug/L	40	74	40	140	0	20
	N-nitrosodiphenylamine		41	ug/L	40	103	40	140	2	20
	4-bromophenyl phenyl ether		28	ug/L	40	71	40	140	2	20
	hexachlorobenzene		26	ug/L	40	66	40	140	2	20
	pentachlorophenol		34	ug/L	40	84	30	130	6	20

Absolute Resource

anthracene 32 ug/L 40 80 40 140 0 carbazole 34 ug/L 40 86 40 140 0 di-n-butylphthalate 30 ug/L 40 75 40 140 0 fluoranthene 31 ug/L 40 78 40 140 4 benzidine < 30 ug/L 40 78 40 140 7 pyrene 38 ug/L 40 95 40 140 12 140 benzo(a)anthracene 34 ug/L 40 85 40 140 12 140 140 12 140 140 12 140 140 12 140 140 140 140 140 12 140 <	Method	QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limit
carbazole 34 ug/L 40 86 40 140 0 1 di-n-butylphthalate 30 ug/L 40 75 40 140 0 1 fluoranthene 31 ug/L 40 78 40 140 4 4 benzidine 30 ug/L 40 78 40 140 7 1 pyrene 38 ug/L 40 95 40 140 12 1	SW3510C827	0D LCSD4624	phenanthrene			33	ug/L	40	82	40	140	2	20
di-n-butylphthalate 30 ug/L 40 75 40 140 0 : fluoranthene 31 ug/L 40 78 40 140 4 : benzidine <			anthracene			32	ug/L	40	80	40	140	0	20
fluoranthene 31 ug/L 40 78 40 140 4 140 4 140 140 140 140 140 140 12 140 140 12 140 140 12 140 140 12 140 140 12 140 140 12 140 </td <td></td> <td></td> <td>carbazole</td> <td></td> <td></td> <td>34</td> <td>ug/L</td> <td>40</td> <td>86</td> <td>40</td> <td>140</td> <td>0</td> <td>20</td>			carbazole			34	ug/L	40	86	40	140	0	20
benzidine <			di-n-butylphthalate			30	ug/L	40	75	40	140	0	20
pyrene 38 ug/L 40 95 40 140 7 140 12 140 140 12 140 140 12 140 <td></td> <td></td> <td>fluoranthene</td> <td></td> <td></td> <td>31</td> <td>ug/L</td> <td>40</td> <td>78</td> <td>40</td> <td>140</td> <td>4</td> <td>20</td>			fluoranthene			31	ug/L	40	78	40	140	4	20
butyl benzyl phthalate 24 ug/L 40 60 40 140 12 140 </td <td></td> <td></td> <td>benzidine</td> <td></td> <td><</td> <td>30</td> <td>ug/L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			benzidine		<	30	ug/L						
benzo(a)anthracene 34 ug/L 40 85 40 140 1 1 chrysene 30 ug/L 40 74 40 140 4 1 3,3'-dichlorobenzidine 30 ug/L 40 74 40 140 18 1 bis(2-ethylhexyl)phthalate 29 ug/L 40 74 40 140 17 16 di-n-octyl phthalate 25 ug/L 40 64 40 140 17 16 benzo(b)fluoranthene 34 ug/L 40 85 40 140 11 16 benzo(a)pyrene 28 ug/L 40 69 40 140 21 11			pyrene			38	ug/L	40	95	40	140	7	20
chrysene 30 ug/L 40 74 40 140 4 3,3'-dichlorobenzidine 30 ug/L 40 74 40 140 18 bis(2-ethylhexyl)phthalate 29 ug/L 40 64 40 140 17 benzo(b)fluoranthene 34 ug/L 40 85 40 140 8 benzo(k)fluoranthene 28 ug/L 40 64 40 140 11 benzo(k)fluoranthene 28 ug/L 40 69 40 140 2 140 benzo(a)pyrene 30 ug/L 40 76 40 140 2 140 3 140 2 140 2 140 3 140 2 140 2 140 3 140 2 140 3 140 3 140 3 140 3 140 3 140 2 140 3 140 3 140 3 140 140 140 3 140 140 1			butyl benzyl phthalate			24	ug/L	40	60	40	140	12	20
3,3'-dichlorobenzidine <			benzo(a)anthracene			34	ug/L	40	85	40	140	1	20
bis(2-ethylhexyl)phthalate 29 ug/L 40 74 40 140 18 140 18 140 17 140 17 140 17 140 140 17 140 140 17 140 140 17 140 140 16 140 16 140 16 140 16 140 16 140 16 140 11 16 140 11 16 140 11 16 140 11 16 16 11 16 16 11 16 16 140 11 16 16 140 11 16 16 140 11 16 16 140 11 16 16 140 11 16 16 11 16 16 11 16 16 16 140			chrysene			30	ug/L	40	74	40	140	4	20
di-n-octyl phthalate 25 ug/L 40 64 40 140 17 17 benzo(b)fluoranthene 34 ug/L 40 85 40 140 8 140 11			3,3'-dichlorobenzidine		<	30	ug/L						
benzo(b)fluoranthene 34 ug/L 40 85 40 140 8 140 11			bis(2-ethylhexyl)phthalate			29	ug/L	40	74	40	140	18	20
benzo(k)fluoranthene 28 ug/L 40 69 40 140 11			di-n-octyl phthalate			25	ug/L	40	64	40	140	17	20
benzo(a)pyrene 30 ug/L 40 76 40 140 2 140 140 2 140 140 3 140 3 140 3 140 3 140 3 140 3 140 3 140 2 140 140 2 140 140 2 140 140 2 140 140 2 140 140 2 140 140 2 140 140 2 140 140 2 140 140 2 140			benzo(b)fluoranthene			34	ug/L	40	85	40	140	8	20
indeno(1,2,3-cd)pyrene 29 ug/L 40 73 40 140 3 3 dibenzo(a,h)anthracene 24 ug/L 40 60 40 140 2 3 benzo(g,h,i)perylene 28 ug/L 40 70 40 140 4 3 2-fluorophenol SUR 34 % 21 100 4 3			benzo(k)fluoranthene			28	ug/L	40	69	40	140	11	20
dibenzo(a,h)anthracene 24 ug/L 40 60 40 140 2 2 benzo(g,h,i)perylene 28 ug/L 40 70 40 140 4 2 2-fluorophenol SUR 34 % 21 100 102 102 2,4,6-tribromophenol SUR 69 % 10 123 114 2,4,6-tribromophenol SUR 74 % 35 114 2-fluorobiphenyl SUR 56 % 43 116			benzo(a)pyrene			30	ug/L	40	76	40	140	2	20
benzo(g,h,i)perylene 28 ug/L 40 70 40 140 4 140 140 4 140 </td <td></td> <td></td> <td>indeno(1,2,3-cd)pyrene</td> <td></td> <td></td> <td>29</td> <td>ug/L</td> <td>40</td> <td>73</td> <td>40</td> <td>140</td> <td>3</td> <td>20</td>			indeno(1,2,3-cd)pyrene			29	ug/L	40	73	40	140	3	20
2-fluorophenol SUR 34 % 21 100 phenol-D5 SUR 20 % 10 102 2,4,6-tribromophenol SUR 69 % 10 123 nitrobenzene-D5 SUR 74 % 35 114 2-fluorobiphenyl SUR 56 % 43 116			dibenzo(a,h)anthracene			24	ug/L	40	60	40	140	2	20
phenol-D5 SUR 20 % 10 102 2,4,6-tribromophenol SUR 69 % 10 123 nitrobenzene-D5 SUR 74 % 35 114 2-fluorobiphenyl SUR 56 % 43 116			benzo(g,h,i)perylene			28	ug/L	40	70	40	140	4	20
2,4,6-tribromophenol SUR69%10123nitrobenzene-D5 SUR74%351142-fluorobiphenyl SUR56%43116			2-fluorophenol SUR			34	%			21	100		
nitrobenzene-D5 SUR 74 % 35 114 2-fluorobiphenyl SUR 56 % 43 116			phenol-D5 SUR			20	%			10	102		
2-fluorobiphenyl SUR 56 % 43 116			2,4,6-tribromophenol SUR			69	%			10	123		
			nitrobenzene-D5 SUR			74	%			35	114		
p-terphenyl-D14 SUR 90 % 33 141			2-fluorobiphenyl SUR			56	%			43	116		
			p-terphenyl-D14 SUR			90	%			33	141		

Method	QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limit
SW3005A607	10C BLK1102281	Silver		<	0.005	mg/L						
		Arsenic		<	0.008	mg/L						
		Barium		<	0.05	mg/L						
		Cadmium		<	0.004	mg/L						
		Chromium		<	0.05	mg/L						
		Lead		<	0.01	mg/L						
		Selenium		<	0.05	mg/L						
SW3005A607	IOC LCS1102281	Silver			0.25	mg/L	0.25	100	80	120		
		Arsenic			0.50	mg/L	0.5	99	80	120		
		Barium			0.50	mg/L	0.5	100	80	120		
		Cadmium			0.49	mg/L	0.5	98	80	120		
		Chromium			0.50	mg/L	0.5	100	80	120		
		Lead			0.49	mg/L	0.5	99	80	120		
		Selenium			0.50	mg/L	0.5	100	80	120		
SW3005A602	10C MS1102281	Silver	22583-001		0.21	mg/L	0.25	85	75	125		
		Arsenic	22583-001		0.49	mg/L	0.5	95	75	125		
		Barium	22583-001		0.53	mg/L	0.5	90	75	125		
		Cadmium	22583-001		0.46	mg/L	0.5	93	75	125		
		Chromium	22583-001		0.47	mg/L	0.5	95	75	125		
		Lead	22583-001		0.45	mg/L	0.5	90	75	125		
		Selenium	22583-001		0.50	mg/L	0.5	100	75	125		
SW3005A602	10C MSD1102281	Silver	22583-001		0.23	mg/L	0.25	92	75	125	8	20
		Arsenic	22583-001		0.52	mg/L	0.5	102	75	125	7	20
		Barium	22583-001		0.57	mg/L	0.5	97	75	125	7	20
		Cadmium	22583-001		0.50	mg/L	0.5	99	75	125	7	20
		Chromium	22583-001		0.51	mg/L	0.5	101	75	125	7	20
		Lead	22583-001		0.49	mg/L	0.5	98	75	125	8	20
		Selenium	22583-001		0.54	mg/L	0.5	109	75	125	9	20

CUSTODY RECORD OSD-01 Revision 12/23/10		*Date Needed	Standard (10 Business Days)	TAT REQUESTED Priority (24 hr)* Expedited (48 hr)*		V 07 73	200-	07 DUP-1	06 (A-6	05 CA-5	oy CA-4	_	(of CA-2	22594-01 CA-1	Sample Field ID ID (Lab Use Only)	Lab	Same	007-232-5		N N	776 MAIN ST	Company Address:	Company Name:	ass	Absolute Resource	
All Martine	Relinguished		REPORTING INSTRUCTIONS	See absoluteresourceassociates.com for sample acceptance policy and current accreditation lists.			62-2-1	50	4	22	w	5	4	4	# CONTAIN	ERS		128		NEWGARD	1255BACOK			ocia	Resou	
ed by:	od by San	OPY RE	ING INS	bsoluteresourceassociate ample acceptance policy current accreditation lists.		۴								R	WATER SOLID	Matrix								tes	rce ¥	
	Sampler:	QUIRE	TRUC-	eassocia nce poli ation lis			×.							~	OTHER						ME C			Ű		
			FIONS	ites.com cy and ts.		Ç	X. 77	*	X	 			7	えろ	HCI HNO ₃	Prese					64082					
la la		FAX (FAX#)	X					- St							H ₂ SO ₄	Preservation Method	PO #	Quote #	Reporti Limits:	Prot	Proj	Proj	Proj	ab		
1 de		\$)F (e-ma												NaOH MeOH	ז Metł	L	te #	ŋg	Protocol:	ect Loca	Project #:	ect Nan	soluter	124 H Port	
4			ail addre	ISTRU		_								~	OTHER (Specify)		Innalo)		QAPP EPA D	RCRA MCP	ation:		le: とば	esourc	leritage smouth 603-43	
lo[6][] Jate Jate Detre	Pat	i		SPECIAL INSTRUCTIONS			5		<u></u>				-	10/0/11	DATE	Sar	56]		QAPP GW-1 EPA DW Other	NHDES	Project Location: (NP) MA ME	I	Project Name: NEw [NGLAND KATAD	absoluteresourceassociates.com	124 Heritage Avenue #10 Portsmouth, NH 03801 603-436-2001	
	ter I		25030	0,				1	izio	1310	1505	1535	1340	1428	TIME	Sampling		NH GREE/ODD	r م -1		· /		Awo 6	ates.cc	e #10 3801	
Time <i>Il oro</i> Time	Time		RPDF (e-mail address) JNE (Man DC)		-		y	52	とと	坮	ų	JO	4 2	y	SAMPLER	_				HER JER	4		ARCO	E		
		<u></u>				_		\succ	X	· X	X	.X	7	X	UVC 8260					OC 8260 / 🗆 VOC						1
Receive Way Bu	eivi		3032	-											U VPH MAD						t:				CHAIN-O AND AN	1 1 1 1
The provide the provide the providence of the pr	ed by: by:		1330												🗆 TPH 🗖 I	DRO 801	5 🗆	MEDRO) 🗆 EF	PH MADE		°H Finger	print		41 2 2 2 2	
aboor			50					×	-	X	X .	<u>×</u>	X	×	8270PAH						CB				USIS	1
atory			-Car												□ 0&G 1664										TODY REC REQUEST	
V	6	•	1			-		<u> </u>		_] Turbidity	у					- -
								-	X						RCRA Mel						AL Metals	diss	dar	3	ST	
	1														📋 Total Meta	ls-list:								5	ORD	, , ,
							X		M	/				X	Dissolved			KN C		TON			F		•	
															T-Phosph						Bacteria N	MPN		Ţ	Ν	
		remp	RECE								-		-	<u> </u>	Cyanide		_						ride	1	25	
6		TEMPERATURE	IVED					+		+	-	+			Corrosivit									gener ⁶ y	22594	٩
Date Jate	Date	URE	RECEIVED ON ICE							-					TCLP Met							Pesticide			4	PAGE_
		.	ĭ≓∕A						X	-		$\left \right $	-		Subcontract:			iain Si	ze 📋	IULY Her	DICIDES	.,,,				
Time	Time	1	ĺ.	ì		_			Ĺ		1_		<u> </u>		0.070	- 100										OF
a a	ле	ဂိ					9	2						6	Grab (G) or	Comp	osite (C	;)								

Absolute Resource associates

124 Heritage Avenue #10 Portsmouth, NH 03801

Judd Newcomb CREDERE Associates 776 Main Street Westbrook, ME 04092 PO Number: None Job ID: 22468 Date Received: 9/23/11

Project: DPW-New England Yard 10001086

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

lluer (for)

Sue Sylvester Principal, General Manager

Date of Approval: 10/19/2011 Total number of pages: 69

Absolute Resource Associates Certifications

New Hampshire 1732 Maine NH903 Massachusetts M-NH902

Lab ID: 22468

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
Trip Blank	Solid	9/22/2011 0:00	22468-001	
CB-1	Solid	9/22/2011 12:00	22468-002	VOCs in solid by 8260 Petro & Haz Waste TPH in solids by 8100 Acid & Base/Neutral Extractables in solid by 8270 Soil Digestion for ICP Analysis Silver in solids by 6010 Arsenic in solids by 6010 Barium in solids by 6010 Cadmium in solids by 6010 Chromium in solids by 6010 Mercury in solids by 7471 Lead in solids by 6010 Selenium in solids by 6010 Percent Dry Matter for Sample Calc by SM2540B,G VOCs in solid by 8260 Petro & Haz Waste
CA-1 0-2'	Solid	9/22/2011 10:00	22468-003	TPH in solids by 8100 PAHs in solid by 8270 Solid Digestion for ICP Analysis Arsenic in solids by 6010 Boron in solids by 6010 Cadmium in solids by 6010 Cadmium in solids by 6010 Copper in solids by 6010 Mercury in solids by 7471 Nickel in solids by 6010 Lead in solids by 6010 Selenium in solids by 6010 Vanadium in solids by 6010
CA-2 0-3'	Solid	9/22/2011 13:30	22468-004	Percent Dry Matter for Sample Calc by SM2540B,G TPH in solids by 8100 PAHs in solid by 8270 Solid Digestion for ICP Analysis Arsenic in solids by 6010 Boron in solids by 6010 Cadmium in solids by 6010 Cadmium in solids by 6010 Mercury in solids by 6010 Lead in solids by 6010 Lead in solids by 6010 Selenium in solids by 6010 Vanadium in solids by 6010 Percent Dry Matter for Sample Calc by SM2540B,G VOCo in solid by 8260 Detro % Hore Wooto
CA-2 FLOOR	Solid	9/22/2011 14:30	22468-005	VOCs in solid by 8260 Petro & Haz Waste TPH in solids by 8100 PAHs in solid by 8270 Solid Digestion for ICP Analysis Arsenic in solids by 6010

Lab ID: 22468

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
CA-2 FLOOR	Solid	9/22/2011 14:30	22468-005	
				Boron in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Copper in solids by 6010
				Mercury in solids by 7471
				Nickel in solids by 6010
				Lead in solids by 6010
				Selenium in solids by 6010
				Vanadium in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
CA-3 6-8'	Solid	9/22/2011 11:00	22468-006	
				TPH in solids by 8100
				PAHs in solid by 8270
				Solid Digestion for ICP Analysis
				Lead in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
CA-4 6-8'	Solid	9/22/2011 10:30	22468-007	,
				TPH in solids by 8100
				PAHs in solid by 8270
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
CA-5 2-3'	Solid	9/22/2011 9:00	22468-008	,
				TPH in solids by 8100
				PAHs in solid by 8270
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
CA-6 0-3'	Solid	9/22/2011 14:00	22468-009	
				TPH in solids by 8100
				Acid & Base/Neutral Extractables in solid by 8270
				Soil Digestion for ICP Analysis
				Silver in solids by 6010
				Arsenic in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Chromium in solids by 6010
				Mercury in solids by 7471
				Lead in solids by 6010
				Selenium in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste
SS-1	Solid	9/22/2011 9:20	22468-010	
				PCBs in soil by 8082
				TPH in solids by 8100
				PAHs in solid by 8270
				Solid Digestion for ICP Analysis
				Arsenic in solids by 6010
				Boron in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010

Lab ID: 22468

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
SS-1	Solid	9/22/2011 9:20	22468-010	
				Copper in solids by 6010
				Mercury in solids by 7471
				Nickel in solids by 6010
				Lead in solids by 6010
				Selenium in solids by 6010
				Vanadium in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
SS-2	Solid	9/22/2011 8:55	22468-011	
				PCBs in soil by 8082
				TPH in solids by 8100
				PAHs in solid by 8270
				Solid Digestion for ICP Analysis
				Arsenic in solids by 6010
				Boron in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Copper in solids by 6010
				Mercury in solids by 7471
				Nickel in solids by 6010
				Lead in solids by 6010
				Selenium in solids by 6010
				Vanadium in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
SS-3	Solid	9/22/2011 8:40	22468-012	r creent bry matter for bample bale by binzb+bb,b
50-5	30110	9/22/2011 0.40	22400-012	PCBs in soil by 8082
				TPH in solids by 8100
				PAHs in solid by 8270
				-
				Solid Digestion for ICP Analysis
				Arsenic in solids by 6010
				Boron in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Copper in solids by 6010
				Mercury in solids by 7471
				Nickel in solids by 6010
				Lead in solids by 6010
				Selenium in solids by 6010
				Vanadium in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
⁻ P-1 4-6'	Solid	9/22/2011 11:15	22468-013	
				TPH in solids by 8100
				PAHs in solid by 8270
				Solid Digestion for ICP Analysis
				Arsenic in solids by 6010
				Boron in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Copper in solids by 6010
				Mercury in solids by 7471
				Nickel in solids by 6010

Lab ID: 22468

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
TP-1 4-6'	Solid	9/22/2011 11:15	22468-013	
				Selenium in solids by 6010
				Vanadium in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
TP-2 4-6'	Solid	9/22/2011 10:35	22468-014	
				TPH in solids by 8100
				PAHs in solid by 8270
				Solid Digestion for ICP Analysis
				Arsenic in solids by 6010
				Boron in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Copper in solids by 6010
				Mercury in solids by 7471
				Nickel in solids by 6010
				Lead in solids by 6010
				Selenium in solids by 6010
				Vanadium in solids by 6010
CA-3 0-2'	Solid	9/22/2011 15:00	22468-015	Percent Dry Matter for Sample Calc by SM2540B,G
0/(002	Colla	5/22/2011 10:00	22400 010	Solid Digestion for ICP Analysis
				Lead in solids by 6010
SS-DUP	Solid	9/22/2011 0:00	22468-016	,
				PCBs in soil by 8082
				TPH in solids by 8100
				PAHs in solid by 8270
				Solid Digestion for ICP Analysis
				Arsenic in solids by 6010
				Boron in solids by 6010
				Barium in solids by 6010
				Cadmium in solids by 6010
				Copper in solids by 6010
				Mercury in solids by 7471
				Nickel in solids by 6010
				Lead in solids by 6010
				Selenium in solids by 6010
				Vanadium in solids by 6010
				Percent Dry Matter for Sample Calc by SM2540B,G
SB-DUP	Solid	9/22/2011 0:00	22468-017	
				Percent Dry Matter for Sample Calc by SM2540B,G
				VOCs in solid by 8260 Petro & Haz Waste

Job ID: 22468

Sample#: 22468-001

Sample ID: Trip Blank

Matrix: Solid

Watrix. Solid									
Sampled: 9/22/11 0:00		Quant		Instr Dil'n	Prep		Anal	-	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 <i>°</i>	10/1/11	4:47	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 <i>°</i>	10/1/11	4:47	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
acetone	< 2	2	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
2-butanone (MEK)	< 0.3	0.3	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 [~]	10/1/11	4:47	SW5035A8260B
tetrahydrofuran (THF)	< 0.5	0.5	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 [~]	10/1/11	4:47	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 [~]	10/1/11	4:47	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 [~]	10/1/11	4:47	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.4	0.4	ug/g	1	AJD 9/28/11	4576 <i>°</i>	10/1/11	4:47	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
2-hexanone	< 0.5	0.5	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 ⁻	10/1/11	4:47	SW5035A8260B

Job ID: 22468

Sample#: 22468-001

Sample ID: Trip Blank

Matrix: Solid

Sampled: 9/22/11 0:00		Quant		Instr Dil'n	Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B
Surrogate Recovery		Limits						
dibromofluoromethane SUR	92	78-114	%	1	AJD 9/28/11	4576 10/1/11		SW5035A8260B
toluene-D8 SUR	97	88-110	%	1	AJD 9/28/11	4576 10/1/11		SW5035A8260B
4-bromofluorobenzene SUR	100	86-115	%	1	AJD 9/28/11	4576 10/1/11		SW5035A8260B
a,a,a-trifluorotoluene SUR	92	70-130	%	1	AJD 9/28/11	4576 10/1/11	4:47	SW5035A8260B

Job ID: 22468

Sample#: 22468-002

Sample ID: CB-1

Matrix: Solid Percent Dry: 77.4% Results expressed on a dry weight basis.

Sampled: 9/22/11 12:00		Quant		Instr Dil'n	Prep		Analy	/sis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
acetone	< 2	2	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
2-butanone (MEK)	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
tetrahydrofuran (THF)	< 0.4	0.4	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.4	0.4	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
2-hexanone	< 0.4	0.4	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	5:20	SW5035A8260B

Job ID: 22468

Sample#: 22468-002

Sample ID: CB-1

Matrix: Solid Percent Dry: 77.4% Results expressed on a dry weight basis.

Sampled: 9/22/11 12:00	-	Quant		Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
Surrogate Recovery		Limits	S					
dibromofluoromethane SUR	94	78-114	%	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
toluene-D8 SUR	96	88-110	%	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
4-bromofluorobenzene SUR	101	86-115	%	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B
a,a,a-trifluorotoluene SUR	72	70-130	%	1	AJD 9/28/11	4576 10	0/1/11 5:20	SW5035A8260B

Job ID: 22468

Sample#: 22468-004

Sample ID: CA-2 0-3' Matrix: Solid

Percent Dry: 83.7% Results expressed on a dry weight basis.

Sampled: 9/22/11 13:30		Quant		Instr Dil'n	Prep		Analy	sis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
acetone	< 2	2	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
2-butanone (MEK)	< 0.3	0.3	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
tetrahydrofuran (THF)	< 0.5	0.5	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.4	0.4	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
2-hexanone	< 0.5	0.5	ug/g	1	AJD 9/28/11	4576 1	0/1/11	5:53	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1		5:53	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1		5:53	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1		5:53	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1		5:53	SW5035A8260B
			00						20.3

Job ID: 22468

Sample#: 22468-004

Sample ID: CA-2 0-3'

Matrix: Solid Percent Dry: 83.7% Results expressed on a dry weight basis.

Sampled: 9/22/11 13:30		Quant		Instr Dil'n	Prep		Analysis		
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date Ti		Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	AJD 9/28/11			5:53	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10			SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10			SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5		SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
Surrogate Recovery		Limits	S						
dibromofluoromethane SUR	94	78-114	%	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
toluene-D8 SUR	97	88-110	%	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
4-bromofluorobenzene SUR	99	86-115	%	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B
a,a,a-trifluorotoluene SUR	92	70-130	%	1	AJD 9/28/11	4576 10	0/1/11 5	5:53	SW5035A8260B

Job ID: 22468

Sample#: 22468-005

Sample ID: CA-2 FLOOR

Matrix: Solid Percent Dry: 98.1% Results expressed on a dry weight basis.

Sampled: 9/22/11 14:30		Quant		Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch I	Date Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
acetone	< 2	2	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
2-butanone (MEK)	< 0.3	0.3	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
tetrahydrofuran (THF)	< 0.5	0.5	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.4	0.4	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
2-hexanone	< 0.5	0.5	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 14:20	SW5035A8260B

Job ID: 22468

Sample#: 22468-005

Sample ID: CA-2 FLOOR

Matrix: Solid Percent Dry: 98.1% Results expressed on a dry weight basis.

Sampled: 9/22/11 14:30	-	Quant		Instr Dil'n	Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ⁷	14:20	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ⁷	14:20	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ⁷	14:20	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ²	14:20	SW5035A8260B
m&p-xylenes	0.3	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ⁷	14:20	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ²	14:20	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ²	14:20	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ⁷	14:20	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ²	14:20	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ²	14:20	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ²	14:20	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ²	14:20	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ⁻	14:20	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ²	14:20	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ⁻	14:20	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ⁻	14:20	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ⁻	14:20	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ⁻	14:20	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ²	14:20	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ⁻	14:20	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ²	14:20	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ⁻	14:20	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ²	14:20	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ⁻	14:20	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ⁻	14:20	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ⁻	14:20	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ⁻	14:20	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ⁻	14:20	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ⁻	14:20	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/1/1 ⁻	14:20	SW5035A8260B
Surrogate Recovery		Limits						
dibromofluoromethane SUR	99	78-114	%	1	AJD 9/28/11	4576 10/1/1 <i>1</i>		SW5035A8260B
toluene-D8 SUR	102	88-110	%	1	AJD 9/28/11	4576 10/1/17		SW5035A8260B
4-bromofluorobenzene SUR	107	86-115	%	1	AJD 9/28/11	4576 10/1/1 <i>1</i>		SW5035A8260B
a,a,a-trifluorotoluene SUR	101	70-130	%	1	AJD 9/28/11	4576 10/1/1 <i>1</i>	14:20	SW5035A8260B

Job ID: 22468

Sample#: 22468-006

Sample ID: CA-3 6-8' Matrix: Solid

Percent Dry: 68.2% Results expressed on a dry weight basis.

Sampled: 9/22/11 11:00		Quant		Instr Dil'n	Prep		Anal	-	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
chloromethane	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
vinyl chloride	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
bromomethane	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
chloroethane	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
trichlorofluoromethane	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
diethyl ether	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
acetone	< 5	5	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
1,1-dichloroethene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
methylene chloride	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
carbon disulfide	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
trans-1,2-dichloroethene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
isopropyl ether (DIPE)	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
1,1-dichloroethane	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
t-butanol (TBA)	< 5	5	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
2-butanone (MEK)	< 0.6	0.6	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
2,2-dichloropropane	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
cis-1,2-dichloroethene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
chloroform	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
bromochloromethane	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
tetrahydrofuran (THF)	< 1.0	1.0	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
1,1,1-trichloroethane	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
1,1-dichloropropene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
carbon tetrachloride	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
1,2-dichloroethane	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
benzene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
trichloroethene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
1,2-dichloropropane	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
bromodichloromethane	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
1,4-dioxane	< 5	5	ug/g	1	AJD 9/28/11		10/4/11	11:26	SW5035A8260B
dibromomethane	< 0.2	0.2	ug/g	1	AJD 9/28/11		10/4/11	11:26	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.9	0.9	ug/g	1	AJD 9/28/11		10/4/11	11:26	SW5035A8260B
cis-1,3-dichloropropene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
toluene	< 0.2	0.2	ug/g	1	AJD 9/28/11		10/4/11	11:26	SW5035A8260B
trans-1,3-dichloropropene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:26	SW5035A8260B
2-hexanone	< 1.0	1.0	ug/g	1	AJD 9/28/11		10/4/11	11:26	SW5035A8260B
1,1,2-trichloroethane	< 0.2	0.2	ug/g	1	AJD 9/28/11		10/4/11	11:26	SW5035A8260B
1,3-dichloropropane	< 0.2	0.2	ug/g	1	AJD 9/28/11		10/4/11	11:26	SW5035A8260B
tetrachloroethene	< 0.2	0.2	ug/g	1	AJD 9/28/11		10/4/11	11:26	SW5035A8260B
dibromochloromethane	< 0.2	0.2	ug/g	1	AJD 9/28/11		10/4/11	11:26	SW5035A8260B
	.0.2	0.2	~9'9	•	, 32 0/20/11	.010		. 1.20	21.0000, 02000

Job ID: 22468

Sample#: 22468-006

Sample ID: CA-3 6-8' Matrix: Solid

Percent Dry: 68.2% Results expressed on a dry weight basis.

Sampled: 9/22/11 11:00		Quant		Instr Dil'n	Prep	A	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
chlorobenzene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
ethylbenzene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
m&p-xylenes	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
o-xylene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
styrene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
bromoform	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
isopropylbenzene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
1,2,3-trichloropropane	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
n-propylbenzene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
bromobenzene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
1,3,5-trimethylbenzene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
2-chlorotoluene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
4-chlorotoluene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
tert-butylbenzene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
1,2,4-trimethylbenzene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
sec-butylbenzene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
1,3-dichlorobenzene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
4-isopropyltoluene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
1,4-dichlorobenzene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
1,2-dichlorobenzene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
n-butylbenzene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
1,2,4-trichlorobenzene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
1,3,5-trichlorobenzene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
hexachlorobutadiene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
naphthalene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
1,2,3-trichlorobenzene	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
Surrogate Recovery		Limits	S					
dibromofluoromethane SUR	100	78-114	%	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
toluene-D8 SUR	105	88-110	%	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
4-bromofluorobenzene SUR	100	86-115	%	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B
a,a,a-trifluorotoluene SUR	93	70-130	%	1	AJD 9/28/11	4576 10/4/1	1 11:26	SW5035A8260B

Job ID: 22468

Sample#: 22468-007

Sample ID: CA-4 6-8' Matrix: Solid

Percent Dry: 78.6% Results expressed on a dry weight basis.

Sampled: 9/22/11 10:30		Quant		Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch [Date Tim	e Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
acetone	< 3	3	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
t-butanol (TBA)	< 3	3	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
2-butanone (MEK)	< 0.3	0.3	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
tetrahydrofuran (THF)	< 0.5	0.5	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
1,4-dioxane	< 3	3	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.5	0.5	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
2-hexanone	< 0.5	0.5	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10	0/1/11 7:3	2 SW5035A8260B
								200 10

Job ID: 22468

Sample#: 22468-007

Sample ID: CA-4 6-8'

Matrix: Solid Percent Dry: 78.6% Results expressed on a dry weight basis.

Sampled: 9/22/11 10:30	·	Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
naphthalene	1.0	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
Surrogate Recovery		Limits	5						
dibromofluoromethane SUR	92	78-114	%	1	AJD 9/28/11		10/1/11	7:32	SW5035A8260B
toluene-D8 SUR	97	88-110	%	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
4-bromofluorobenzene SUR	100	86-115	%	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B
a,a,a-trifluorotoluene SUR	98	70-130	%	1	AJD 9/28/11	4576	10/1/11	7:32	SW5035A8260B

Job ID: 22468

Sample#: 22468-008

Sample ID: CA-5 2-3' Matrix: Solid

Percent Dry: 86.9% Results expressed on a dry weight basis.

Sampled: 9/22/11 9:00		Quant	I	Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
acetone	< 2	2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
2-butanone (MEK)	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
tetrahydrofuran (THF)	< 0.4	0.4	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.4	0.4	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
2-hexanone	< 0.4	0.4	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	11:57	SW5035A8260B

Job ID: 22468

Sample#: 22468-008

Sample ID: CA-5 2-3' Matrix: Solid

Percent Dry: 86.9% Results expressed on a dry weight basis.

Sampled: 9/22/11 9:00	-	Quant		Instr Dil'n	Prep	A	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
naphthalene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
Surrogate Recovery		Limits	5					
dibromofluoromethane SUR	97	78-114	%	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
toluene-D8 SUR	104	88-110	%	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
4-bromofluorobenzene SUR	106	86-115	%	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B
a,a,a-trifluorotoluene SUR	87	70-130	%	1	AJD 9/28/11	4576 10/4/1	1 11:57	SW5035A8260B

Job ID: 22468

Sample#: 22468-009

Sample ID: CA-6 0-3' Matrix: Solid

Percent Dry: 92.6% Results expressed on a dry weight basis.

Sampled: 9/22/11 14:00		Quant		Instr Dil'n	Prep		Analy	sis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
acetone	< 2	2	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
2-butanone (MEK)	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
tetrahydrofuran (THF)	< 0.4	0.4	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.4	0.4	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
2-hexanone	< 0.4	0.4	ug/g	1	AJD 9/28/11	4576 1	0/1/11	8:38	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1		8:38	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1		8:38	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1		8:38	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1		8:38	SW5035A8260B
	-		55						

Job ID: 22468

Sample#: 22468-009

Sample ID: CA-6 0-3' Matrix: Solid

Percent Dry: 92.6% Results expressed on a dry weight basis.

Sampled: 9/22/11 14:00		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
1,3,5-trimethylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
1,2,4-trimethylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
4-isopropyltoluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
naphthalene	0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B
Surrogate Recovery		Limits							
dibromofluoromethane SUR	94	78-114	%	1	AJD 9/28/11	4576 1		8:38	SW5035A8260B
toluene-D8 SUR	99	88-110	%	1	AJD 9/28/11	4576 1		8:38	SW5035A8260B
4-bromofluorobenzene SUR	98	86-115	%	1	AJD 9/28/11	4576 1		8:38	SW5035A8260B
a,a,a-trifluorotoluene SUR	88	70-130	%	1	AJD 9/28/11	4576 1	10/1/11	8:38	SW5035A8260B

Job ID: 22468

Sample#: 22468-017

Sample ID: SB-DUP Matrix: Solid

Percent Dry: 92.4% Results expressed on a dry weight basis.

Sampled: 9/22/11 0:00		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
dichlorodifluoromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
chloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
vinyl chloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
bromomethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
chloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
trichlorofluoromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
diethyl ether	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
acetone	< 2	2	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
1,1-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
methylene chloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
carbon disulfide	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
methyl t-butyl ether (MTBE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
trans-1,2-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
isopropyl ether (DIPE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
ethyl t-butyl ether (ETBE)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
1,1-dichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
t-butanol (TBA)	< 2	2	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
2-butanone (MEK)	< 0.2	0.2	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
2,2-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
cis-1,2-dichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
chloroform	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
bromochloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
tetrahydrofuran (THF)	< 0.4	0.4	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
1,1,1-trichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
1,1-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
t-amyl-methyl ether (TAME)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
carbon tetrachloride	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
1,2-dichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
benzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
trichloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
1,2-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
bromodichloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
1,4-dioxane	< 2	2	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
dibromomethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
4-methyl-2-pentanone (MIBK)	< 0.3	0.3	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
cis-1,3-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
toluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
trans-1,3-dichloropropene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
2-hexanone	< 0.4	0.4	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
1,1,2-trichloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576	10/4/11	12:28	SW5035A8260B
1,3-dichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11		10/4/11	12:28	SW5035A8260B
tetrachloroethene	< 0.1	0.1	ug/g	1	AJD 9/28/11		10/4/11	12:28	SW5035A8260B
dibromochloromethane	< 0.1	0.1	ug/g	1	AJD 9/28/11		10/4/11	12:28	SW5035A8260B
			00						2.5

Job ID: 22468

Sample#: 22468-017

Sample ID: SB-DUP Matrix: Solid

Percent Dry: 92.4% Results expressed on a dry weight basis.

Sampled: 9/22/11 0:00		Quant		Instr Dil'n	Prep	A	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	e Time	Reference
1,2-dibromoethane (EDB)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
chlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
1,1,1,2-tetrachloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
ethylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
m&p-xylenes	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
o-xylene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
styrene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
bromoform	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
isopropylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
1,1,2,2-tetrachloroethane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
1,2,3-trichloropropane	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
n-propylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
bromobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
1,3,5-trimethylbenzene	0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
2-chlorotoluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
4-chlorotoluene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
tert-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
1,2,4-trimethylbenzene	0.2	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
sec-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
1,3-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
4-isopropyltoluene	0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
1,4-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
1,2-dichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
n-butylbenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
1,2-dibromo-3-chloropropane (DBCP)	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
1,2,4-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
1,3,5-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
hexachlorobutadiene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
naphthalene	0.7	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
1,2,3-trichlorobenzene	< 0.1	0.1	ug/g	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
Surrogate Recovery		Limits	5					
dibromofluoromethane SUR	99	78-114	%	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
toluene-D8 SUR	106	88-110	%	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
4-bromofluorobenzene SUR	107	86-115	%	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B
a,a,a-trifluorotoluene SUR	90	70-130	%	1	AJD 9/28/11	4576 10/4/	1 12:28	SW5035A8260B

Job ID: 22468

Sample#: 22468-002

Sample ID: CB-1

Matrix: Solid Percent Dry: 77.4% Results expressed on a dry weight basis.

Sampled: 9/22/11 12:00		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
N-nitrosodimethylamine	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
aniline	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
phenol	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
2-chlorophenol	< 2.9	2.9	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
bis(2-chloroethyl)ether	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
1,3-dichlorobenzene	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
1,4-dichlorobenzene	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
1,2-dichlorobenzene	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
benzyl alcohol	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
2-methylphenol	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
bis(2-chloroisopropyl) ether	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
hexachloroethane	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
N-nitroso-di-N-propylamine	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
4-methylphenol	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
nitrobenzene	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
isophorone	< 2.9	2.9	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
2-nitrophenol	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
2,4-dimethylphenol	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
bis(2-chloroethoxy)methane	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
2,4-dichlorophenol	< 2.9	2.9	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
1,2,4-trichlorobenzene	< 2.9	2.9	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
naphthalene	< 0.29	0.29	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
benzoic acid	< 29	29	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
4-chloroaniline	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
hexachlorobutadiene	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
4-chloro-3-methylphenol	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
2-methylnaphthalene	< 0.29	0.29	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
hexachlorocyclopentadiene	< 6	6	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
2,4,6-trichlorophenol	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
2,4,5-trichlorophenol	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
2-chloronaphthalene	< 2.9	2.9	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
2-nitroaniline	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
acenaphthylene	< 0.29	0.29	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
dimethylphthalate	< 2.9	2.9	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
2,6-dinitrotoluene	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
2,4-dinitrotoluene	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
acenaphthene	< 0.29	0.29	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
3-nitroaniline	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
2,4-dinitrophenol	< 29	29	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
dibenzofuran	< 0.29	0.29	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
4-nitrophenol	< 12	12	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
fluorene	< 0.29	0.29	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
diethyl phthalate	< 2.9	2.9	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D

Job ID: 22468

Sample#: 22468-002

Sample ID: CB-1

Matrix: Solid Percent Dry: 77.4% Results expressed on a dry weight basis.

Sampled: 9/22/11 12:00		Quant		Instr Dil'n	Prep		Anal	vsis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
4-chlorophenyl phenyl ether	< 2.9	2.9	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
4-nitroaniline	< 2.9	2.9	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
4,6-dinitro-2-methylphenol	< 12	12	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
azobenzene	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
N-nitrosodiphenylamine	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
4-bromophenyl phenyl ether	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
hexachlorobenzene	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
pentachlorophenol	< 6	6	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
phenanthrene	< 0.29	0.29	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
anthracene	< 0.29	0.29	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
carbazole	< 1.2	1.2	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
di-n-butylphthalate	< 2.9	2.9	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
fluoranthene	0.59	0.29	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
benzidine	< 18	18	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
pyrene	0.68	0.29	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
butyl benzyl phthalate	< 2.9	2.9	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
benzo(a)anthracene	0.45	0.29	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
chrysene	0.47	0.29	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
3,3'-dichlorobenzidine	< 18	18	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
bis(2-ethylhexyl)phthalate	< 2.9	2.9	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
di-n-octyl phthalate	< 2.9	2.9	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
benzo(b)fluoranthene	0.64	0.29	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
benzo(k)fluoranthene	0.31	0.29	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
benzo(a)pyrene	0.48	0.29	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
indeno(1,2,3-cd)pyrene	< 0.29	0.29	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
dibenzo(a,h)anthracene	< 0.29	0.29	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
benzo(g,h,i)perylene	< 0.29	0.29	ug/g	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
Surrogate Recovery		Limit	5						
2-fluorophenol SUR	58	21-100	%	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
phenol-D5 SUR	55	10-102	%	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
2,4,6-tribromophenol SUR	50	10-123	%	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
nitrobenzene-D5 SUR	56	35-114	%	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D
2-fluorobiphenyl SUR	53	43-116	%	5	AJD 9/28/11		10/8/11	7:22	SW3546/8270D
p-terphenyl-D14 SUR	62	33-141	%	5	AJD 9/28/11	4577	10/8/11	7:22	SW3546/8270D

Note: Dilution was required due to matrix interference, causing internal standard suppression.

Job ID: 22468

Sample#: 22468-003

Sample ID: CA-1 0-2'

Matrix: Solid Percent Dry: 89.7% Results expressed on a dry weight basis.

Sampled: 9/22/11 10:00		Quant		nstr Dil'n	Prep	Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.6	0.6	ug/g	1	AJD 9/26/11	4570 10/9/11	15:36	SW3550B8270D
2-methylnaphthalene	< 0.6	0.6	ug/g	1	AJD 9/26/11	4570 10/9/11	15:36	SW3550B8270D
acenaphthylene	< 0.6	0.6	ug/g	1	AJD 9/26/11	4570 10/9/11	15:36	SW3550B8270D
acenaphthene	< 0.6	0.6	ug/g	1	AJD 9/26/11	4570 10/9/11	15:36	SW3550B8270D
dibenzofuran	< 0.6	0.6	ug/g	1	AJD 9/26/11	4570 10/9/11	15:36	SW3550B8270D
fluorene	< 0.6	0.6	ug/g	1	AJD 9/26/11	4570 10/9/11	15:36	SW3550B8270D
phenanthrene	< 0.6	0.6	ug/g	1	AJD 9/26/11	4570 10/9/11	15:36	SW3550B8270D
anthracene	< 0.6	0.6	ug/g	1	AJD 9/26/11	4570 10/9/11	15:36	SW3550B8270D
fluoranthene	< 0.6	0.6	ug/g	1	AJD 9/26/11	4570 10/9/11	15:36	SW3550B8270D
pyrene	< 0.6	0.6	ug/g	1	AJD 9/26/11	4570 10/9/11	15:36	SW3550B8270D
benzo(a)anthracene	< 0.6	0.6	ug/g	1	AJD 9/26/11	4570 10/9/11	15:36	SW3550B8270D
chrysene	< 0.6	0.6	ug/g	1	AJD 9/26/11	4570 10/9/11	15:36	SW3550B8270D
benzo(b)fluoranthene	< 0.6	0.6	ug/g	1	AJD 9/26/11	4570 10/9/11	15:36	SW3550B8270D
benzo(k)fluoranthene	< 0.6	0.6	ug/g	1	AJD 9/26/11	4570 10/9/11	15:36	SW3550B8270D
benzo(a)pyrene	< 0.6	0.6	ug/g	1	AJD 9/26/11	4570 10/9/11	15:36	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.6	0.6	ug/g	1	AJD 9/26/11	4570 10/9/11	15:36	SW3550B8270D
dibenzo(a,h)anthracene	< 0.6	0.6	ug/g	1	AJD 9/26/11	4570 10/9/11	15:36	SW3550B8270D
benzo(g,h,i)perylene	< 0.6	0.6	ug/g	1	AJD 9/26/11	4570 10/9/11	15:36	SW3550B8270D
Surrogate Recovery		Limits	5					
2-fluorobiphenyl SUR	79	43-116	%	1	AJD 9/26/11	4570 10/9/11	15:36	SW3550B8270D
o-terphenyl SUR	78	33-141	%	1	AJD 9/26/11	4570 10/9/11	15:36	SW3550B8270D

Job ID: 22468

Sample#: 22468-004

Sample ID: CA-2 0-3'

Matrix: Solid Percent Dry: 83.7% Results expressed on a dry weight basis.

Sampled: 9/22/11 13:30		Quant		Instr Dil'n	Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 2.9	2.9	ug/g	5	AJD 9/26/11	4570 10/11/1	1 13:32	SW3550B8270D
2-methylnaphthalene	< 2.9	2.9	ug/g	5	AJD 9/26/11	4570 10/11/1	1 13:32	SW3550B8270D
acenaphthylene	< 2.9	2.9	ug/g	5	AJD 9/26/11	4570 10/11/1	1 13:32	SW3550B8270D
acenaphthene	< 2.9	2.9	ug/g	5	AJD 9/26/11	4570 10/11/1	1 13:32	SW3550B8270D
dibenzofuran	< 2.9	2.9	ug/g	5	AJD 9/26/11	4570 10/11/1	1 13:32	SW3550B8270D
fluorene	< 2.9	2.9	ug/g	5	AJD 9/26/11	4570 10/11/1	1 13:32	SW3550B8270D
phenanthrene	< 2.9	2.9	ug/g	5	AJD 9/26/11	4570 10/11/1	1 13:32	SW3550B8270D
anthracene	< 2.9	2.9	ug/g	5	AJD 9/26/11	4570 10/11/1	1 13:32	SW3550B8270D
fluoranthene	< 2.9	2.9	ug/g	5	AJD 9/26/11	4570 10/11/1	1 13:32	SW3550B8270D
pyrene	< 2.9	2.9	ug/g	5	AJD 9/26/11	4570 10/11/1	1 13:32	SW3550B8270D
benzo(a)anthracene	< 2.9	2.9	ug/g	5	AJD 9/26/11	4570 10/11/1	1 13:32	SW3550B8270D
chrysene	< 2.9	2.9	ug/g	5	AJD 9/26/11	4570 10/11/1	1 13:32	SW3550B8270D
benzo(b)fluoranthene	< 2.9	2.9	ug/g	5	AJD 9/26/11	4570 10/11/1	1 13:32	SW3550B8270D
benzo(k)fluoranthene	< 2.9	2.9	ug/g	5	AJD 9/26/11	4570 10/11/1	1 13:32	SW3550B8270D
benzo(a)pyrene	< 2.9	2.9	ug/g	5	AJD 9/26/11	4570 10/11/1	1 13:32	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 2.9	2.9	ug/g	5	AJD 9/26/11	4570 10/11/1	1 13:32	SW3550B8270D
dibenzo(a,h)anthracene	< 2.9	2.9	ug/g	5	AJD 9/26/11	4570 10/11/1	1 13:32	SW3550B8270D
benzo(g,h,i)perylene	< 2.9	2.9	ug/g	5	AJD 9/26/11	4570 10/11/1	1 13:32	SW3550B8270D
Surrogate Recovery		Limits	5					
2-fluorobiphenyl SUR	83	43-116	%	5	AJD 9/26/11	4570 10/11/1	1 13:32	SW3550B8270D
o-terphenyl SUR	80	33-141	%	5	AJD 9/26/11	4570 10/11/1	1 13:32	SW3550B8270D

Note: Dilution was required due to matrix interference, causing internal standard suppression.

Job ID: 22468

Sample#: 22468-005

Sample ID: CA-2 FLOOR

Matrix: Solid Percent Dry: 98.1% Results expressed on a dry weight basis.

Sampled: 9/22/11 14:30		Quant		Instr Dil'n	Prep	Ar	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 4.9	4.9	ug/g	10	AJD 9/26/11	4570 10/11/	1 9:08	SW3550B8270D
2-methylnaphthalene	< 4.9	4.9	ug/g	10	AJD 9/26/11	4570 10/11/	1 9:08	SW3550B8270D
acenaphthylene	< 4.9	4.9	ug/g	10	AJD 9/26/11	4570 10/11/	1 9:08	SW3550B8270D
acenaphthene	< 4.9	4.9	ug/g	10	AJD 9/26/11	4570 10/11/	1 9:08	SW3550B8270D
dibenzofuran	< 4.9	4.9	ug/g	10	AJD 9/26/11	4570 10/11/	1 9:08	SW3550B8270D
fluorene	< 4.9	4.9	ug/g	10	AJD 9/26/11	4570 10/11/	1 9:08	SW3550B8270D
phenanthrene	< 4.9	4.9	ug/g	10	AJD 9/26/11	4570 10/11/	1 9:08	SW3550B8270D
anthracene	< 4.9	4.9	ug/g	10	AJD 9/26/11	4570 10/11/	1 9:08	SW3550B8270D
fluoranthene	< 4.9	4.9	ug/g	10	AJD 9/26/11	4570 10/11/	1 9:08	SW3550B8270D
pyrene	< 4.9	4.9	ug/g	10	AJD 9/26/11	4570 10/11/	1 9:08	SW3550B8270D
benzo(a)anthracene	< 4.9	4.9	ug/g	10	AJD 9/26/11	4570 10/11/	1 9:08	SW3550B8270D
chrysene	< 4.9	4.9	ug/g	10	AJD 9/26/11	4570 10/11/	1 9:08	SW3550B8270D
benzo(b)fluoranthene	< 4.9	4.9	ug/g	10	AJD 9/26/11	4570 10/11/	1 9:08	SW3550B8270D
benzo(k)fluoranthene	< 4.9	4.9	ug/g	10	AJD 9/26/11	4570 10/11/	1 9:08	SW3550B8270D
benzo(a)pyrene	< 4.9	4.9	ug/g	10	AJD 9/26/11	4570 10/11/	1 9:08	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 4.9	4.9	ug/g	10	AJD 9/26/11	4570 10/11/	1 9:08	SW3550B8270D
dibenzo(a,h)anthracene	< 4.9	4.9	ug/g	10	AJD 9/26/11	4570 10/11/	1 9:08	SW3550B8270D
benzo(g,h,i)perylene	< 4.9	4.9	ug/g	10	AJD 9/26/11	4570 10/11/	1 9:08	SW3550B8270D
Surrogate Recovery		Limits	S					
2-fluorobiphenyl SUR	111	43-116	%	10	AJD 9/26/11	4570 10/11/	1 9:08	SW3550B8270D
o-terphenyl SUR	102	33-141	%	10	AJD 9/26/11	4570 10/11/	1 9:08	SW3550B8270D

Note: Dilution was required due to hydrocarbon interference in the sample.

Job ID: 22468

Sample#: 22468-006

Sample ID: CA-3 6-8'

Matrix: Solid Percent Dry: 68.2% Results expressed on a dry weight basis.

Sampled: 9/22/11 11:00		Quant		Instr Dil'n	Prep	Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.7	0.7	ug/g	1	AJD 9/26/11	4570 10/9/11	16:14	SW3550B8270D
2-methylnaphthalene	< 0.7	0.7	ug/g	1	AJD 9/26/11	4570 10/9/11	16:14	SW3550B8270D
acenaphthylene	< 0.7	0.7	ug/g	1	AJD 9/26/11	4570 10/9/11	16:14	SW3550B8270D
acenaphthene	< 0.7	0.7	ug/g	1	AJD 9/26/11	4570 10/9/11	16:14	SW3550B8270D
dibenzofuran	< 0.7	0.7	ug/g	1	AJD 9/26/11	4570 10/9/11	16:14	SW3550B8270D
fluorene	< 0.7	0.7	ug/g	1	AJD 9/26/11	4570 10/9/11	16:14	SW3550B8270D
phenanthrene	< 0.7	0.7	ug/g	1	AJD 9/26/11	4570 10/9/11	16:14	SW3550B8270D
anthracene	< 0.7	0.7	ug/g	1	AJD 9/26/11	4570 10/9/11	16:14	SW3550B8270D
fluoranthene	< 0.7	0.7	ug/g	1	AJD 9/26/11	4570 10/9/11	16:14	SW3550B8270D
pyrene	< 0.7	0.7	ug/g	1	AJD 9/26/11	4570 10/9/11	16:14	SW3550B8270D
benzo(a)anthracene	< 0.7	0.7	ug/g	1	AJD 9/26/11	4570 10/9/11	16:14	SW3550B8270D
chrysene	< 0.7	0.7	ug/g	1	AJD 9/26/11	4570 10/9/11	16:14	SW3550B8270D
benzo(b)fluoranthene	< 0.7	0.7	ug/g	1	AJD 9/26/11	4570 10/9/11	16:14	SW3550B8270D
benzo(k)fluoranthene	< 0.7	0.7	ug/g	1	AJD 9/26/11	4570 10/9/11	16:14	SW3550B8270D
benzo(a)pyrene	< 0.7	0.7	ug/g	1	AJD 9/26/11	4570 10/9/11	16:14	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.7	0.7	ug/g	1	AJD 9/26/11	4570 10/9/11	16:14	SW3550B8270D
dibenzo(a,h)anthracene	< 0.7	0.7	ug/g	1	AJD 9/26/11	4570 10/9/11	16:14	SW3550B8270D
benzo(g,h,i)perylene	< 0.7	0.7	ug/g	1	AJD 9/26/11	4570 10/9/11	16:14	SW3550B8270D
Surrogate Recovery		Limits	S					
2-fluorobiphenyl SUR	81	43-116	%	1	AJD 9/26/11	4570 10/9/11	16:14	SW3550B8270D
o-terphenyl SUR	77	33-141	%	1	AJD 9/26/11	4570 10/9/11	16:14	SW3550B8270D

Job ID: 22468

Sample#: 22468-007

Sample ID: CA-4 6-8'

Matrix: Solid Percent Dry: 78.6% Results expressed on a dry weight basis.

Sampled: 9/22/11 10:30		Quant	1	nstr Dil'n	Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 3.1	3.1	ug/g	5	AJD 9/26/11	4570 10/11/1	1 14:10	SW3550B8270D
2-methylnaphthalene	< 3.1	3.1	ug/g	5	AJD 9/26/11	4570 10/11/1	1 14:10	SW3550B8270D
acenaphthylene	< 3.1	3.1	ug/g	5	AJD 9/26/11	4570 10/11/1	1 14:10	SW3550B8270D
acenaphthene	< 3.1	3.1	ug/g	5	AJD 9/26/11	4570 10/11/1	1 14:10	SW3550B8270D
dibenzofuran	< 3.1	3.1	ug/g	5	AJD 9/26/11	4570 10/11/1	1 14:10	SW3550B8270D
fluorene	3.9	3.1	ug/g	5	AJD 9/26/11	4570 10/11/1	1 14:10	SW3550B8270D
phenanthrene	30	3.1	ug/g	5	AJD 9/26/11	4570 10/11/1	1 14:10	SW3550B8270D
anthracene	5.0	3.1	ug/g	5	AJD 9/26/11	4570 10/11/1	1 14:10	SW3550B8270D
fluoranthene	34	3.1	ug/g	5	AJD 9/26/11	4570 10/11/1	1 14:10	SW3550B8270D
pyrene	38	3.1	ug/g	5	AJD 9/26/11	4570 10/11/1	1 14:10	SW3550B8270D
benzo(a)anthracene	15	3.1	ug/g	5	AJD 9/26/11	4570 10/11/1	1 14:10	SW3550B8270D
chrysene	19	3.1	ug/g	5	AJD 9/26/11	4570 10/11/1	1 14:10	SW3550B8270D
benzo(b)fluoranthene	14	3.1	ug/g	5	AJD 9/26/11	4570 10/11/1	1 14:10	SW3550B8270D
benzo(k)fluoranthene	15	3.1	ug/g	5	AJD 9/26/11	4570 10/11/1	1 14:10	SW3550B8270D
benzo(a)pyrene	13	3.1	ug/g	5	AJD 9/26/11	4570 10/11/1	1 14:10	SW3550B8270D
indeno(1,2,3-cd)pyrene	4.8	3.1	ug/g	5	AJD 9/26/11	4570 10/11/1	1 14:10	SW3550B8270D
dibenzo(a,h)anthracene	< 3.1	3.1	ug/g	5	AJD 9/26/11	4570 10/11/1	1 14:10	SW3550B8270D
benzo(g,h,i)perylene	4.3	3.1	ug/g	5	AJD 9/26/11	4570 10/11/1	1 14:10	SW3550B8270D
Surrogate Recovery		Limits	5					
2-fluorobiphenyl SUR	75	43-116	%	5	AJD 9/26/11	4570 10/11/1	1 14:10	SW3550B8270D
o-terphenyl SUR	72	33-141	%	5	AJD 9/26/11	4570 10/11/1	1 14:10	SW3550B8270D

Note: Dilution was required due to matrix interference, causing internal standard suppression.

Job ID: 22468

Sample#: 22468-008

Sample ID: CA-5 2-3'

Matrix: Solid Percent Dry: 86.9% Results expressed on a dry weight basis.

Sampled: 9/22/11 9:00		Quant		Instr Dil'n	Prep	Å	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Dat	Time	Reference
naphthalene	< 5.5	5.5	ug/g	10	AJD 9/26/11	4570 10/11	/11 16:41	SW3550B8270D
2-methylnaphthalene	< 5.5	5.5	ug/g	10	AJD 9/26/11	4570 10/11	/11 16:41	SW3550B8270D
acenaphthylene	< 5.5	5.5	ug/g	10	AJD 9/26/11	4570 10/11	/11 16:41	SW3550B8270D
acenaphthene	< 5.5	5.5	ug/g	10	AJD 9/26/11	4570 10/11	/11 16:41	SW3550B8270D
dibenzofuran	< 5.5	5.5	ug/g	10	AJD 9/26/11	4570 10/11	/11 16:41	SW3550B8270D
fluorene	< 5.5	5.5	ug/g	10	AJD 9/26/11	4570 10/11	/11 16:41	SW3550B8270D
phenanthrene	< 5.5	5.5	ug/g	10	AJD 9/26/11	4570 10/11	/11 16:41	SW3550B8270D
anthracene	< 5.5	5.5	ug/g	10	AJD 9/26/11	4570 10/11	/11 16:41	SW3550B8270D
fluoranthene	< 5.5	5.5	ug/g	10	AJD 9/26/11	4570 10/11	/11 16:41	SW3550B8270D
pyrene	< 5.5	5.5	ug/g	10	AJD 9/26/11	4570 10/11	/11 16:41	SW3550B8270D
benzo(a)anthracene	< 5.5	5.5	ug/g	10	AJD 9/26/11	4570 10/11	/11 16:41	SW3550B8270D
chrysene	< 5.5	5.5	ug/g	10	AJD 9/26/11	4570 10/11	/11 16:41	SW3550B8270D
benzo(b)fluoranthene	< 5.5	5.5	ug/g	10	AJD 9/26/11	4570 10/11	/11 16:41	SW3550B8270D
benzo(k)fluoranthene	< 5.5	5.5	ug/g	10	AJD 9/26/11	4570 10/11	/11 16:41	SW3550B8270D
benzo(a)pyrene	< 5.5	5.5	ug/g	10	AJD 9/26/11	4570 10/11	/11 16:41	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 5.5	5.5	ug/g	10	AJD 9/26/11	4570 10/11	/11 16:41	SW3550B8270D
dibenzo(a,h)anthracene	< 5.5	5.5	ug/g	10	AJD 9/26/11	4570 10/11	/11 16:41	SW3550B8270D
benzo(g,h,i)perylene	< 5.5	5.5	ug/g	10	AJD 9/26/11	4570 10/11	/11 16:41	SW3550B8270D
Surrogate Recovery		Limits	5					
2-fluorobiphenyl SUR	102	43-116	%	10	AJD 9/26/11	4570 10/11	/11 16:41	SW3550B8270D
o-terphenyl SUR	91	33-141	%	10	AJD 9/26/11	4570 10/11	/11 16:41	SW3550B8270D

Note: Dilution was required due to matrix interference, causing internal standard suppression.

Job ID: 22468

Sample#: 22468-009

Sample ID: CA-6 0-3' Matrix: Solid

Percent Dry: 92.6% Results expressed on a dry weight basis.

Sampled: 9/22/11 14:00		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
N-nitrosodimethylamine	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
aniline	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
phenol	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
2-chlorophenol	< 5.3	5.3	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
bis(2-chloroethyl)ether	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
1,3-dichlorobenzene	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
1,4-dichlorobenzene	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
1,2-dichlorobenzene	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
benzyl alcohol	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
2-methylphenol	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
bis(2-chloroisopropyl) ether	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
hexachloroethane	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
N-nitroso-di-N-propylamine	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
4-methylphenol	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
nitrobenzene	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
isophorone	< 5.3	5.3	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
2-nitrophenol	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
2,4-dimethylphenol	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
bis(2-chloroethoxy)methane	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
2,4-dichlorophenol	< 5.3	5.3	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
1,2,4-trichlorobenzene	< 5.3	5.3	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
naphthalene	< 0.53	0.53	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
benzoic acid	< 53	53	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
4-chloroaniline	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
hexachlorobutadiene	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
4-chloro-3-methylphenol	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
2-methylnaphthalene	< 0.53	0.53	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
hexachlorocyclopentadiene	< 11	11	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
2,4,6-trichlorophenol	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
2,4,5-trichlorophenol	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
2-chloronaphthalene	< 5.3	5.3	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
2-nitroaniline	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
acenaphthylene	< 0.53	0.53	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
dimethylphthalate	< 5.3	5.3	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
2,6-dinitrotoluene	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
2,4-dinitrotoluene	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
acenaphthene	1.1	0.53	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
3-nitroaniline	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
2,4-dinitrophenol	< 53	53	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
dibenzofuran	0.79	0.53	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
4-nitrophenol	< 21	21	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
fluorene	1.3	0.53	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
diethyl phthalate	< 5.3	5.3	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D

Job ID: 22468

Sample#: 22468-009

Sample ID: CA-6 0-3' Matrix: Solid

Percent Dry: 92.6% Results expressed on a dry weight basis.

Sampled: 9/22/11 14:00	-	Quant		Instr Dil'n	Prep		Anal	vsis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
4-chlorophenyl phenyl ether	< 5.3	5.3	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
4-nitroaniline	< 5.3	5.3	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
4,6-dinitro-2-methylphenol	< 21	21	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
azobenzene	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
N-nitrosodiphenylamine	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
4-bromophenyl phenyl ether	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
hexachlorobenzene	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
pentachlorophenol	< 11	11	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
phenanthrene	12	0.53	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
anthracene	2.8	0.53	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
carbazole	< 2.1	2.1	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
di-n-butylphthalate	< 5.3	5.3	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
fluoranthene	11	0.53	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
benzidine	< 32	32	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
pyrene	12	0.53	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
butyl benzyl phthalate	< 5.3	5.3	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
benzo(a)anthracene	5.5	0.53	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
chrysene	5.2	0.53	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
3,3'-dichlorobenzidine	< 32	32	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
bis(2-ethylhexyl)phthalate	< 5.3	5.3	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
di-n-octyl phthalate	< 5.3	5.3	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
benzo(b)fluoranthene	3.7	0.53	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
benzo(k)fluoranthene	3.7	0.53	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
benzo(a)pyrene	3.9	0.53	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
indeno(1,2,3-cd)pyrene	1.4	0.53	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
dibenzo(a,h)anthracene	0.83	0.53	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
benzo(g,h,i)perylene	1.5	0.53	ug/g	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
Surrogate Recovery		Limits							
2-fluorophenol SUR	30	21-100	%	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
phenol-D5 SUR	33	10-102	%	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
2,4,6-tribromophenol SUR	31	10-123	%	10	AJD 9/28/11		10/9/11	0:26	SW3546/8270D
nitrobenzene-D5 SUR	30 *	35-114	%	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
2-fluorobiphenyl SUR	34 *	43-116	%	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
p-terphenyl-D14 SUR	39	33-141	%	10	AJD 9/28/11	4577	10/9/11	0:26	SW3546/8270D
					-				

* The surrogate showed recovery outside the acceptance limits. Matrix interference suspected.

Note: Dilution was required due to matrix interference, causing internal standard suppression.

Job ID: 22468

Sample#: 22468-010

Sample ID: SS-1

Matrix: Solid Percent Dry: 92.9% Results expressed on a dry weight basis.

Sampled: 9/22/11 9:20		Quant		Instr Dil'n	Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/1 ²	8:18	SW3550B8270D
2-methylnaphthalene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/1 ²	8:18	SW3550B8270D
acenaphthylene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/1 ²	8:18	SW3550B8270D
acenaphthene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/1 ²	8:18	SW3550B8270D
dibenzofuran	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/1 ²	8:18	SW3550B8270D
fluorene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/1 ²	8:18	SW3550B8270D
phenanthrene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/1 ²	8:18	SW3550B8270D
anthracene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/1 ²	8:18	SW3550B8270D
fluoranthene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/1 ²	8:18	SW3550B8270D
pyrene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/1	8:18	SW3550B8270D
benzo(a)anthracene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/1 ²	8:18	SW3550B8270D
chrysene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/17	8:18	SW3550B8270D
benzo(b)fluoranthene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/17	8:18	SW3550B8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/1	8:18	SW3550B8270D
benzo(a)pyrene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/17	8:18	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/1 ²	8:18	SW3550B8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/17	8:18	SW3550B8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/1	8:18	SW3550B8270D
Surrogate Recovery		Limits	5					
2-fluorobiphenyl SUR	82	43-116	%	1	AJD 9/26/11	4570 10/5/1 ²	8:18	SW3550B8270D
o-terphenyl SUR	74	33-141	%	1	AJD 9/26/11	4570 10/5/12	8:18	SW3550B8270D

Job ID: 22468

Sample#: 22468-011

Sample ID: SS-2

Matrix: Solid Percent Dry: 92.4% Results expressed on a dry weight basis.

Sampled: 9/22/11 8:55		Quant		nstr Dil'n	Prep	Ana	lysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 10:23	SW3550B8270D
2-methylnaphthalene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 10:23	SW3550B8270D
acenaphthylene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 10:23	SW3550B8270D
acenaphthene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 10:23	SW3550B8270D
dibenzofuran	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 10:23	SW3550B8270D
fluorene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 10:23	SW3550B8270D
phenanthrene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 10:23	SW3550B8270D
anthracene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 10:23	SW3550B8270D
fluoranthene	3.9	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 10:23	SW3550B8270D
pyrene	3.5	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 10:23	SW3550B8270D
benzo(a)anthracene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 10:23	SW3550B8270D
chrysene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 10:23	SW3550B8270D
benzo(b)fluoranthene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 10:23	SW3550B8270D
benzo(k)fluoranthene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 10:23	SW3550B8270D
benzo(a)pyrene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 10:23	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 10:23	SW3550B8270D
dibenzo(a,h)anthracene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 10:23	SW3550B8270D
benzo(g,h,i)perylene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 10:23	SW3550B8270D
Surrogate Recovery		Limits	S					
2-fluorobiphenyl SUR	93	43-116	%	5	AJD 9/26/11	4570 10/11/1	1 10:23	SW3550B8270D
o-terphenyl SUR	91	33-141	%	5	AJD 9/26/11	4570 10/11/1	1 10:23	SW3550B8270D

Note: Dilution was required due to matrix interference, causing internal standard suppression.

Job ID: 22468

Sample#: 22468-012

Sample ID: SS-3 Matrix: Solid

Percent Dry: 93.4% Results expressed on a dry weight basis.

Sampled: 9/22/11 8:40		Quant		nstr Dil'n	Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/11	8:56	SW3550B8270D
2-methylnaphthalene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/11	8:56	SW3550B8270D
acenaphthylene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/11	8:56	SW3550B8270D
acenaphthene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/11	8:56	SW3550B8270D
dibenzofuran	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/11	8:56	SW3550B8270D
fluorene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/11	8:56	SW3550B8270D
phenanthrene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/11	8:56	SW3550B8270D
anthracene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/11	8:56	SW3550B8270D
fluoranthene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/11	8:56	SW3550B8270D
pyrene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/11	8:56	SW3550B8270D
benzo(a)anthracene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/11	8:56	SW3550B8270D
chrysene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/11	8:56	SW3550B8270D
benzo(b)fluoranthene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/11	8:56	SW3550B8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/11	8:56	SW3550B8270D
benzo(a)pyrene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/11	8:56	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/11	8:56	SW3550B8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/11	8:56	SW3550B8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/11	8:56	SW3550B8270D
Surrogate Recovery		Limits	S					
2-fluorobiphenyl SUR	79	43-116	%	1	AJD 9/26/11	4570 10/5/11	8:56	SW3550B8270D
o-terphenyl SUR	73	33-141	%	1	AJD 9/26/11	4570 10/5/11	8:56	SW3550B8270D

Job ID: 22468

Sample#: 22468-013

Sample ID: TP-1 4-6'

Matrix: Solid Percent Dry: 86.1% Results expressed on a dry weight basis.

Sampled: 9/22/11 11:15		Quant		nstr Dil'n	Prep	Ana	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 17:18	SW3550B8270D
2-methylnaphthalene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 17:18	SW3550B8270D
acenaphthylene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 17:18	SW3550B8270D
acenaphthene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 17:18	SW3550B8270D
dibenzofuran	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 17:18	SW3550B8270D
fluorene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 17:18	SW3550B8270D
phenanthrene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 17:18	SW3550B8270D
anthracene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 17:18	SW3550B8270D
fluoranthene	3.9	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 17:18	SW3550B8270D
pyrene	5.4	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 17:18	SW3550B8270D
benzo(a)anthracene	2.8	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 17:18	SW3550B8270D
chrysene	3.8	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 17:18	SW3550B8270D
benzo(b)fluoranthene	5.8	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 17:18	SW3550B8270D
benzo(k)fluoranthene	2.9	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 17:18	SW3550B8270D
benzo(a)pyrene	3.8	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 17:18	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 17:18	SW3550B8270D
dibenzo(a,h)anthracene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 17:18	SW3550B8270D
benzo(g,h,i)perylene	< 2.7	2.7	ug/g	5	AJD 9/26/11	4570 10/11/1	1 17:18	SW3550B8270D
Surrogate Recovery		Limits	S					
2-fluorobiphenyl SUR	88	43-116	%	5	AJD 9/26/11	4570 10/11/1	1 17:18	SW3550B8270D
o-terphenyl SUR	83	33-141	%	5	AJD 9/26/11	4570 10/11/1	1 17:18	SW3550B8270D

Note: Dilution was required due to matrix interference, causing internal standard suppression.

Job ID: 22468

Sample#: 22468-014

Sample ID: TP-2 4-6'

Matrix: Solid Percent Dry: 75.1% Results expressed on a dry weight basis.

Sampled: 9/22/11 10:35		Quant		nstr Dil'n	Prep	A	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 3.2	3.2	ug/g	5	AJD 9/26/11	4570 10/11	11 11:01	SW3550B8270D
2-methylnaphthalene	< 3.2	3.2	ug/g	5	AJD 9/26/11	4570 10/11	11 11:01	SW3550B8270D
acenaphthylene	< 3.2	3.2	ug/g	5	AJD 9/26/11	4570 10/11	11 11:01	SW3550B8270D
acenaphthene	< 3.2	3.2	ug/g	5	AJD 9/26/11	4570 10/11	11 11:01	SW3550B8270D
dibenzofuran	< 3.2	3.2	ug/g	5	AJD 9/26/11	4570 10/11	11 11:01	SW3550B8270D
fluorene	< 3.2	3.2	ug/g	5	AJD 9/26/11	4570 10/11	11 11:01	SW3550B8270D
phenanthrene	9.7	3.2	ug/g	5	AJD 9/26/11	4570 10/11	11 11:01	SW3550B8270D
anthracene	< 3.2	3.2	ug/g	5	AJD 9/26/11	4570 10/11	11 11:01	SW3550B8270D
fluoranthene	20	3.2	ug/g	5	AJD 9/26/11	4570 10/11	11 11:01	SW3550B8270D
pyrene	20	3.2	ug/g	5	AJD 9/26/11	4570 10/11	11 11:01	SW3550B8270D
benzo(a)anthracene	11	3.2	ug/g	5	AJD 9/26/11	4570 10/11	11 11:01	SW3550B8270D
chrysene	12	3.2	ug/g	5	AJD 9/26/11	4570 10/11	11 11:01	SW3550B8270D
benzo(b)fluoranthene	13	3.2	ug/g	5	AJD 9/26/11	4570 10/11	11 11:01	SW3550B8270D
benzo(k)fluoranthene	5.5	3.2	ug/g	5	AJD 9/26/11	4570 10/11	11 11:01	SW3550B8270D
benzo(a)pyrene	9.9	3.2	ug/g	5	AJD 9/26/11	4570 10/11	11 11:01	SW3550B8270D
indeno(1,2,3-cd)pyrene	4.7	3.2	ug/g	5	AJD 9/26/11	4570 10/11	11 11:01	SW3550B8270D
dibenzo(a,h)anthracene	< 3.2	3.2	ug/g	5	AJD 9/26/11	4570 10/11	11 11:01	SW3550B8270D
benzo(g,h,i)perylene	5.1	3.2	ug/g	5	AJD 9/26/11	4570 10/11	11 11:01	SW3550B8270D
Surrogate Recovery		Limits	S					
2-fluorobiphenyl SUR	132 *	43-116	%	5	AJD 9/26/11	4570 10/11	11 11:01	SW3550B8270D
o-terphenyl SUR	123	33-141	%	5	AJD 9/26/11	4570 10/11	11 11:01	SW3550B8270D

Note: Dilution was required due to matrix interference, causing internal standard suppression. * The surrogate showed recovery outside the acceptance limits. Matrix interference suspected.

Job ID: 22468

Sample#: 22468-016

Sample ID: SS-DUP Matrix: Solid

Percent Dry: 91.7% Results expressed on a dry weight basis.

Sampled: 9/22/11 0:00		Quant		Instr Dil'n	Prep	A	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
naphthalene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/	11 9:34	SW3550B8270D
2-methylnaphthalene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/	11 9:34	SW3550B8270D
acenaphthylene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/	11 9:34	SW3550B8270D
acenaphthene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/	11 9:34	SW3550B8270D
dibenzofuran	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/	11 9:34	SW3550B8270D
fluorene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/	11 9:34	SW3550B8270D
phenanthrene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/	11 9:34	SW3550B8270D
anthracene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/	11 9:34	SW3550B8270D
fluoranthene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/	11 9:34	SW3550B8270D
pyrene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/	11 9:34	SW3550B8270D
benzo(a)anthracene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/	11 9:34	SW3550B8270D
chrysene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/	11 9:34	SW3550B8270D
benzo(b)fluoranthene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/	11 9:34	SW3550B8270D
benzo(k)fluoranthene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/	11 9:34	SW3550B8270D
benzo(a)pyrene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/	11 9:34	SW3550B8270D
indeno(1,2,3-cd)pyrene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/	11 9:34	SW3550B8270D
dibenzo(a,h)anthracene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/	11 9:34	SW3550B8270D
benzo(g,h,i)perylene	< 0.5	0.5	ug/g	1	AJD 9/26/11	4570 10/5/	11 9:34	SW3550B8270D
Surrogate Recovery		Limits	5					
2-fluorobiphenyl SUR	80	43-116	%	1	AJD 9/26/11	4570 10/5/	11 9:34	SW3550B8270D
o-terphenyl SUR	73	33-141	%	1	AJD 9/26/11	4570 10/5/	11 9:34	SW3550B8270D

Job ID: 22468

Sample#: 22468-010

Sample ID: SS-1

Matrix: Solid Percent Dry: 92.9% Results expressed on a dry weight basis.

Sampled: 9/22/11 9:20		Quant		Instr Dil'n	Prep	An	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
PCB-1016	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30/1	1:25	SW3540C8082A
PCB-1221	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30/1	1:25	SW3540C8082A
PCB-1232	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30/1	1:25	SW3540C8082A
PCB-1242	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30/1	1:25	SW3540C8082A
PCB-1248	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30/1	1:25	SW3540C8082A
PCB-1254	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30/1	1:25	SW3540C8082A
PCB-1260	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30/1	1:25	SW3540C8082A
Surrogate Recovery		Limits	S					
tetrachloro-m-xylene SUR	38	30-150	%	1	JLZ 9/28/11	4582 9/30/1	1:25	SW3540C8082A
decachlorobiphenyl SUR	48	30-150	%	1	JLZ 9/28/11	4582 9/30/1	1:25	SW3540C8082A

Sample#: 22468-011

Sample ID: SS-2

Matrix: Solid

Percent Dry: 92.4% Results expressed on a dry weight basis.

Sampled: 9/22/11 8:55		Quant	I	Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Da	te Time	Reference
PCB-1016	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30	/11 18:58	SW3540C8082A
PCB-1221	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30	/11 18:58	SW3540C8082A
PCB-1232	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30	/11 18:58	SW3540C8082A
PCB-1242	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30	/11 18:58	SW3540C8082A
PCB-1248	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30	/11 18:58	SW3540C8082A
PCB-1254	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30	/11 18:58	SW3540C8082A
PCB-1260	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30	/11 18:58	SW3540C8082A
Surrogate Recovery		Limits	S					
tetrachloro-m-xylene SUR	61	30-150	%	1	JLZ 9/28/11	4582 9/30	/11 18:58	SW3540C8082A
decachlorobiphenyl SUR	61	30-150	%	1	JLZ 9/28/11	4582 9/30	/11 18:58	SW3540C8082A

Job ID: 22468

Sample#: 22468-012

Sample ID: SS-3

Matrix: Solid Percent Dry: 93.4% Results expressed on a dry weight basis.

Sampled: 9/22/11 8:40		Quant		Instr Dil'n	Prep	A	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
PCB-1016	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30/1	1 1:55	SW3540C8082A
PCB-1221	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30/1	1 1:55	SW3540C8082A
PCB-1232	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30/1	1 1:55	SW3540C8082A
PCB-1242	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30/1	1 1:55	SW3540C8082A
PCB-1248	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30/1	1 1:55	SW3540C8082A
PCB-1254	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30/1	1 1:55	SW3540C8082A
PCB-1260	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30/1	1 1:55	SW3540C8082A
Surrogate Recovery		Limits	S					
tetrachloro-m-xylene SUR	48	30-150	%	1	JLZ 9/28/11	4582 9/30/1	1 1:55	SW3540C8082A
decachlorobiphenyl SUR	58	30-150	%	1	JLZ 9/28/11	4582 9/30/1	1 1:55	SW3540C8082A

Sample#:	22468-016
----------	-----------

Sample ID: SS-DUP

Matrix: Solid

Percent Dry: 91.7% Results expressed on a dry weight basis.

Sampled: 9/22/11 0:00		Quant	1	Instr Dil'n	Prep	Α	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
PCB-1016	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30/1	1 2:26	SW3540C8082A
PCB-1221	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30/1	1 2:26	SW3540C8082A
PCB-1232	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30/1	1 2:26	SW3540C8082A
PCB-1242	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30/1	1 2:26	SW3540C8082A
PCB-1248	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30/1	1 2:26	SW3540C8082A
PCB-1254	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30/1	1 2:26	SW3540C8082A
PCB-1260	< 0.03	0.03	ug/g	1	JLZ 9/28/11	4582 9/30/1	1 2:26	SW3540C8082A
Surrogate Recovery		Limits	5					
tetrachloro-m-xylene SUR	47	30-150	%	1	JLZ 9/28/11	4582 9/30/1	1 2:26	SW3540C8082A
decachlorobiphenyl SUR	60	30-150	%	1	JLZ 9/28/11	4582 9/30/1	1 2:26	SW3540C8082A

Job ID: 22468

Sample#: 22468-002

Sample ID: CB-1

Matrix: Solid Percent Dry: 77.4% Results expressed on a dry weight basis.

Sampled: 9/22/11 12:00		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36	560	260	ug/g	1	JLZ 9/26/11	4569	9/27/11	17:17	SW3550B8100m
Surrogate Recovery		Limits	6						
2-fluorobiphenyl SUR	94	40-140	%	1	JLZ 9/26/11	4569	9/27/11	17:17	SW3550B8100m
o-terphenyl SUR	89	40-140	%	1	JLZ 9/26/11	4569	9/27/11	17:17	SW3550B8100m

Sample#: 22 Sample ID: C Matrix: S	A-1 0-2	'	ercent Dry: 89	.7% Resu	lts expr	ressed on	a dry w	veight ba	asis.			
Sampled: 9/	/22/11	10:00		Quant		Instr Dil'n		Prep		Anal	ysis	
Parameter			Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
TPH C10-C36			< 220	220	ug/g	1	JLZ 🤉	9/26/11	4569	9/27/11	15:57	SW3550B8100m
Surrogate Recove	ery			Limits	5							
2-fluorobiphenyl Sl	UR		90	40-140	%	1	JLZ 🤉	9/26/11	4569	9/27/11	15:57	SW3550B8100m
o-terphenyl SUR			92	40-140	%	1	JLZ 9	9/26/11	4569	9/27/11	15:57	SW3550B8100m

Sample#:	22468-004
----------	-----------

Sample ID: CA-2 0-3'

Matrix: Solid Percent Dry: 83.7% Results expressed on a dry weight basis.

Sampled: 9/22/11 13:30		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36	650	230	ug/g	1	JLZ 9/26/11	4569	9/27/11	17:33	SW3550B8100m
Surrogate Recovery		Limits	6						
2-fluorobiphenyl SUR	79	40-140	%	1	JLZ 9/26/11	4569	9/27/11	17:33	SW3550B8100m
o-terphenyl SUR	88	40-140	%	1	JLZ 9/26/11	4569	9/27/11	17:33	SW3550B8100m

Sample#: Sample ID: Matrix:	CA-2 FL	OOR	cent Dry: 98	1% Resu	lts expr	essed on	a dry w	reight ba	isis.			
Sampled:	9/22/11	14:30		Quant		Instr Dil'n		Prep		Anal	ysis	
Parameter			Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
TPH C10-C36			4000	200	ug/g	1	JLZ 9	9/26/11	4569	9/27/11	17:49	SW3550B8100m
Surrogate Reco	overy			Limits	5							
2-fluorobiphenyl	SUR		42	40-140	%	1	JLZ 9	9/26/11	4569	9/27/11	17:49	SW3550B8100m
o-terphenyl SUR	2		42	40-140	%	1	JLZ 9	9/26/11	4569	9/27/11	17:49	SW3550B8100m

Job ID: 22468

Sample#: 22468-006

Sample ID: CA-3 6-8'

Matrix: Solid Percent Dry: 68.2% Results expressed on a dry weight basis.

Sampled: 9/22/11 11:00		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36	740	290	ug/g	1	JLZ 9/26/11	4569	9/27/11	17:00	SW3550B8100m
Surrogate Recovery		Limits	5						
2-fluorobiphenyl SUR	93	40-140	%	1	JLZ 9/26/11	4569	9/27/11	17:00	SW3550B8100m
o-terphenyl SUR	92	40-140	%	1	JLZ 9/26/11	4569	9/27/11	17:00	SW3550B8100m

Sample#: Sample ID: Matrix:	CA-4 6-8	5'	ercent Dry: 78	.6% Resu	lts expr	essed on	a dry weight ba	isis.			
Sampled:	9/22/11	10:30		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter			Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36			2100	250	ug/g	1	JLZ 9/26/11	4569	9/27/11	18:06	SW3550B8100m
Surrogate Reco	overy			Limits	6						
2-fluorobiphenyl	SUR		75	40-140	%	1	JLZ 9/26/11	4569	9/27/11	18:06	SW3550B8100m
o-terphenyl SUR	R		75	40-140	%	1	JLZ 9/26/11	4569	9/27/11	18:06	SW3550B8100m

Sample#:	22468-008
----------	-----------

Sample ID: CA-5 2-3'

Matrix: Solid Percent Dry: 86.9% Results expressed on a dry weight basis.

Sampled: 9/22/11 9:00		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36	3000	220	ug/g	1	JLZ 9/26/11	4569	9/27/11	18:22	SW3550B8100m
Surrogate Recovery		Limits	5						
2-fluorobiphenyl SUR	80	40-140	%	1	JLZ 9/26/11	4569	9/27/11	18:22	SW3550B8100m
o-terphenyl SUR	95	40-140	%	1	JLZ 9/26/11	4569	9/27/11	18:22	SW3550B8100m

Sample#: Sample ID: Matrix:	CA-6 0-3	3'	cent Dry: 92	.6% Resu	lts expr	essed on	a dry v	veight ba	asis.			
Sampled:	9/22/11	14:00		Quant		Instr Dil'n		Prep		Anal	ysis	
Parameter			Result	Limit	Units	Factor	Analys	t Date	Batch	Date	Time	Reference
TPH C10-C36			870	200	ug/g	1	JLZ	9/26/11	4569	9/27/11	18:38	SW3550B8100m
Surrogate Reco	overy			Limits	5							
2-fluorobiphenyl	SUR		93	40-140	%	1	JLZ	9/26/11	4569	9/27/11	18:38	SW3550B8100m
o-terphenyl SUF	ξ		83	40-140	%	1	JLZ	9/26/11	4569	9/27/11	18:38	SW3550B8100m

Job ID: 22468

Sample#: 22468-010

Sample ID: SS-1

Matrix: Solid Percent Dry: 92.9% Results expressed on a dry weight basis.

Sampled: 9/22/11 9:20		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36	< 200	200	ug/g	1	JLZ 9/26/11	4569	9/27/11	14:50	SW3550B8100m
Surrogate Recovery		Limits	5						
2-fluorobiphenyl SUR	91	40-140	%	1	JLZ 9/26/11	4569	9/27/11	14:50	SW3550B8100m
o-terphenyl SUR	90	40-140	%	1	JLZ 9/26/11	4569	9/27/11	14:50	SW3550B8100m

Sample#: 22468-011 Sample ID: SS-2 Matrix: Solid Percer	nt Dry: 92	.4% Resu	ilts expr	essed on	a dry weight ba	isis.			
Sampled: 9/22/11 8:55		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36	500	210	ug/g	1	JLZ 9/26/11	4569	9/27/11	18:55	SW3550B8100m
Surrogate Recovery		Limits	S						
2-fluorobiphenyl SUR	87	40-140	%	1	JLZ 9/26/11	4569	9/27/11	18:55	SW3550B8100m
o-terphenyl SUR	85	40-140	%	1	JLZ 9/26/11	4569	9/27/11	18:55	SW3550B8100m

Sample#:	22468-012
----------	-----------

Sample ID: SS-3

Matrix: Solid Percent Dry: 93.4% Results expressed on a dry weight basis.

Sampled: 9/22/11 8:40		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36	< 200	200	ug/g	1	JLZ 9/26/11	4569	9/27/11	15:06	SW3550B8100m
Surrogate Recovery		Limits	5						
2-fluorobiphenyl SUR	95	40-140	%	1	JLZ 9/26/11	4569	9/27/11	15:06	SW3550B8100m
o-terphenyl SUR	93	40-140	%	1	JLZ 9/26/11	4569	9/27/11	15:06	SW3550B8100m

Sample#: Sample ID: Matrix:		Percent Dry: 86	.1% Resu	lts expr	essed on	a dry weight ba	sis.			
Sampled:	9/22/11 11:1	15	Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter		Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36		880	220	ug/g	1	JLZ 9/26/11	4569	9/27/11	19:11	SW3550B8100m
Surrogate Reco	overy		Limits	6						
2-fluorobiphenyl	SUR	79	40-140	%	1	JLZ 9/26/11	4569	9/27/11	19:11	SW3550B8100m
o-terphenyl SUR	R	76	40-140	%	1	JLZ 9/26/11	4569	9/27/11	19:11	SW3550B8100m

Job ID: 22468

Sample#: 22468-014

Sample ID: TP-2 4-6'

Matrix: Solid Percent Dry: 75.1% Results expressed on a dry weight basis.

Sampled: 9/22/11 10:35

_

Sampled: 9/22/11 10:35		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36	850	250	ug/g	1	JLZ 9/26/11	4569	9/27/11	19:27	SW3550B8100m
Surrogate Recovery		Limits	6						
2-fluorobiphenyl SUR	129	40-140	%	1	JLZ 9/26/11	4569	9/27/11	19:27	SW3550B8100m
o-terphenyl SUR	112	40-140	%	1	JLZ 9/26/11	4569	9/27/11	19:27	SW3550B8100m

Sample#: 22468-016 Sample ID: SS-DUP Matrix: Solid Perce	ent Dry: 91.	7% Resu	lts expr	essed on	a dry weight ba	asis.			
Sampled: 9/22/11 0:00		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
TPH C10-C36	< 210	210	ug/g	1	JLZ 9/26/11	4569	9/27/11	15:23	SW3550B8100m
Surrogate Recovery		Limits	5						
2-fluorobiphenyl SUR	90	40-140	%	1	JLZ 9/26/11	4569	9/27/11	15:23	SW3550B8100m
o-terphenyl SUR	91	40-140	%	1	JLZ 9/26/11	4569	9/27/11	15:23	SW3550B8100m

Job ID: 22468

Sample#: 22468-002

Sample ID: CB-1

Matrix: Solid Percent Dry: 77.4% Results expressed on a dry weight basis.

Sampled: 9/22/11 12:00		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	2.8	0.6	ug/g	1	BJS 9/26/11	4564	9/26/11	19:13	SW3051A6010C
Barium	86	3	ug/g	1	BJS 9/26/11	4564	9/26/11	19:13	SW3051A6010C
Cadmium	0.5	0.2	ug/g	1	BJS 9/26/11	4564	9/26/11	19:13	SW3051A6010C
Chromium	290	3	ug/g	1	BJS 9/26/11	4564	9/26/11	19:13	SW3051A6010C
Lead	810	0.6	ug/g	1	BJS 9/26/11	4564	9/26/11	19:13	SW3051A6010C
Mercury	< 0.19	0.19	ug/g	1	BJS 9/26/11	4568	9/26/11	17:05	SW7471B
Selenium	< 3	3	ug/g	1	BJS 9/26/11	4564	9/26/11	19:13	SW3051A6010C
Silver	< 0.4	0.4	ug/g	1	BJS 9/26/11	4564	9/26/11	19:13	SW3051A6010C

Sample#: 22468-003

Sample ID: CA-1 0-2'

Matrix: Solid Percent Dry:

Percent Dry: 89.7% Results expressed on a dry weight basis.

Sampled: 9/22/11 10:00		Quant	I	Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	5.4	0.6	ug/g	1	BJS 9/26/11	4564	9/30/11	14:45	SW3051A6010C
Barium	34	3	ug/g	1	BJS 9/26/11	4564	9/30/11	14:45	SW3051A6010C
Boron	< 3	3	ug/g	1	BJS 9/26/11	4564	9/30/11	14:45	SW3051A6010C
Cadmium	< 0.2	0.2	ug/g	1	BJS 9/26/11	4564	9/30/11	14:45	SW3051A6010C
Copper	12	3	ug/g	1	BJS 9/26/11	4564	9/30/11	14:45	SW3051A6010C
Lead	17	0.6	ug/g	1	BJS 9/26/11	4564	9/30/11	14:45	SW3051A6010C
Mercury	< 0.17	0.17	ug/g	1	BJS 9/26/11	4568	9/26/11	17:07	SW7471B
Nickel	7	3	ug/g	1	BJS 9/26/11	4564	9/30/11	14:45	SW3051A6010C
Selenium	< 3	3	ug/g	1	BJS 9/26/11	4564	9/30/11	14:45	SW3051A6010C
Vanadium	26	3	ug/g	1	BJS 9/26/11	4564	9/30/11	14:45	SW3051A6010C

Sample#: 22468-004

Sample ID: CA-2 0-3'

Matrix: Solid

Percent Dry: 83.7% Results expressed on a dry weight basis.

Sampled: 9/22/11 13:30		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	3.4	0.6	ug/g	1	BJS 9/26/11	4564	9/30/11	14:51	SW3051A6010C
Barium	35	3	ug/g	1	BJS 9/26/11	4564	9/30/11	14:51	SW3051A6010C
Boron	6	3	ug/g	1	BJS 9/26/11	4564	9/30/11	14:51	SW3051A6010C
Cadmium	< 0.2	0.2	ug/g	1	BJS 9/26/11	4564	9/30/11	14:51	SW3051A6010C
Copper	17	3	ug/g	1	BJS 9/26/11	4564	9/30/11	14:51	SW3051A6010C
Lead	66	0.6	ug/g	1	BJS 9/26/11	4564	9/30/11	14:51	SW3051A6010C
Mercury	< 0.18	0.18	ug/g	1	BJS 9/26/11	4568	9/26/11	17:08	SW7471B
Nickel	6	3	ug/g	1	BJS 9/26/11	4564	9/30/11	14:51	SW3051A6010C
Selenium	< 3	3	ug/g	1	BJS 9/26/11	4564	9/30/11	14:51	SW3051A6010C
Vanadium	18	3	ug/g	1	BJS 9/26/11	4564	9/30/11	14:51	SW3051A6010C

Job ID: 22468

Sample#: 22468-005

Sample ID: CA-2 FLOOR

Matrix: Solid Percent Dry: 98.1% Results expressed on a dry weight basis.

Sampled: 9/22/11	14:30	Quant		Instr Dil'n	Prep		Anal	veie	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	6.4	0.5	ug/g	1	BJS 9/26/11	4564	9/30/11	14:58	SW3051A6010C
Barium	79	3	ug/g	1	BJS 9/26/11	4564	9/30/11	14:58	SW3051A6010C
Boron	35	3	ug/g	1	BJS 9/26/11	4564	9/30/11	14:58	SW3051A6010C
Cadmium	1.6	0.2	ug/g	1	BJS 9/26/11	4564	9/30/11	14:58	SW3051A6010C
Copper	86	3	ug/g	1	BJS 9/26/11	4564	9/30/11	14:58	SW3051A6010C
Lead	150	0.5	ug/g	1	BJS 9/26/11	4564	9/30/11	14:58	SW3051A6010C
Mercury	< 0.15	0.15	ug/g	1	BJS 9/26/11	4568	9/26/11	17:10	SW7471B
Nickel	9	3	ug/g	1	BJS 9/26/11	4564	9/30/11	14:58	SW3051A6010C
Selenium	< 3	3	ug/g	1	BJS 9/26/11	4564	9/30/11	14:58	SW3051A6010C
Vanadium	18	3	ug/g	1	BJS 9/26/11	4564	9/30/11	14:58	SW3051A6010C
Sample#: 22468-00	16								
Sample ID: CA-3 6-8									
•			uto ovor	acced on	a day waight ha				
Matrix: Solid	-	.2% Rest	iits expi	essed on	a dry weight ba	ISIS.			
Sampled: 9/22/11	11:00	Quant		Instr Dil'n	Prep		Anal		
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Lead	300	0.7	ug/g	1	BJS 9/26/11	4564	9/26/11	19:21	SW3051A6010C
Sample#: 22468-00	09								
Sample ID: CA-6 0-3									
Matrix: Solid		.6% Resu	ilts expr	essed on	a dry weight ba	isis.			
Sampled: 9/22/11	14:00						Anal	vala	
Parameter	Result	Quant Limit	Units	Instr Dil'n Factor	Prep Analyst Date	Batch	Anal Date	Time	Reference
Arsenic	3.6	0.5	ug/g	1	BJS 9/26/11		9/26/11	19:29	SW3051A6010C
Barium	14	3	ug/g	1	BJS 9/26/11		9/26/11	19:29	SW3051A6010C
Cadmium	< 0.2	0.2	ug/g	1	BJS 9/26/11		9/26/11	19:29	SW3051A6010C
Chromium	5	3	ug/g	1	BJS 9/26/11		9/26/11	19:29	SW3051A6010C
Lead	15	0.5	ug/g	1	BJS 9/26/11 BJS 9/26/11		9/26/11	19:29	SW3051A6010C
Mercury	< 0.16	0.16	ug/g	1	BJS 9/26/11		9/26/11	17:12	SW7471B
Selenium	< 3	3	ug/g	1	BJS 9/26/11		9/26/11	19:29	SW3051A6010C
	• 0	0	49,9		200 0/20/11	-00-	0,20,11	10.20	5110001/100100
Silver	< 0.4	0.4	ug/g	1	BJS 9/26/11	4564	9/26/11	19:29	SW3051A6010C

Job ID: 22468

Sample#: 22468-010

Sample ID: SS-1

Matrix: Solid Percent Dry: 92.9% Results expressed on a dry weight basis.

Sampled: 9/22/11 9:20		Quant		nstr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	2.6	0.5	ug/g	1	BJS 9/29/11	4586	9/30/11	15:05	SW3051A6010C
Barium	8	2	ug/g	1	BJS 9/29/11	4586	9/30/11	15:05	SW3051A6010C
Boron	< 2	2	ug/g	1	BJS 9/29/11	4586	9/30/11	15:05	SW3051A6010C
Cadmium	< 0.2	0.2	ug/g	1	BJS 9/29/11	4586	9/30/11	15:05	SW3051A6010C
Copper	6	2	ug/g	1	BJS 9/29/11	4586	9/30/11	15:05	SW3051A6010C
Lead	13	0.5	ug/g	1	BJS 9/29/11	4586	9/30/11	15:05	SW3051A6010C
Mercury	< 0.16	0.16	ug/g	1	BJS 9/26/11	4568	9/26/11	17:14	SW7471B
Nickel	5	2	ug/g	1	BJS 9/29/11	4586	9/30/11	15:05	SW3051A6010C
Selenium	< 2	2	ug/g	1	BJS 9/29/11	4586	9/30/11	15:05	SW3051A6010C
Vanadium	7	2	ug/g	1	BJS 9/29/11	4586	9/30/11	15:05	SW3051A6010C

Sample#: 22468-011

Sample ID: SS-2

Matrix: Solid

Percent Dry: 92.4% Results expressed on a dry weight basis.

Sampled: 9/22/11 8:55		Quant	1	Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	5.4	0.6	ug/g	1	BJS 9/29/11	4586	9/30/11	15:25	SW3051A6010C
Barium	34	3	ug/g	1	BJS 9/29/11	4586	9/30/11	15:25	SW3051A6010C
Boron	3	3	ug/g	1	BJS 9/29/11	4586	9/30/11	15:25	SW3051A6010C
Cadmium	< 0.2	0.2	ug/g	1	BJS 9/29/11	4586	9/30/11	15:25	SW3051A6010C
Copper	16	3	ug/g	1	BJS 9/29/11	4586	9/30/11	15:25	SW3051A6010C
Lead	25	0.6	ug/g	1	BJS 9/29/11	4586	9/30/11	15:25	SW3051A6010C
Mercury	< 0.16	0.16	ug/g	1	BJS 9/26/11	4568	9/26/11	17:16	SW7471B
Nickel	8	3	ug/g	1	BJS 9/29/11	4586	9/30/11	15:25	SW3051A6010C
Selenium	< 3	3	ug/g	1	BJS 9/29/11	4586	9/30/11	15:25	SW3051A6010C
Vanadium	22	3	ug/g	1	BJS 9/29/11	4586	9/30/11	15:25	SW3051A6010C

```
Sample#: 22468-012
```

Sample ID: SS-3

Matrix: Solid

Percent Dry: 93.4% Results expressed on a dry weight basis.

Sampled: 9/22/11 8:40		Quant	I	nstr Dil'n	Prep	Ar	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
Arsenic	7.7	0.5	ug/g	1	BJS 9/29/11	4586 9/30/1	1 15:31	SW3051A6010C
Barium	37	3	ug/g	1	BJS 9/29/11	4586 9/30/1	1 15:31	SW3051A6010C
Boron	< 3	3	ug/g	1	BJS 9/29/11	4586 9/30/1	1 15:31	SW3051A6010C
Cadmium	< 0.2	0.2	ug/g	1	BJS 9/29/11	4586 9/30/1	1 15:31	SW3051A6010C
Copper	15	3	ug/g	1	BJS 9/29/11	4586 9/30/1	1 15:31	SW3051A6010C
Lead	9.0	0.5	ug/g	1	BJS 9/29/11	4586 9/30/1	1 15:31	SW3051A6010C
Mercury	< 0.16	0.16	ug/g	1	BJS 9/26/11	4568 9/26/1	1 17:19	SW7471B
Nickel	7	3	ug/g	1	BJS 9/29/11	4586 9/30/1	1 15:31	SW3051A6010C
Selenium	< 3	3	ug/g	1	BJS 9/29/11	4586 9/30/1	1 15:31	SW3051A6010C
Vanadium	20	3	ug/g	1	BJS 9/29/11	4586 9/30/1	1 15:31	SW3051A6010C

Job ID: 22468

Sample#: 22468-013

Sample ID: TP-1 4-6'

Matrix: Solid Percent Dry: 86.1% Results expressed on a dry weight basis.

Sampled: 9/22/11 11:15		Quant	1	nstr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date Time	Reference
Arsenic	7.5	0.6	ug/g	1	BJS 9/29/11	4586 9/	/30/11 15:39	SW3051A6010C
Barium	160	3	ug/g	1	BJS 9/29/11	4586 9/	/30/11 15:39	SW3051A6010C
Boron	49	3	ug/g	1	BJS 9/29/11	4586 9/	/30/11 15:39	SW3051A6010C
Cadmium	15	0.2	ug/g	1	BJS 9/29/11	4586 9/	/30/11 15:39	SW3051A6010C
Copper	320	3	ug/g	1	BJS 9/29/11	4586 9/	/30/11 15:39	SW3051A6010C
Lead	820	0.6	ug/g	1	BJS 9/29/11	4586 9/	/30/11 15:39	SW3051A6010C
Mercury	0.26	0.17	ug/g	1	BJS 9/26/11	4568 9/	/26/11 17:21	SW7471B
Nickel	22	3	ug/g	1	BJS 9/29/11	4586 9/	/30/11 15:39	SW3051A6010C
Selenium	< 3	3	ug/g	1	BJS 9/29/11	4586 9/	/30/11 15:39	SW3051A6010C
Vanadium	22	3	ug/g	1	BJS 9/29/11	4586 9/	/30/11 15:39	SW3051A6010C

Sample#: 22468-014

Sample ID: TP-2 4-6' Matrix: Solid

Percent Dry: 75.1% Results expressed on a dry weight basis.

Sampled: 9/22/11 10:35		Quant		nstr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	18	0.7	ug/g	1	BJS 9/29/11	4586	9/30/11	15:46	SW3051A6010C
Barium	200	3	ug/g	1	BJS 9/29/11	4586	9/30/11	15:46	SW3051A6010C
Boron	25	3	ug/g	1	BJS 9/29/11	4586	9/30/11	15:46	SW3051A6010C
Cadmium	0.7	0.3	ug/g	1	BJS 9/29/11	4586	9/30/11	15:46	SW3051A6010C
Copper	79	3	ug/g	1	BJS 9/29/11	4586	9/30/11	15:46	SW3051A6010C
Lead	260	0.7	ug/g	1	BJS 9/29/11	4586	9/30/11	15:46	SW3051A6010C
Mercury	0.44	0.19	ug/g	1	BJS 9/26/11	4568	9/26/11	17:23	SW7471B
Nickel	150	3	ug/g	1	BJS 9/29/11	4586	9/30/11	15:46	SW3051A6010C
Selenium	< 3	3	ug/g	1	BJS 9/29/11	4586	9/30/11	15:46	SW3051A6010C
Vanadium	24	3	ug/g	1	BJS 9/29/11	4586	9/30/11	15:46	SW3051A6010C

Sample#: 22468-015

Sample ID: CA-3 0-2'

Matrix: Solid Percent Dry: 92% Results expressed on a dry weight basis.

Sampled: 9/22/11 15:00		Quant		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Lead	190	0.5	ug/g	1	BJS 9/26/11	4564	9/26/11	19:36	SW3051A6010C

Job ID: 22468

Sample#: 22468-016

Sample ID: SS-DUP

Matrix: Solid Percent Dry: 91.7% Results expressed on a dry weight basis.

Sampled: 9/22/11 0:00		Quant	1	Instr Dil'n	Prep	Ar	alysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
Arsenic	2.7	0.5	ug/g	1	BJS 9/29/11	4586 9/30/1	1 15:57	SW3051A6010C
Barium	9	3	ug/g	1	BJS 9/29/11	4586 9/30/1	1 15:57	SW3051A6010C
Boron	< 3	3	ug/g	1	BJS 9/29/11	4586 9/30/1	1 15:57	SW3051A6010C
Cadmium	< 0.2	0.2	ug/g	1	BJS 9/29/11	4586 9/30/1	1 15:57	SW3051A6010C
Copper	7	3	ug/g	1	BJS 9/29/11	4586 9/30/1	1 15:57	SW3051A6010C
Lead	13	0.5	ug/g	1	BJS 9/29/11	4586 9/30/1	1 15:57	SW3051A6010C
Mercury	< 0.16	0.16	ug/g	1	BJS 9/26/11	4568 9/26/1	1 17:34	SW7471B
Nickel	4	3	ug/g	1	BJS 9/29/11	4586 9/30/1	1 15:57	SW3051A6010C
Selenium	< 3	3	ug/g	1	BJS 9/29/11	4586 9/30/1	1 15:57	SW3051A6010C
Vanadium	8	3	ug/g	1	BJS 9/29/11	4586 9/30/1	1 15:57	SW3051A6010C

Quality Control Report

124 Heritage Avenue Unit 10 Portsmouth, NH 03801 www.absoluteresourceassociates.com

Absolute Resource

nssociates

Case Narrative Lab # 22468

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 2 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

Calibration

No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

SVOC: The surrogates, nitrobenzene-D5 and 2-fluorobiphenyl for sample 22468-009 was outside the acceptance limits as a result of interferences caused by the matrix.

PAH: The surrogate, 2-fluorobiphenyl for sample 22468-014 was outside the acceptance limits as a result of interferences caused by the matrix.

Laboratory Control Sample Results

VOC: The MLCS/D4576 did not meet the acceptance criteria for bromomethane, carbon disulfide, and 1,2dibromo-3-chloropropane. Since <10% of the compounds were outside of the acceptance criteria, reanalysis is not required.

SVOC: The LCS/D4577 did not meet the acceptance criteria for dibenzo(a,h)anthracene due to degradation of the spiking solution.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Not requested for this project.

Other

SVOC: The following samples required a re-analysis at a dilution due to internal standard interferences caused by matrix effect: 22468-002 through -005, -007 through -009, -011, -013, and -014. Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

- QC Report -

lethod QC ID	Parameter Associated Samp	le Result	Units A	mt Added	%R		Lir	nits	RPD	RPD Lim
W5035A8260B MLCS4576	dichlorodifluoromethane	1.3	ug/g	1	128		70	130		
	chloromethane	1.0	ug/g	1	102		70	130		
	vinyl chloride	1.1	ug/g	1	107		70	130		
	bromomethane	0.6	ug/g	1	62	*	70	130		
	chloroethane	1.1	ug/g	1	112		70	130		
	trichlorofluoromethane	1.0	ug/g	1	100		70	130		
	diethyl ether	1.0	ug/g	1	98		70	130		
	acetone	< 2.5	ug/g	1	87					
	1,1-dichloroethene	0.9	ug/g	1	87		70	130		
	methylene chloride	1.0	ug/g	1	102		70	130		
	carbon disulfide	0.6	ug/g	1	57	*	70	130		
	methyl t-butyl ether (MTBE)	1.0	ug/g	1	102		70	130		
	trans-1,2-dichloroethene	0.9	ug/g	1	95		70	130		
	isopropyl ether (DIPE)	1.0	ug/g	1	103		70	130		
	ethyl t-butyl ether (ETBE)	1.0	ug/g	1	100		70	130		
	1,1-dichloroethane	1.0	ug/g	1	95		70	130		
	t-butanol (TBA)	5.3	ug/g	5	106		70	130		
	2-butanone (MEK)	0.8	ug/g	1	80		70	130		
	2,2-dichloropropane	0.7	ug/g	1	70		70	130		
	cis-1,2-dichloroethene	1.0	ug/g	1	97		70	130		
	chloroform	1.0	ug/g	1	98		70	130		
	bromochloromethane	1.0	ug/g	1	99		70	130		
	tetrahydrofuran (THF)	0.9	ug/g	1	91		70	130		
	1,1,1-trichloroethane	0.9	ug/g	1	88		70	130		
	1,1-dichloropropene	0.9	ug/g	1	91		70	130		
	t-amyl-methyl ether (TAME)	1.0	ug/g	1	97		70	130		
	carbon tetrachloride	0.8	ug/g	1	76		70	130		
	1,2-dichloroethane	1.0	ug/g	1	101		70	130		
	benzene	1.0	ug/g	1	97		70	130		
	trichloroethene	1.0	ug/g	1	96		70	130		
	1,2-dichloropropane	0.9	ug/g	1	95		70	130		
	bromodichloromethane	0.8	ug/g	1	83		70	130		
	1,4-dioxane	< 2.5	ug/g	2	98		70	130		
	dibromomethane	1.0	ug/g	1	95		70	130		
	4-methyl-2-pentanone (MIBK)	0.7	ug/g	1	73		70	130		
	cis-1,3-dichloropropene	0.8	ug/g	1	82		70	130		
	toluene	1.0	ug/g	1	105		70	130		
	trans-1,3-dichloropropene	0.7	ug/g	1	74		70	130		
	2-hexanone	0.7	ug/g	1	74		70	130		
	1,1,2-trichloroethane	1.0	ug/g	1	104		70	130		
	1,3-dichloropropane	0.9	ug/g	1	91		70	130		
	tetrachloroethene	0.9	ug/g	1	90		70	130		
	dibromochloromethane	0.8	ug/g	1	77		70	130		
	1,2-dibromoethane (EDB)	0.9	ug/g	1	86		70	130		
	chlorobenzene	0.9	ug/g	1	95		70	130		
	1,1,1,2-tetrachloroethane	0.8	ug/g	1	83		70	130		
	ethylbenzene	0.9	ug/g	1	95		70	130		
	m&p-xylenes	1.9	ug/g	2	96		70	130		
	o-xylene	1.0	ug/g	1	99		70	130		
		1.0	~y/y		00			100		

Method	QC ID	Parameter	Associated Sample	Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limit
SW5035A826	0B MLCS4576	bromoform		0.7	ug/g	1	72	70	130		
		isopropylbenzene		0.9	ug/g	1	86	70	130		
		1,1,2,2-tetrachloroethane		0.9	ug/g	1	89	70	130		
		1,2,3-trichloropropane		0.9	ug/g	1	92	70	130		
		n-propylbenzene		0.9	ug/g	1	93	70	130		
		bromobenzene		1.0	ug/g	1	99	70	130		
		1,3,5-trimethylbenzene		0.9	ug/g	1	95	70	130		
		2-chlorotoluene		1.0	ug/g	1	99	70	130		
		4-chlorotoluene		1.0	ug/g	1	96	70	130		
		tert-butylbenzene		0.9	ug/g	1	94	70	130		
		1,2,4-trimethylbenzene		1.0	ug/g	1	96	70	130		
		sec-butylbenzene		0.9	ug/g	1	90	70	130		
		1,3-dichlorobenzene		1.0	ug/g	1	96	70	130		
		4-isopropyltoluene		0.9	ug/g	1	89	70	130		
		1,4-dichlorobenzene		1.0	ug/g	1	97	70	130		
		1,2-dichlorobenzene		1.0	ug/g	1	99	70	130		
		n-butylbenzene		0.9	ug/g	1	92	70	130		
		1,2-dibromo-3-chloropropa	ne	0.6	ug/g	1	61	* 70	130		
		1,2,4-trichlorobenzene		0.9	ug/g	1	85	70	130		
		1,3,5-trichlorobenzene		0.9	ug/g	1	91	70	130		
		hexachlorobutadiene		0.9	ug/g	1	95	70	130		
		naphthalene		0.8	ug/g	1	80	70	130		
		1,2,3-trichlorobenzene		0.9	ug/g	1	88	70	130		
		dibromofluoromethane SUI	R	102	%			78	114		
		toluene-D8 SUR		105	%			88	110		
		4-bromofluorobenzene SU	R	112	%			86	115		
		a,a,a-trifluorotoluene SUR		92	%			70	130		

Method QC ID	Parameter Associated Sample	Resul	Units A	Amt Added	%R	Li	mits	RPD	RPD Limit
SW5035A8260B MLCSD4576	dichlorodifluoromethane	1.1	ug/g	1	112	70	130	13	30
	chloromethane	1.(1	101	70	130	2	30
	vinyl chloride	1.(1	103	70	130	4	30
	bromomethane	0.6		1	64	* 70	130	2	30
	chloroethane	1.1		1	106	70	130	5	30
	trichlorofluoromethane	0.9		1	93	70	130	7	30
	diethyl ether	1.(1	97	70	130	2	30
	acetone	< 2.5		1	73			17	30
	1,1-dichloroethene	0.8		1	83	70	130	5	30
	methylene chloride	1.(1	104	70	130	2	30
	carbon disulfide	0.6	•••	1	55	* 70	130	4	30
	methyl t-butyl ether (MTBE)	1.(•••	1	99	70	130	3	30
	trans-1,2-dichloroethene	0.9	•••	1	94	70	130	1	30
	isopropyl ether (DIPE)	1.(•••	1	102	70	130	1	30
	ethyl t-butyl ether (ETBE)	1.(•••	1	99	70	130	1	30
	1,1-dichloroethane	1.(1	96	70	130	0	30
	t-butanol (TBA)	5.8	•••	5	115	70	130	9	30
	2-butanone (MEK)	0.8		1	76	70	130	4	30
	2,2-dichloropropane	0.7	•••	1	73	70	130	4	30
	cis-1,2-dichloroethene	1.(•••	1	97	70	130	0	30
	chloroform	1.(•••	1	97	70	130	0	30
	bromochloromethane	1.(1	100	70	130	1	30
	tetrahydrofuran (THF)	0.9		1	87	70	130	4	30
	1,1,1-trichloroethane	0.9		1	86	70	130	2	30
	1,1-dichloropropene	0.9		1	92	70	130	2 1	30
	t-amyl-methyl ether (TAME)	1.0	•••	1	96	70	130	1	30 30
	carbon tetrachloride	0.7	•••	1	30 73	70	130	4	30 30
	1,2-dichloroethane	1.0	•••	1	99	70	130	4	30 30
		1.0	•••	1	99 99	70	130	2	30 30
	benzene		•••		99 99		130	4	30 30
	trichloroethene	1.(•••	1	99 95	70 70			
	1,2-dichloropropane	1.0	•••	1		70 70	130	0	30
	bromodichloromethane	3.0	•••	1	79	70	130	4	30
	1,4-dioxane	< 2.5	•••	2	111	70	130	13	30
	dibromomethane	1.(1	96 72	70	130	1	30
	4-methyl-2-pentanone (MIBK)	0.7	•••	1	73 02	70 70	130	1	30
	cis-1,3-dichloropropene	0.8		1	82	70 70	130	0	30
	toluene	1.1	•••	1	108	70 70	130	3	30
	trans-1,3-dichloropropene	0.7	•••	1	75 72	70	130	1	30
	2-hexanone	0.7	•••	1	73	70	130	1	30
	1,1,2-trichloroethane	1.1	•••	1	107	70	130	3	30
	1,3-dichloropropane	0.9	•••	1	92	70	130	0	30
	tetrachloroethene	0.9	•••	1	90	70	130	0	30
	dibromochloromethane	0.8		1	76	70	130	1	30
	1,2-dibromoethane (EDB)	0.9		1	86	70	130	1	30
	chlorobenzene	1.(•••	1	97	70	130	2	30
	1,1,1,2-tetrachloroethane	0.8	•••	1	83	70	130	0	30
	ethylbenzene	1.(•••	1	95	70	130	0	30
	m&p-xylenes	1.9	•••	2	94	70	130	3	30
	o-xylene	1.0	•••	1	99	70	130	0	30
	styrene	1.(•••	1	99	70	130	0	30
	bromoform	0.7	′ug/g	1	71	70	130	1	30

Method	QC ID	Parameter	Associated Sample	Result	Units Ar	mt Added	%R	Li	mits	RPD	RPD Limi
SW5035A82	60B MLCSD4576	isopropylbenzene	zene 0.9 ug/g 1 88 chloroethane 0.9 ug/g 1 88 popropane 0.9 ug/g 1 88 ene 0.9 ug/g 1 88 ene 0.9 ug/g 1 88 ene 0.9 ug/g 1 88 opropane 0.9 ug/g 1 88 ene 0.9 ug/g 1 98 ne 1.0 ug/g 1 10 ylbenzene 1.0 ug/g 1 10 rene 1.0 ug/g 1 98 ylbenzene 1.0 ug/g 1 98 ylbenzene 1.0 ug/g 1 98 gene 0.9 ug/g 1 98 ullene 0.9 ug/g 1 98	88	70	130	2	30			
		1,1,2,2-tetrachloroethane)	0.9	ug/g	1	86	70	130	4	30
		1,2,3-trichloropropane		0.9	ug/g	1	89	70	130	3	30
		n-propylbenzene		0.9	ug/g	1	95	70	130	2	30
		bromobenzene		1.0	ug/g	1	100	70	130	2	30
		1,3,5-trimethylbenzene		1.0	ug/g	1	96	70	130	1	30
		2-chlorotoluene		1.0	ug/g	1	100	70	130	1	30
		4-chlorotoluene		1.0	ug/g	1	96	70	130	0	30
		tert-butylbenzene		1.0	ug/g	1	95	70	130	1	30
		1,2,4-trimethylbenzene		1.0	ug/g	1	96	70	130	0	30
		sec-butylbenzene		0.9	ug/g	1	90	70	130	0	30
		1,3-dichlorobenzene		1.0	ug/g	1	96	70	130	0	30
		4-isopropyltoluene		0.9	ug/g	1	90	70	130	1	30
		1,4-dichlorobenzene		1.0	ug/g	1	96	70	130	1	30
		1,2-dichlorobenzene		1.0	ug/g	1	97	70	130	2	30
		n-butylbenzene		0.9	ug/g	1	90	70	130	1	30
		1,2-dibromo-3-chloroprop	bane	0.6	ug/g	1	57	* 70	130	7	30
		1,2,4-trichlorobenzene		0.8	ug/g	1	83	70	130	2	30
		1,3,5-trichlorobenzene		0.9	ug/g	1	91	70	130	0	30
		hexachlorobutadiene		0.9	ug/g	1	90	70	130	5	30
		naphthalene		0.8	ug/g	1	78	70	130	3	30
		1,2,3-trichlorobenzene		0.9	ug/g	1	88	70	130	0	30
		dibromofluoromethane S	UR	98	%			78	114		
		toluene-D8 SUR		105	%			88	110		
		4-bromofluorobenzene S	UR	110	%			86	115		
		a,a,a-trifluorotoluene SU	R	95	%			70	130		

Method	QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limit
SW3540C8082/	A BLK4582	PCB-1016		<	0.02	ug/g						
		PCB-1221		<	0.02	ug/g						
		PCB-1232		<	0.02	ug/g						
		PCB-1242		<	0.02	ug/g						
		PCB-1248		<	0.02	ug/g						
		PCB-1254		<	0.02	ug/g						
		PCB-1260		<	0.02	ug/g						
		tetrachloro-m-xylene SUR			33	%			30	150		
		decachlorobiphenyl SUR			46	%			30	150		
SW3540C80824	A LCS4582	PCB-1016			0.18	ug/g	0.2	91	40	140		
		PCB-1221		<	0.02	ug/g						
		PCB-1232		<	0.02	ug/g						
		PCB-1242		<	0.02	ug/g						
		PCB-1248		<	0.02	ug/g						
		PCB-1254		<	0.02	ug/g						
		PCB-1260			0.15	ug/g	0.2	76	40	140		
		tetrachloro-m-xylene SUR			43	%			30	150		
		decachlorobiphenyl SUR			67	%			30	150		
SW3540C80824	A LCSD4582	PCB-1016			0.17	ug/g	0.2	83	40	140	9	30
		PCB-1221		<	0.02	ug/g						
		PCB-1232		<	0.02	ug/g						
		PCB-1242		<	0.02	ug/g						
		PCB-1248		<	0.02	ug/g						
		PCB-1254		<	0.02	ug/g						
		PCB-1260			0.14	ug/g	0.2	68	40	140	10	30
		tetrachloro-m-xylene SUR			46	%			30	150		
		decachlorobiphenyl SUR			57	%			30	150		

lethod	QC ID	Parameter Associated San	nple	Result	Units Amt Added	%R	Limits	RPD	RPD Lim
W3546/8270D	BLK4577	N-nitrosodimethylamine	<	0.2	ug/g				
		aniline	<	0.2	ug/g				
		phenol	<	0.2	ug/g				
		2-chlorophenol	<	0.5	ug/g				
		bis(2-chloroethyl)ether	<	0.2	ug/g				
		1,3-dichlorobenzene	<	0.2	ug/g				
		1,4-dichlorobenzene	<	0.2	ug/g				
		1,2-dichlorobenzene	<	0.2	ug/g				
		benzyl alcohol	<	0.2	ug/g				
		2-methylphenol	<	0.2	ug/g				
		bis(2-chloroisopropyl) ether	<	0.2	ug/g				
		hexachloroethane	<	0.2	ug/g				
		N-nitroso-di-N-propylamine	<	0.2	ug/g				
		4-methylphenol	<	0.2	ug/g				
		nitrobenzene	<	0.2	ug/g				
		isophorone	<	0.5	ug/g				
		2-nitrophenol	<	0.2	ug/g				
		2,4-dimethylphenol	<	0.2	ug/g				
		bis(2-chloroethoxy)methane	<	0.5	ug/g				
		2,4-dichlorophenol	<	0.5	ug/g				
		1,2,4-trichlorobenzene	<	0.5	ug/g				
		naphthalene	<	0.05	ug/g				
		benzoic acid	<	5.0	ug/g				
		4-chloroaniline	<	0.2	ug/g				
		hexachlorobutadiene	<	0.2	ug/g				
		4-chloro-3-methylphenol	<	0.2	ug/g				
		2-methylnaphthalene	<	0.05	ug/g				
		hexachlorocyclopentadiene	<	1.0	ug/g				
		2,4,6-trichlorophenol	<	0.2	ug/g				
		2,4,5-trichlorophenol	<	0.2	ug/g				
		2-chloronaphthalene	<	0.5	ug/g				
		2-nitroaniline	<	0.2	ug/g				
		acenaphthylene	<	0.05	ug/g				
		dimethylphthalate	<	0.5	ug/g				
		2,6-dinitrotoluene	<	0.2	ug/g				
		2,4-dinitrotoluene	<	0.2	ug/g				
		acenaphthene	<	0.05	ug/g				
		3-nitroaniline	<	0.2	ug/g				
		2,4-dinitrophenol	<	5.0	ug/g				
		dibenzofuran	<	0.05	ug/g				
		4-nitrophenol	<	1.0	ug/g				
		fluorene	<	0.05	ug/g				
		diethyl phthalate	<	0.5	ug/g				
		4-chlorophenyl phenyl ether	<	0.5	ug/g				
		4-nitroaniline	<	0.5	ug/g				
		4,6-dinitro-2-methylphenol	<	2.0	ug/g				
		azobenzene	<	0.2	ug/g				
		N-nitrosodiphenylamine	<	0.2	ug/g				
		4-bromophenyl phenyl ether	<	0.2	ug/g				
		hexachlorobenzene	<	0.2	ug/g				

Method	QC ID	Parameter	Associated Sample		Result	Units Amt Added	%R	Lir	nits	RPD	RPD Limit
SW3546/8270D	BLK4577	phenanthrene		<	0.05	ug/g					
		anthracene		<	0.05	ug/g					
		carbazole		<	0.2	ug/g					
		di-n-butylphthalate		<	0.5	ug/g					
		fluoranthene		<	0.05	ug/g					
		benzidine		<	3.0	ug/g					
		pyrene		<	0.05	ug/g					
		butyl benzyl phthalate		<	0.5	ug/g					
		benzo(a)anthracene		<	0.05	ug/g					
		chrysene		<	0.05	ug/g					
		3,3'-dichlorobenzidine		<	3.0	ug/g					
		bis(2-ethylhexyl)phthalate		<	0.5	ug/g					
		di-n-octyl phthalate		<	0.2	ug/g					
		benzo(b)fluoranthene		<	0.05	ug/g					
		benzo(k)fluoranthene		<	0.05	ug/g					
		benzo(a)pyrene		<	0.02	ug/g					
		indeno(1,2,3-cd)pyrene		<	0.05	ug/g					
		dibenzo(a,h)anthracene		<	0.05	ug/g					
		benzo(g,h,i)perylene		<	0.05	ug/g					
		2-fluorophenol SUR			52	%		21	100		
		phenol-D5 SUR			52	%		10	102		
		2,4,6-tribromophenol SUR			52	%		10	123		
		nitrobenzene-D5 SUR			71	%		35	114		
		2-fluorobiphenyl SUR			75	%		43	116		
		p-terphenyl-D14 SUR			80	%		33	141		

Method	QC ID	Parameter Associated Sample	e Result	Units /	Amt Added	%R	Li	mits	RPD	RPD Limit
SW3546/8270D	LCS4577	N-nitrosodimethylamine	1.9	ug/g	4	46	40	140		
		aniline	2.3	ug/g	4	57	40	140		
		phenol	2.4	ug/g	4	61	30	130		
		2-chlorophenol	2.6	ug/g	4	65	30	130		
		bis(2-chloroethyl)ether	2.4	ug/g	4	60	40	140		
		1,3-dichlorobenzene	2.0	ug/g	4	51	40	140		
		1,4-dichlorobenzene	2.5	ug/g	4	62	40	140		
		1,2-dichlorobenzene	2.2	ug/g	4	55	40	140		
		benzyl alcohol	2.7	ug/g	4	67	30	130		
		2-methylphenol	2.8	ug/g	4	71	30	130		
		bis(2-chloroisopropyl) ether	2.4	ug/g	4	60	40	140		
		hexachloroethane	2.4	ug/g	4	59	40	140		
		N-nitroso-di-N-propylamine	2.5	ug/g	4	63	40	140		
		4-methylphenol	2.7	ug/g	4	68	30	130		
		nitrobenzene	2.6	ug/g	4	65	40	140		
		isophorone	2.4	ug/g	4	59	40	140		
		2-nitrophenol	2.1	ug/g	4	53	30	130		
		2,4-dimethylphenol	2.6	ug/g	4	65	30	130		
		bis(2-chloroethoxy)methane	2.8	ug/g	4	71	40	140		
		2,4-dichlorophenol	2.0	ug/g	4	67	30	130		
		1,2,4-trichlorobenzene	2.6	ug/g ug/g	4	66	40	140		
		naphthalene	2.0	ug/g ug/g	4	58	40	140		
		benzoic acid	< 5.0		4	50	40	140		
		4-chloroaniline	< 3.0 2.4	ug/g	4	61	40	140		
			2.4	ug/g	4	61 65	40 40	140		
		hexachlorobutadiene		ug/g	4					
		4-chloro-3-methylphenol	3.1	ug/g	4	78 67	30	130		
		2-methylnaphthalene	2.67	ug/g	4	67	40	140		
		hexachlorocyclopentadiene	1.7	ug/g	4	43	40	140		
		2,4,6-trichlorophenol	2.6	ug/g	4	65	30	130		
		2,4,5-trichlorophenol	2.5	ug/g	4	62	30	130		
		2-chloronaphthalene	2.7	ug/g	4	68	40	140		
		2-nitroaniline	3.1	ug/g	4	77	40	140		
		acenaphthylene	2.6	ug/g	4	65	40	140		
		dimethylphthalate	3.2	ug/g	4	80	40	140		
		2,6-dinitrotoluene	2.7	ug/g	4	68	40	140		
		2,4-dinitrotoluene	2.8	ug/g	4	71	40	140		
		acenaphthene	2.5	ug/g	4	63	40	140		
		3-nitroaniline	2.7	ug/g	4	68	40	140		
		2,4-dinitrophenol	< 5.0	ug/g	4	63	30	130		
		dibenzofuran	3.0	ug/g	4	74	40	140		
		4-nitrophenol	1.9	ug/g	4	47	30	130		
		fluorene	3.0	ug/g	4	76	40	140		
		diethyl phthalate	3.4	ug/g	4	86	40	140		
		4-chlorophenyl phenyl ether	3.1	ug/g	4	77	40	140		
		4-nitroaniline	2.7	ug/g	4	67	40	140		
		4,6-dinitro-2-methylphenol	< 2.0	ug/g						
		azobenzene	3.3	ug/g	4	83	40	140		
		N-nitrosodiphenylamine	3.7	ug/g	4	93	40	140		
		4-bromophenyl phenyl ether	3.0	ug/g	4	76	40	140		
		hexachlorobenzene	3.0	ug/g	4	74	40	140		
		· · · · · · · · · · · · · · · · · · ·	0.0	- 3 3	-					

Absolute Resource

Method	QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R		Lir	nits	RPD	RPD Limi
SW3546/8270D	LCS4577	phenanthrene			2.8	ug/g	4	69	2	10	140		
		anthracene			2.8	ug/g	4	71	2	10	140		
		carbazole			2.9	ug/g	4	72	2	10	140		
		di-n-butylphthalate			3.5	ug/g	4	88	2	10	140		
		fluoranthene			3.0	ug/g	4	75	2	10	140		
		benzidine		<	3.0	ug/g							
		pyrene			3.2	ug/g	4	80	2	10	140		
		butyl benzyl phthalate			3.3	ug/g	4	82	2	10	140		
		benzo(a)anthracene			2.9	ug/g	4	71	2	10	140		
		chrysene			2.3	ug/g	4	57	2	10	140		
		3,3'-dichlorobenzidine		<	3.0	ug/g							
		bis(2-ethylhexyl)phthalate			3.6	ug/g	4	90	2	10	140		
		di-n-octyl phthalate			3.5	ug/g	4	88	2	10	140		
		benzo(b)fluoranthene			3.1	ug/g	4	78	2	10	140		
		benzo(k)fluoranthene			2.5	ug/g	4	64	2	10	140		
		benzo(a)pyrene			3.1	ug/g	4	77	4	10	140		
		indeno(1,2,3-cd)pyrene			2.6	ug/g	4	66	2	10	140		
		dibenzo(a,h)anthracene			1.4	ug/g	4	34	* 4	10	140		
		benzo(g,h,i)perylene			2.4	ug/g	4	60	2	10	140		
		2-fluorophenol SUR			52	%			2	21	100		
		phenol-D5 SUR			75	%			1	10	102		
		2,4,6-tribromophenol SUR			69	%			1	10	123		
		nitrobenzene-D5 SUR			66	%			3	35	114		
		2-fluorobiphenyl SUR			70	%			2	13	116		
		p-terphenyl-D14 SUR			82	%			3	33	141		

Method	QC ID	Parameter Associa	ated Sample	Result	Units A	mt Added	%R	Li	nits	RPD	RPD Limit
SW3546/8270D	LCSD4577	N-nitrosodimethylamine		1.8	ug/g	4	45	40	140	4	30
		aniline		2.3	ug/g	4	57	40	140	0	30
		phenol		2.4	ug/g	4	60	30	130	1	30
		2-chlorophenol		2.4	ug/g	4	59	30	130	9	30
		bis(2-chloroethyl)ether		2.0	ug/g	4	50	40	140	19	30
		1,3-dichlorobenzene		1.9	ug/g	4	47	40	140	8	30
		1,4-dichlorobenzene		2.2	ug/g	4	54	40	140	13	30
		1,2-dichlorobenzene		2.0	ug/g	4	51	40	140	9	30
		benzyl alcohol		2.3	ug/g	4	58	30	130	13	30
		2-methylphenol		2.6	ug/g	4	66	30	130	8	30
		bis(2-chloroisopropyl) ether		2.2	ug/g	4	54	40	140	11	30
		hexachloroethane		2.1	ug/g	4	51	40	140	13	30
		N-nitroso-di-N-propylamine		2.2	ug/g	4	56	40	140	12	30
		4-methylphenol		2.5	ug/g	4	62	30	130	10	30
		nitrobenzene		2.4	ug/g	4	60	40	140	8	30
		isophorone		2.2	ug/g	4	55	40	140	8	30
		2-nitrophenol		2.0	ug/g	4	49	30	130	8	30
		2,4-dimethylphenol		2.4	ug/g	4	60	30	130	9	30
		bis(2-chloroethoxy)methane		2.6	ug/g	4	64	40	140	10	30
		2,4-dichlorophenol		2.5	ug/g	4	61	30	130	8	30
		1,2,4-trichlorobenzene		2.4	ug/g	4	61	40	140	8	30
		naphthalene		2.4	ug/g ug/g	4	54	40	140	7	30 30
		benzoic acid	<	5.0	ug/g	7	04	40	140	,	00
		4-chloroaniline		2.3	ug/g ug/g	4	57	40	140	6	30
		hexachlorobutadiene		2.3	ug/g ug/g	4	56	40	140	14	30 30
		4-chloro-3-methylphenol		2.3	ug/g ug/g	4	70	30	130	11	30 30
		2-methylnaphthalene		2.0	ug/g ug/g	4	61	40	140	9	30 30
		hexachlorocyclopentadiene		2.43 1.6		4	40	40 40	140	8	30 30
				2.5	ug/g	4	40 62	40 30	140	о 5	30 30
		2,4,6-trichlorophenol		2.5	ug/g		62 59				
		2,4,5-trichlorophenol		2.4 2.7	ug/g	4	59 67	30	130	5 2	30 20
		2-chloronaphthalene			ug/g	4		40	140		30 30
		2-nitroaniline		2.6	ug/g	4	66 61	40	140	16	30 20
		acenaphthylene		2.4	ug/g	4	61 72	40	140	7	30
		dimethylphthalate		2.9	ug/g	4	73 02	40	140	10	30
		2,6-dinitrotoluene		2.5	ug/g	4	63 66	40	140	7	30
		2,4-dinitrotoluene		2.6	ug/g	4	66 60	40	140	7	30
		acenaphthene		2.4	ug/g	4	60 62	40	140	5	30
		3-nitroaniline		2.5	ug/g	4	63	40	140	8	30
		2,4-dinitrophenol	<	5.0	ug/g	4	63	30	130	0	30
		dibenzofuran		2.8	ug/g	4	70	40	140	5	30
		4-nitrophenol		1.9	ug/g	4	46	30	130	2	30
		fluorene		2.8	ug/g	4	71	40	140	7	30
		diethyl phthalate		3.2	ug/g	4	80	40	140	7	30
		4-chlorophenyl phenyl ether		2.9	ug/g	4	73	40	140	5	30
		4-nitroaniline		2.5	ug/g	4	63	40	140	6	30
		4,6-dinitro-2-methylphenol	<	2.0	ug/g						
		azobenzene		3.2	ug/g	4	79	40	140	5	30
		N-nitrosodiphenylamine		3.5	ug/g	4	88	40	140	6	30
		4-bromophenyl phenyl ether		2.9	ug/g	4	72	40	140	5	30
		hexachlorobenzene		2.9	ug/g	4	72	40	140	3	30
		pentachlorophenol		1.6	ug/g	4	39	30	130	7	30

Method	QC ID	Parameter	Associated Sample		Result	Units A	Mat Added	%R	Li	mits	RPD	RPD Limit
SW3546/8270D	LCSD4577	phenanthrene			2.6	ug/g	4	66	40	140	5	30
		anthracene			2.7	ug/g	4	67	40	140	6	30
		carbazole			2.7	ug/g	4	67	40	140	6	30
		di-n-butylphthalate			3.3	ug/g	4	83	40	140	6	30
		fluoranthene			2.8	ug/g	4	71	40	140	6	30
		benzidine		<	3.0	ug/g						
		pyrene			3.1	ug/g	4	77	40	140	4	30
		butyl benzyl phthalate			3.1	ug/g	4	79	40	140	5	30
		benzo(a)anthracene			2.8	ug/g	4	69	40	140	4	30
		chrysene			2.1	ug/g	4	53	40	140	6	30
		3,3'-dichlorobenzidine		<	3.0	ug/g						
		bis(2-ethylhexyl)phthalate			3.4	ug/g	4	86	40	140	4	30
		di-n-octyl phthalate			3.4	ug/g	4	85	40	140	3	30
		benzo(b)fluoranthene			2.7	ug/g	4	68	40	140	13	30
		benzo(k)fluoranthene			2.7	ug/g	4	67	40	140	5	30
		benzo(a)pyrene			2.9	ug/g	4	74	40	140	4	30
		indeno(1,2,3-cd)pyrene			2.5	ug/g	4	63	40	140	4	30
		dibenzo(a,h)anthracene			1.3	ug/g	4	33	* 40	140	2	30
		benzo(g,h,i)perylene			2.3	ug/g	4	57	40	140	4	30
		2-fluorophenol SUR			48	%			21	100		
		phenol-D5 SUR			63	%			10	102		
		2,4,6-tribromophenol SUR			64	%			10	123		
		nitrobenzene-D5 SUR			57	%			35	114		
		2-fluorobiphenyl SUR			63	%			43	116		
		p-terphenyl-D14 SUR			73	%			33	141		
SW3550B8100m	n BLK4569	TPH C10-C36		<	200	ug/g						
		2-fluorobiphenyl SUR			90	%			40	140		
		o-terphenyl SUR			88	%			40	140		
SW3550B8100m	n LCS4569	TPH C10-C36			2300	ug/g	2500	94	40	140		
		2-fluorobiphenyl SUR			87	%			40	140		
		o-terphenyl SUR			101	%			40	140		
SW3550B8100m	n MS4569	TPH C10-C36	22468-010		2100	ug/g	2520	81	40	140		
		2-fluorobiphenyl SUR	22468-010		80	%			40	140		
		o-terphenyl SUR	22468-010		80	%			40	140		

Method QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Li	mits	RPD	RPD Lim
SW3550B8270D BLK4570	naphthalene		<	0.50	ug/g						
	2-methylnaphthalene		<	0.50	ug/g						
	acenaphthylene		<	0.50	ug/g						
	acenaphthene		<	0.50	ug/g						
	dibenzofuran		<	0.50	ug/g						
	fluorene		<	0.50	ug/g						
	phenanthrene		<	0.50	ug/g						
	anthracene		<	0.50	ug/g						
	fluoranthene		<	0.50	ug/g						
	pyrene		<	0.50	ug/g						
	benzo(a)anthracene		<	0.50	ug/g						
	chrysene		<	0.50	ug/g						
	benzo(b)fluoranthene		<	0.50	ug/g						
	benzo(k)fluoranthene		<	0.50	ug/g						
	benzo(a)pyrene		<	0.50	ug/g						
	indeno(1,2,3-cd)pyrene		<	0.50	ug/g						
	dibenzo(a,h)anthracene		<	0.50	ug/g						
	benzo(g,h,i)perylene		<	0.50	ug/g						
	2-fluorobiphenyl SUR			102	%			43	116		
	o-terphenyl SUR			84	%			33	141		
SW3550B8270D LCS4570	naphthalene			3.8	ug/g	4	96	40	140		
	2-methylnaphthalene			4.1	ug/g	4	102	40	140		
	acenaphthylene			4.1	ug/g	4	102	40	140		
	acenaphthene			4.0	ug/g	4	100	40	140		
	dibenzofuran		<	0.50	ug/g						
	fluorene			4.4	ug/g	4	110	40	140		
	phenanthrene			4.2	ug/g	4	105	40	140		
	anthracene			4.0	ug/g	4	100	40	140		
	fluoranthene			4.6	ug/g	4	116	40	140		
	pyrene			4.4	ug/g	4	110	40	140		
	benzo(a)anthracene			4.1	ug/g	4	102	40	140		
	chrysene			4.4	ug/g	4	109	40	140		
	benzo(b)fluoranthene			4.5	ug/g	4	113	40	140		
	benzo(k)fluoranthene			3.1	ug/g	4	78	40	140		
	benzo(a)pyrene			4.0	ug/g	4	101	40	140		
	indeno(1,2,3-cd)pyrene			3.9	ug/g	4	98	40	140		
	dibenzo(a,h)anthracene			3.8	ug/g	4	96	40	140		
	benzo(g,h,i)perylene			4.3	ug/g	4	108	40	140		
	2-fluorobiphenyl SUR			101	""""""""""""""""""""""""""""""""""""""	•	100	43	116		
	o-terphenyl SUR			95	%			33	141		

Method QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Li	mits	RPD	RPD Limit
SW3051A6010C BLK4564	Silver		<	0.25	ug/g						
	Arsenic		<	0.50	ug/g						
	Barium		<	2.5	ug/g						
	Cadmium		<	0.20	ug/g						
	Chromium		<	2.5	ug/g						
	Lead		<	0.50	ug/g						
	Selenium		<	2.5	ug/g						
SW3051A6010C CRM4564	Silver			41	ug/g	38		25.1	51.9		
	Arsenic			410	ug/g	400		292	508		
	Barium			26	ug/g	25		0	51.3		
	Cadmium			16	ug/g	15		8.71	22		
	Chromium			15	ug/g	14		2.45	24.7		
	Lead			5200	ug/g	5100		3753	6469		
	Selenium			7.5	ug/g	6.6		0	18.4		
SW3051A6010C CRMD4564	Silver			40	ug/g	38		25.1	51.9	2	35
	Arsenic			410	ug/g	400		292	508	1	35
	Barium			25	ug/g	25		0	51.3	2	35
	Cadmium			16	ug/g	15		8.71	22	0	35
	Chromium			14	ug/g	14		2.45	24.7	7	35
	Lead			5000	ug/g	5100		3753	6469	3	35
	Selenium			7.5	ug/g	6.6		0	18.4	0	35
SW3051A6010C MS4564	Silver	22448-001		25	ug/g	24	98	75	125		
	Arsenic	22448-001		57	ug/g	49	95	75	125		
	Barium	22448-001		110	ug/g	49.2	121	75	125		
	Cadmium	22448-001		44	ug/g	49	90	75	125		
	Chromium	22448-001		78	ug/g	49	99	75	125		
	Lead	22448-001		120	ug/g	49.2	109	75	125		
	Selenium	22448-001		47	ug/g	49	92	75	125		
SW3051A6010C MSD4564	Silver	22448-001		25	ug/g	24	99	75	125	1	35
	Arsenic	22448-001		62	ug/g	49	106	75	125	9	35
	Barium	22448-001		130	ug/g	49.2	157	75	125	15	35
	Cadmium	22448-001		45	ug/g	49	91	75	125	1	35
	Chromium	22448-001		78	ug/g	49	99	75	125	0	35
	Lead	22448-001		110	ug/g	49.2	93	75	125	7	35
	Selenium	22448-001		46	ug/g	49	90	75	125	2	35

Method QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Lir	nits	RPD	RPD Limit
SW3051A6010C BLK4586	Arsenic		<	0.50	ug/g						
	Boron		<	2.5	ug/g						
	Barium		<	2.5	ug/g						
	Cadmium		<	0.20	ug/g						
	Copper		<	2.5	ug/g						
	Nickel		<	2.5	ug/g						
	Lead		<	0.50	ug/g						
	Selenium		<	2.5	ug/g						
	Vanadium		<	2.5	ug/g						
SW3051A6010C CRM4586	6 Arsenic			400	ug/g	400		292	508		
	Barium			24	ug/g	25		0	51.3		
	Cadmium			15	ug/g	15		8.71	22		
	Copper			770	ug/g	730		592	866		
	Nickel			17	ug/g	17		6.2	27.5		
	Lead			5000	ug/g	5100		3753	6469		
	Selenium			6.9	ug/g	6.6		0	18.4		
	Vanadium			6.5	ug/g	6.5		0	17.1		
SW3051A6010C CRMD45	86 Arsenic			420	ug/g	400		292	508	Ę	5 35
	Barium			27	ug/g	25		0	51.3	8	3 35
	Cadmium			15	ug/g	15		8.71	22	() 35
	Copper			750	ug/g	730		592	866	3	3 35
	Nickel			17	ug/g	17		6.2	27.5	() 35
	Lead			5500	ug/g	5100		3753	6469	9	9 35
	Selenium			7.1	ug/g	6.6		0	18.4	2	4 35
	Vanadium			6.9	ug/g	6.5		0	17.1	-	7 35
SW3051A6010C DUP4586	S Arsenic	22468-010		2.2	ug/g					17	35
	Boron	22468-010	<	2.4	ug/g						35
	Barium	22468-010		9.1	ug/g					11	35
	Cadmium	22468-010	<	0.19	ug/g						35
	Copper	22468-010		5.8	ug/g					11	35
	Nickel	22468-010		4.3	ug/g					11	35
	Lead	22468-010		12	ug/g					6	35
	Selenium	22468-010	<	2.4	ug/g						35
	Vanadium	22468-010		7.3	ug/g					5	35
SW3051A6010C MS4586	Arsenic	22468-010		26	ug/g	24	98	75	125		
	Boron	22468-010		25	ug/g	24	97	75	125		
	Barium	22468-010		32	ug/g	24	99	75	125		
	Cadmium	22468-010		24	ug/g	24	99	75	125		
	Copper	22468-010		32	ug/g	24	104	75	125		
	Nickel	22468-010		29	ug/g	24	100	75	125		
	Lead	22468-010		36	ug/g	24	95	75	125		
	Selenium	22468-010		24	ug/g	24	97	75	125		
	Vanadium	22468-010		31	ug/g	24	99	75	125		

Method	QC ID	Parameter	Associated Sample		Result	Units Amt Added		%R	Li	mits	RPD	RPD Limit
SW7471B	BLK4568	Mercury		<	0.02	ug/g						
SW7471B	CRM4568	Mercury			1.4	ug/g	1.1		0.49	1.76		
SW7471B	CRMD4568	Mercury			1.5	ug/g	1.1		0.49	1.76	4	35
SW7471B	MS4568	Mercury	22448-001		1.1	ug/g	0.65	124	75	125		
SW7471B	MS4568	Mercury	22468-011		0.45	ug/g	0.346	120	75	125		
SW7471B	MSD4568	Mercury	22448-001		1.0	ug/g	0.65	120	75	125	2	35

	QSD-01 Revision 12/23/10	RECORD	CUSTODY	*Date Needed	Standard (10 Business Days)	Priority (24 hr)* Expedited (48 hr)*	TAT REQUESTED	-55 O)	OlC4-6	Q CA-S	IA CA-	00 CA-	6-43 50	04CA-	BCA-	- e A -	02/03	124108-01 TRIP	Sample ID (Lab Use Only)	Lab	Same	Invoice To:	207-828	Phone #	Report To:	102	Company Address	Company Name: Cをららんを		Absolu	
	23/10 Relinquished by:	D Relinquished by		HARD				5-1 /	0-3	' 3-ئ ا' 3	4 6-8	C 8-9 E-	- a FLOOR a	6 5-0 r	1 6-0 1-		1	18 BCAWE 1					8-1272	NEWGMB		きょ		NE	associa	Absolute Resource	
	ned by:	ned by:	New Y Sam		REPORTING INSTRUCTIONS	for sample acceptance policy and current accreditation lists.	See absoluteresourceassociates.com	×			بر بر		/ ×	7 ×	×.	WATE		WATER	Matrix			e) ا ×			WESTBREAK			tes C	Jrce		
				QUIRED	TRUCTIO	tation lists.	eassociate												OTHER								40		لل		
	١	(2h	🗆 FAX (FAX#)		and				-									HNO ₃ H ₂ SO ₄	reservat		0			<u></u>		1 56.49	1 6/11			
				FAX#)	PDF (e-ma		ECIAL IN		×	x	X	×	X	×			K.	×	NaOH MeOH	Preservation Method	PO #	Quote #		Reporting	brotocol:	^o roject Loc:	roject #:	Project Name:	absoluter	124 H Port	
			0		PDF (e-mail address)		SPECIAL INSTRUCTIONS	~							-		1/ee/19		OTHER (Specify) DATE	bor			2	٨	RCRA	Project Location NA ME	Project #: 1000/086	N .	esourcea	24 Heritage Avenue #1 Portsmouth, NH 03801 603-436-2001	
	Date	' Date	9/23/1)				IONS	' 9do	1400	900	1030	1100	र भ	1330	1000		<u> 11 k200</u>		TIME	Sampling		- Fund Pricina	Other	GW-1	SDWA 1	MA ME VT	¢,	ર્ક	absoluteresourceassociates.com	124 Heritage Avenue #10 Portsmouth, NH 03801 603-436-2001	
	Time	Time	LI OZY					с 4 0	3 VC	でよい	8 4	15	JB	ų	č 된		ム と		SAMPLER	<u></u> Dí		icina		S-1	NPDES	T		VARD	com		
(OTHER (specify)					×	*	Х.	× 	*	×			×	9.	-											CHAIN AND A	
	Received by Laboratory:	Received by:	Received by:					×		×	۴	X	×	х.	×		×. ×)RO 80	15 🗆	MEL	RO 🗆	EPH M/	DEP	🗆 TPH	Fing	erprint		NAL-	
	aboratory:	/						ኦ	×								×	Υ	□ 8270PAH ★8082 PCB □ 0&G 1664	8 [])81 Pe	sticio	es 🗆 6	08 Pes		(35	40	<u>,</u>		USTOD SIS RE	
	ne ,	J]]						X						AN AN		×		□ pH □ □ TSS □ T S& RCRA Met	DS [] TS [TV ב		kalinity		Motals				CUSTODY RECORD YSIS REQUEST	
	Kin	* •.				- - -		Х					Х	×	X				Total Meta	ls-list:	As,						N:	, <u>s</u> ,v	200	ORD	
	Q				 RE														Ammonia T-Phospho Cyanide (orus (] Phen	ols	Bacte	ria P/A	🗆 Bao		'n			22468	
	\$2/Q	Date	Date	TEMPERATURE	RECEIVED ON ICS								 						Nitrate Corrosivity TCLP Meta) Nitrit	e 🗆 C leactive	hlori CN	de 🗆 S 🗆 Rea	ulfate ctive S-] Bro	omide	/FP	2 2 1 2		1 68	PAGE
	13/10/10	ē 			$\langle \nabla \rangle$			X		×	×	×	×	X	×				Subcontract:		C 🗆							×			ie / of
-	Time	Time	Time					¢				×					6.	1	Pb Grab (G) or	Соп	iposite (C)									þ

		_		~ ~				1	T		1	ï					~ /*		1	=				-T-		0				ونسخته		1
QSD-01 Revision 12/23/10	R	CUSTODY	*Date Needed	Standard (10 Business Days)	TAT REQUES Priority (24 hr)* Expedited (48 hr)*				1								Sample ID (Lab Use Only)	Lab	6	Invoice To:	اي	Phone #:	11	Report Tio:	776	Company Address:	C)	Company Name:		A		
Revisio	RECORD	S	leedec	ness Da	TAT REQUESTED ority (24 hr)*				F	ΞĘ	5	い	4	3	٢		ple ^{omly)}	σ	á	ן פֿ	207-	#:	5000	ö		ny Ac	CREDERE	ny Na		Absolute Resource		
on 12/	R R	<u>o</u>		iys)	UEST)* hr)*				Ę	3	ŝ	£	3	T	5	Ś			ame		å		8		MALN	Idress	213(ame:		ľ		
23/10	Ũ	X		×								C+-3	p-2	TP-1	52-	55-2	Field		Ľ		falg-		6		C ST	<u></u>	Ś		۵	te		
	л Д			-	ŷ				<u>S</u>		7	0~2			W		ield	1 1			K		NEWCOMB						SS	R		
əlinqı	əlinqı	elinqu	HA	REPO	ee at for s						σ	ຂ່	é	4-6'		. *					2		600		2 CS				00	SS		
Relinquished by:	Relinquished by:	Relinquished by Sampler	HARD COPY REQUIRED	REPORTING INSTRUCTIONS	See absoluteresourceassociates.com for sample acceptance policy and current accreditation lists.					-	-)	/	1	Į	1	# CONTAIN	IERS			R		5		WEST GROOM				i a	<u>n</u>		
d by:	ď by:	No.	ОРҮ	NG	eresc ecce t acce												WATER	N			×				200				tes	<u>r</u>	¥	ļ
			REO	INST	ourcea eptan redita					s	×	×	Х.	X	ኦ	×	SOLID	Matrix			6				r					Ľ		/
		\ <i>¥</i>	ŨIRE	RUC	assoc ce po ttion I												OTHER	×							36				U	<i>H</i>	\sim	
		X	Ü	OITC	iates olicy a ists.												HCI	Pr	1						9							1
1	١	$\left \right\rangle$		SN	.com												HNO3	eser							0408							
		$ \rangle$	FAX (FAX#)		SP												H ₂ SO ₄	Vati	P	Q			σ	┯┥			0 ¥	σ				
			=AX#)	PDF	ECI/												NaOH	Preservation Method	PO # _	Quote #		Reporting	Protocol:		rojec	lolec	β δ	Project Name:	absc			
		'		(e-ma					•	7							MeOH	Meth		#		ting	<u>.</u>		t Loc	Ę	ŧ δ	t Nan	olutei		124 H	
				ail ad	ISTF												OTHER (Specify)	bor			ľ		MCP		ation	000	3 « 0	ne:	eso	603	Herita	
		0		PDF (e-mail address)	SPECIAL INSTRUCTIONS	e									•	26	•					E APP	זי	Š	Project Location: WHY MA ME	FIUJECL #. 10 00/086	Device # ENGLAND		absoluteresourceassociates.com	603-436-2001	124 Heritage Avenue #10	
D	Q	9/23/11		Ĩ	NOL					•						1/Lad	DATE	Sa			- L	GW-1	NHDES	3	MA	Q	<u>م</u> ۲		ISSO	-200	Ven	
Date	Date				ა					,	1	2	10	ÌI	90	8		Sampling		Fund Pricing		학	UES S	\$					ciate	1 100	ue #	
			П							1	1	1500	1035	Ìll/ST	048	855	TIME	ing		Pricir		Ϋ́	OTHER	Ē	Ţ		LAND		S.COI		10	
=	⊒	io Z4] OT					\rightarrow	_		4	냃		Я	R	4	SAMPLER	1		ŭ			OTHER				6		Ц			
Time	Time	- ,	OTHER (specify)			┢─			-	5	.,	ŭ		÷			□ VOC 8260	kg ∨	OC 82	260 NH	IDES		L)C 826	_						<u> </u>	20	
		п	spec						þ								□ VOC 624	□ V0	IC BT	X	MtB	E, only		OC 80)21VT						CHAIN-C	
Received by Laboratory Way Bill#:	Received by:	Received by:	fy)						aeue					·										•-•						AN		
))))))))))))))	/ed b	/ed b							- r		ኦ		x	X	×	*									rta TPł	- Finc	rorini			Ì	ΣΫ	
V Lat	}, ≍	Y:							ما الاجراد	3	$\frac{r}{\lambda}$		x x	X	X	×	X 8270PAH													l c	52	
orat	1								R		×				メ	7	X.8082 PCB	□ 8(081 F	Pesticio	les [_ 608	Pest/F	РСВ	(33	540	o)			0	STC	
al A	$\langle $								يلد م	-							□ 0&G 1664										•			Ē	ίĝ	
Иф									6															ity				E		Ĉ		
8	1							\dashv	P	<u> </u>							RCRA Met							tal n	vietals			E		Q	DECITECT	
											X		Х	Х.	X	×	🔀 Total Meta	ls-list;	4s.	Ba, I	B,C	d, G	, FS	Hs	Ni	,Se	V	Ĕ	2		ORD	
																		Metals	-IISC									Ē			G	
S.									_								Ammonia T-Phospho							Bact	oria M	PN		E	2			
			TE	RE		\vdash				+							Cyanide [. 14			þ	Ν	J	
10			TEMPERATURE	RECEIVED ON IC													□ Nitrate □] Flu	uoride			Ņ	27760	
No.	Ď	D	PATU	ED C					\square	_							🗆 Corrosivity							-						L C	<u>ц</u>	PA
ate M	Date	Date	IRE .	N IC						+						ļ			TCLP VOC TCLP SVOC TCLP Pesticide TOC Grain Size TCLP Herbicides											Č	Ø	PAGE & OF
Ť.			~	Ă	a	-			+	+		x					Pb															R
10.25	Ħ	=	Q																유													
K	Time	Time	/			4																										φ
· ` `			ိုင	ð				-+-					~~~~			0	Grab (G) or	Com	nposite	(C)												Ľ.